Revert "cc: Remove layers that are not drawn from tile manager."
[chromium-blink-merge.git] / cc / resources / tile_manager.cc
blob1c04d077f106ecabe69a71cd6b4d5482b4f5aceb
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/tile_manager.h"
7 #include <algorithm>
8 #include <limits>
9 #include <string>
11 #include "base/bind.h"
12 #include "base/json/json_writer.h"
13 #include "base/logging.h"
14 #include "base/metrics/histogram.h"
15 #include "cc/debug/devtools_instrumentation.h"
16 #include "cc/debug/frame_viewer_instrumentation.h"
17 #include "cc/debug/traced_value.h"
18 #include "cc/layers/picture_layer_impl.h"
19 #include "cc/resources/raster_worker_pool.h"
20 #include "cc/resources/rasterizer_delegate.h"
21 #include "cc/resources/tile.h"
22 #include "skia/ext/paint_simplifier.h"
23 #include "third_party/skia/include/core/SkBitmap.h"
24 #include "third_party/skia/include/core/SkPixelRef.h"
25 #include "ui/gfx/rect_conversions.h"
27 namespace cc {
28 namespace {
30 // Flag to indicate whether we should try and detect that
31 // a tile is of solid color.
32 const bool kUseColorEstimator = true;
34 // Minimum width/height of a pile that would require analysis for tiles.
35 const int kMinDimensionsForAnalysis = 256;
37 class DisableLCDTextFilter : public SkDrawFilter {
38 public:
39 // SkDrawFilter interface.
40 virtual bool filter(SkPaint* paint, SkDrawFilter::Type type) OVERRIDE {
41 if (type != SkDrawFilter::kText_Type)
42 return true;
44 paint->setLCDRenderText(false);
45 return true;
49 class RasterTaskImpl : public RasterTask {
50 public:
51 RasterTaskImpl(
52 const Resource* resource,
53 PicturePileImpl* picture_pile,
54 const gfx::Rect& content_rect,
55 float contents_scale,
56 RasterMode raster_mode,
57 TileResolution tile_resolution,
58 int layer_id,
59 const void* tile_id,
60 int source_frame_number,
61 bool analyze_picture,
62 RenderingStatsInstrumentation* rendering_stats,
63 const base::Callback<void(const PicturePileImpl::Analysis&, bool)>& reply,
64 ImageDecodeTask::Vector* dependencies)
65 : RasterTask(resource, dependencies),
66 picture_pile_(picture_pile),
67 content_rect_(content_rect),
68 contents_scale_(contents_scale),
69 raster_mode_(raster_mode),
70 tile_resolution_(tile_resolution),
71 layer_id_(layer_id),
72 tile_id_(tile_id),
73 source_frame_number_(source_frame_number),
74 analyze_picture_(analyze_picture),
75 rendering_stats_(rendering_stats),
76 reply_(reply),
77 canvas_(NULL) {}
79 // Overridden from Task:
80 virtual void RunOnWorkerThread() OVERRIDE {
81 TRACE_EVENT0("cc", "RasterizerTaskImpl::RunOnWorkerThread");
83 DCHECK(picture_pile_);
84 if (canvas_) {
85 AnalyzeAndRaster(picture_pile_->GetCloneForDrawingOnThread(
86 RasterWorkerPool::GetPictureCloneIndexForCurrentThread()));
90 // Overridden from RasterizerTask:
91 virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
92 DCHECK(!canvas_);
93 canvas_ = client->AcquireCanvasForRaster(this);
95 virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
96 canvas_ = NULL;
97 client->ReleaseCanvasForRaster(this);
99 virtual void RunReplyOnOriginThread() OVERRIDE {
100 DCHECK(!canvas_);
101 reply_.Run(analysis_, !HasFinishedRunning());
104 protected:
105 virtual ~RasterTaskImpl() { DCHECK(!canvas_); }
107 private:
108 void AnalyzeAndRaster(PicturePileImpl* picture_pile) {
109 DCHECK(picture_pile);
110 DCHECK(canvas_);
112 if (analyze_picture_) {
113 Analyze(picture_pile);
114 if (analysis_.is_solid_color)
115 return;
118 Raster(picture_pile);
121 void Analyze(PicturePileImpl* picture_pile) {
122 frame_viewer_instrumentation::ScopedAnalyzeTask analyze_task(
123 tile_id_, tile_resolution_, source_frame_number_, layer_id_);
125 DCHECK(picture_pile);
127 picture_pile->AnalyzeInRect(
128 content_rect_, contents_scale_, &analysis_, rendering_stats_);
130 // Record the solid color prediction.
131 UMA_HISTOGRAM_BOOLEAN("Renderer4.SolidColorTilesAnalyzed",
132 analysis_.is_solid_color);
134 // Clear the flag if we're not using the estimator.
135 analysis_.is_solid_color &= kUseColorEstimator;
138 void Raster(PicturePileImpl* picture_pile) {
139 frame_viewer_instrumentation::ScopedRasterTask raster_task(
140 tile_id_,
141 tile_resolution_,
142 source_frame_number_,
143 layer_id_,
144 raster_mode_);
145 devtools_instrumentation::ScopedLayerTask layer_task(
146 devtools_instrumentation::kRasterTask, layer_id_);
148 skia::RefPtr<SkDrawFilter> draw_filter;
149 switch (raster_mode_) {
150 case LOW_QUALITY_RASTER_MODE:
151 draw_filter = skia::AdoptRef(new skia::PaintSimplifier);
152 break;
153 case HIGH_QUALITY_NO_LCD_RASTER_MODE:
154 draw_filter = skia::AdoptRef(new DisableLCDTextFilter);
155 break;
156 case HIGH_QUALITY_RASTER_MODE:
157 break;
158 case NUM_RASTER_MODES:
159 default:
160 NOTREACHED();
162 canvas_->setDrawFilter(draw_filter.get());
164 base::TimeDelta prev_rasterize_time =
165 rendering_stats_->impl_thread_rendering_stats().rasterize_time;
167 // Only record rasterization time for highres tiles, because
168 // lowres tiles are not required for activation and therefore
169 // introduce noise in the measurement (sometimes they get rasterized
170 // before we draw and sometimes they aren't)
171 RenderingStatsInstrumentation* stats =
172 tile_resolution_ == HIGH_RESOLUTION ? rendering_stats_ : NULL;
173 DCHECK(picture_pile);
174 picture_pile->RasterToBitmap(
175 canvas_, content_rect_, contents_scale_, stats);
177 if (rendering_stats_->record_rendering_stats()) {
178 base::TimeDelta current_rasterize_time =
179 rendering_stats_->impl_thread_rendering_stats().rasterize_time;
180 HISTOGRAM_CUSTOM_COUNTS(
181 "Renderer4.PictureRasterTimeUS",
182 (current_rasterize_time - prev_rasterize_time).InMicroseconds(),
184 100000,
185 100);
189 PicturePileImpl::Analysis analysis_;
190 scoped_refptr<PicturePileImpl> picture_pile_;
191 gfx::Rect content_rect_;
192 float contents_scale_;
193 RasterMode raster_mode_;
194 TileResolution tile_resolution_;
195 int layer_id_;
196 const void* tile_id_;
197 int source_frame_number_;
198 bool analyze_picture_;
199 RenderingStatsInstrumentation* rendering_stats_;
200 const base::Callback<void(const PicturePileImpl::Analysis&, bool)> reply_;
201 SkCanvas* canvas_;
203 DISALLOW_COPY_AND_ASSIGN(RasterTaskImpl);
206 class ImageDecodeTaskImpl : public ImageDecodeTask {
207 public:
208 ImageDecodeTaskImpl(SkPixelRef* pixel_ref,
209 int layer_id,
210 RenderingStatsInstrumentation* rendering_stats,
211 const base::Callback<void(bool was_canceled)>& reply)
212 : pixel_ref_(skia::SharePtr(pixel_ref)),
213 layer_id_(layer_id),
214 rendering_stats_(rendering_stats),
215 reply_(reply) {}
217 // Overridden from Task:
218 virtual void RunOnWorkerThread() OVERRIDE {
219 TRACE_EVENT0("cc", "ImageDecodeTaskImpl::RunOnWorkerThread");
221 devtools_instrumentation::ScopedImageDecodeTask image_decode_task(
222 pixel_ref_.get());
223 // This will cause the image referred to by pixel ref to be decoded.
224 pixel_ref_->lockPixels();
225 pixel_ref_->unlockPixels();
228 // Overridden from RasterizerTask:
229 virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
230 virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
231 virtual void RunReplyOnOriginThread() OVERRIDE {
232 reply_.Run(!HasFinishedRunning());
235 protected:
236 virtual ~ImageDecodeTaskImpl() {}
238 private:
239 skia::RefPtr<SkPixelRef> pixel_ref_;
240 int layer_id_;
241 RenderingStatsInstrumentation* rendering_stats_;
242 const base::Callback<void(bool was_canceled)> reply_;
244 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl);
247 const size_t kScheduledRasterTasksLimit = 32u;
249 // Memory limit policy works by mapping some bin states to the NEVER bin.
250 const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = {
251 // [ALLOW_NOTHING]
252 {NEVER_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
253 NEVER_BIN, // [NOW_BIN]
254 NEVER_BIN, // [SOON_BIN]
255 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
256 NEVER_BIN, // [EVENTUALLY_BIN]
257 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
258 NEVER_BIN, // [AT_LAST_BIN]
259 NEVER_BIN // [NEVER_BIN]
261 // [ALLOW_ABSOLUTE_MINIMUM]
262 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
263 NOW_BIN, // [NOW_BIN]
264 NEVER_BIN, // [SOON_BIN]
265 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
266 NEVER_BIN, // [EVENTUALLY_BIN]
267 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
268 NEVER_BIN, // [AT_LAST_BIN]
269 NEVER_BIN // [NEVER_BIN]
271 // [ALLOW_PREPAINT_ONLY]
272 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
273 NOW_BIN, // [NOW_BIN]
274 SOON_BIN, // [SOON_BIN]
275 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
276 NEVER_BIN, // [EVENTUALLY_BIN]
277 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
278 NEVER_BIN, // [AT_LAST_BIN]
279 NEVER_BIN // [NEVER_BIN]
281 // [ALLOW_ANYTHING]
282 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
283 NOW_BIN, // [NOW_BIN]
284 SOON_BIN, // [SOON_BIN]
285 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
286 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
287 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
288 AT_LAST_BIN, // [AT_LAST_BIN]
289 NEVER_BIN // [NEVER_BIN]
292 // Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN.
293 const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = {
294 // Not ready
295 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
296 NOW_BIN, // [NOW_BIN]
297 SOON_BIN, // [SOON_BIN]
298 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
299 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
300 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
301 AT_LAST_BIN, // [AT_LAST_BIN]
302 NEVER_BIN // [NEVER_BIN]
304 // Ready
305 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
306 NOW_AND_READY_TO_DRAW_BIN, // [NOW_BIN]
307 SOON_BIN, // [SOON_BIN]
308 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
309 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
310 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
311 AT_LAST_BIN, // [AT_LAST_BIN]
312 NEVER_BIN // [NEVER_BIN]
315 // Active works by mapping some bin stats to equivalent _ACTIVE_BIN state.
316 const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = {
317 // Inactive
318 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
319 NOW_BIN, // [NOW_BIN]
320 SOON_BIN, // [SOON_BIN]
321 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
322 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
323 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
324 AT_LAST_BIN, // [AT_LAST_BIN]
325 NEVER_BIN // [NEVER_BIN]
327 // Active
328 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
329 NOW_BIN, // [NOW_BIN]
330 SOON_BIN, // [SOON_BIN]
331 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
332 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_BIN]
333 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
334 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_BIN]
335 NEVER_BIN // [NEVER_BIN]
338 // Determine bin based on three categories of tiles: things we need now,
339 // things we need soon, and eventually.
340 inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) {
341 if (prio.priority_bin == TilePriority::NOW)
342 return NOW_BIN;
344 if (prio.priority_bin == TilePriority::SOON)
345 return SOON_BIN;
347 if (prio.distance_to_visible == std::numeric_limits<float>::infinity())
348 return NEVER_BIN;
350 return EVENTUALLY_BIN;
353 } // namespace
355 RasterTaskCompletionStats::RasterTaskCompletionStats()
356 : completed_count(0u), canceled_count(0u) {}
358 scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue(
359 const RasterTaskCompletionStats& stats) {
360 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
361 state->SetInteger("completed_count", stats.completed_count);
362 state->SetInteger("canceled_count", stats.canceled_count);
363 return state.PassAs<base::Value>();
366 // static
367 scoped_ptr<TileManager> TileManager::Create(
368 TileManagerClient* client,
369 ResourcePool* resource_pool,
370 Rasterizer* rasterizer,
371 Rasterizer* gpu_rasterizer,
372 bool use_rasterize_on_demand,
373 RenderingStatsInstrumentation* rendering_stats_instrumentation) {
374 return make_scoped_ptr(new TileManager(client,
375 resource_pool,
376 rasterizer,
377 gpu_rasterizer,
378 use_rasterize_on_demand,
379 rendering_stats_instrumentation));
382 TileManager::TileManager(
383 TileManagerClient* client,
384 ResourcePool* resource_pool,
385 Rasterizer* rasterizer,
386 Rasterizer* gpu_rasterizer,
387 bool use_rasterize_on_demand,
388 RenderingStatsInstrumentation* rendering_stats_instrumentation)
389 : client_(client),
390 resource_pool_(resource_pool),
391 prioritized_tiles_dirty_(false),
392 all_tiles_that_need_to_be_rasterized_have_memory_(true),
393 all_tiles_required_for_activation_have_memory_(true),
394 memory_required_bytes_(0),
395 memory_nice_to_have_bytes_(0),
396 bytes_releasable_(0),
397 resources_releasable_(0),
398 ever_exceeded_memory_budget_(false),
399 rendering_stats_instrumentation_(rendering_stats_instrumentation),
400 did_initialize_visible_tile_(false),
401 did_check_for_completed_tasks_since_last_schedule_tasks_(true),
402 use_rasterize_on_demand_(use_rasterize_on_demand) {
403 Rasterizer* rasterizers[NUM_RASTERIZER_TYPES] = {
404 rasterizer, // RASTERIZER_TYPE_DEFAULT
405 gpu_rasterizer, // RASTERIZER_TYPE_GPU
407 rasterizer_delegate_ =
408 RasterizerDelegate::Create(this, rasterizers, arraysize(rasterizers));
411 TileManager::~TileManager() {
412 // Reset global state and manage. This should cause
413 // our memory usage to drop to zero.
414 global_state_ = GlobalStateThatImpactsTilePriority();
416 CleanUpReleasedTiles();
417 DCHECK_EQ(0u, tiles_.size());
419 RasterTaskQueue empty[NUM_RASTERIZER_TYPES];
420 rasterizer_delegate_->ScheduleTasks(empty);
421 orphan_raster_tasks_.clear();
423 // This should finish all pending tasks and release any uninitialized
424 // resources.
425 rasterizer_delegate_->Shutdown();
426 rasterizer_delegate_->CheckForCompletedTasks();
428 DCHECK_EQ(0u, bytes_releasable_);
429 DCHECK_EQ(0u, resources_releasable_);
431 for (std::vector<PictureLayerImpl*>::iterator it = layers_.begin();
432 it != layers_.end();
433 ++it) {
434 (*it)->DidUnregisterLayer();
436 layers_.clear();
439 void TileManager::Release(Tile* tile) {
440 prioritized_tiles_dirty_ = true;
441 released_tiles_.push_back(tile);
444 void TileManager::DidChangeTilePriority(Tile* tile) {
445 prioritized_tiles_dirty_ = true;
448 bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const {
449 return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
452 void TileManager::CleanUpReleasedTiles() {
453 for (std::vector<Tile*>::iterator it = released_tiles_.begin();
454 it != released_tiles_.end();
455 ++it) {
456 Tile* tile = *it;
457 ManagedTileState& mts = tile->managed_state();
459 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
460 FreeResourceForTile(tile, static_cast<RasterMode>(mode));
461 orphan_raster_tasks_.push_back(mts.tile_versions[mode].raster_task_);
464 DCHECK(tiles_.find(tile->id()) != tiles_.end());
465 tiles_.erase(tile->id());
467 LayerCountMap::iterator layer_it =
468 used_layer_counts_.find(tile->layer_id());
469 DCHECK_GT(layer_it->second, 0);
470 if (--layer_it->second == 0) {
471 used_layer_counts_.erase(layer_it);
472 image_decode_tasks_.erase(tile->layer_id());
475 delete tile;
478 released_tiles_.clear();
481 void TileManager::UpdatePrioritizedTileSetIfNeeded() {
482 if (!prioritized_tiles_dirty_)
483 return;
485 CleanUpReleasedTiles();
487 prioritized_tiles_.Clear();
488 GetTilesWithAssignedBins(&prioritized_tiles_);
489 prioritized_tiles_dirty_ = false;
492 void TileManager::DidFinishRunningTasks() {
493 TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks");
495 bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() >
496 global_state_.soft_memory_limit_in_bytes;
498 // When OOM, keep re-assigning memory until we reach a steady state
499 // where top-priority tiles are initialized.
500 if (all_tiles_that_need_to_be_rasterized_have_memory_ &&
501 !memory_usage_above_limit)
502 return;
504 rasterizer_delegate_->CheckForCompletedTasks();
505 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
507 TileVector tiles_that_need_to_be_rasterized;
508 AssignGpuMemoryToTiles(&prioritized_tiles_,
509 &tiles_that_need_to_be_rasterized);
511 // |tiles_that_need_to_be_rasterized| will be empty when we reach a
512 // steady memory state. Keep scheduling tasks until we reach this state.
513 if (!tiles_that_need_to_be_rasterized.empty()) {
514 ScheduleTasks(tiles_that_need_to_be_rasterized);
515 return;
518 resource_pool_->ReduceResourceUsage();
520 // We don't reserve memory for required-for-activation tiles during
521 // accelerated gestures, so we just postpone activation when we don't
522 // have these tiles, and activate after the accelerated gesture.
523 bool allow_rasterize_on_demand =
524 global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
526 // Use on-demand raster for any required-for-activation tiles that have not
527 // been been assigned memory after reaching a steady memory state. This
528 // ensures that we activate even when OOM.
529 for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
530 Tile* tile = it->second;
531 ManagedTileState& mts = tile->managed_state();
532 ManagedTileState::TileVersion& tile_version =
533 mts.tile_versions[mts.raster_mode];
535 if (tile->required_for_activation() && !tile_version.IsReadyToDraw()) {
536 // If we can't raster on demand, give up early (and don't activate).
537 if (!allow_rasterize_on_demand)
538 return;
539 if (use_rasterize_on_demand_)
540 tile_version.set_rasterize_on_demand();
544 client_->NotifyReadyToActivate();
547 void TileManager::DidFinishRunningTasksRequiredForActivation() {
548 // This is only a true indication that all tiles required for
549 // activation are initialized when no tiles are OOM. We need to
550 // wait for DidFinishRunningTasks() to be called, try to re-assign
551 // memory and in worst case use on-demand raster when tiles
552 // required for activation are OOM.
553 if (!all_tiles_required_for_activation_have_memory_)
554 return;
556 client_->NotifyReadyToActivate();
559 void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) {
560 TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins");
562 // Compute new stats to be return by GetMemoryStats().
563 memory_required_bytes_ = 0;
564 memory_nice_to_have_bytes_ = 0;
566 const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy;
567 const TreePriority tree_priority = global_state_.tree_priority;
569 // For each tree, bin into different categories of tiles.
570 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
571 Tile* tile = it->second;
572 ManagedTileState& mts = tile->managed_state();
574 const ManagedTileState::TileVersion& tile_version =
575 tile->GetTileVersionForDrawing();
576 bool tile_is_ready_to_draw = tile_version.IsReadyToDraw();
577 bool tile_is_active = tile_is_ready_to_draw ||
578 mts.tile_versions[mts.raster_mode].raster_task_;
580 // Get the active priority and bin.
581 TilePriority active_priority = tile->priority(ACTIVE_TREE);
582 ManagedTileBin active_bin = BinFromTilePriority(active_priority);
584 // Get the pending priority and bin.
585 TilePriority pending_priority = tile->priority(PENDING_TREE);
586 ManagedTileBin pending_bin = BinFromTilePriority(pending_priority);
588 bool pending_is_low_res = pending_priority.resolution == LOW_RESOLUTION;
589 bool pending_is_non_ideal =
590 pending_priority.resolution == NON_IDEAL_RESOLUTION;
591 bool active_is_non_ideal =
592 active_priority.resolution == NON_IDEAL_RESOLUTION;
594 // Adjust pending bin state for low res tiles. This prevents
595 // pending tree low-res tiles from being initialized before
596 // high-res tiles.
597 if (pending_is_low_res)
598 pending_bin = std::max(pending_bin, EVENTUALLY_BIN);
600 // Adjust bin state based on if ready to draw.
601 active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin];
602 pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin];
604 // Adjust bin state based on if active.
605 active_bin = kBinIsActiveMap[tile_is_active][active_bin];
606 pending_bin = kBinIsActiveMap[tile_is_active][pending_bin];
608 // We never want to paint new non-ideal tiles, as we always have
609 // a high-res tile covering that content (paint that instead).
610 if (!tile_is_ready_to_draw && active_is_non_ideal)
611 active_bin = NEVER_BIN;
612 if (!tile_is_ready_to_draw && pending_is_non_ideal)
613 pending_bin = NEVER_BIN;
615 // Compute combined bin.
616 ManagedTileBin combined_bin = std::min(active_bin, pending_bin);
618 if (!tile_is_ready_to_draw || tile_version.requires_resource()) {
619 // The bin that the tile would have if the GPU memory manager had
620 // a maximally permissive policy, send to the GPU memory manager
621 // to determine policy.
622 ManagedTileBin gpu_memmgr_stats_bin = combined_bin;
623 if ((gpu_memmgr_stats_bin == NOW_BIN) ||
624 (gpu_memmgr_stats_bin == NOW_AND_READY_TO_DRAW_BIN))
625 memory_required_bytes_ += BytesConsumedIfAllocated(tile);
626 if (gpu_memmgr_stats_bin != NEVER_BIN)
627 memory_nice_to_have_bytes_ += BytesConsumedIfAllocated(tile);
630 ManagedTileBin tree_bin[NUM_TREES];
631 tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin];
632 tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin];
634 TilePriority tile_priority;
635 switch (tree_priority) {
636 case SAME_PRIORITY_FOR_BOTH_TREES:
637 mts.bin = kBinPolicyMap[memory_policy][combined_bin];
638 tile_priority = tile->combined_priority();
639 break;
640 case SMOOTHNESS_TAKES_PRIORITY:
641 mts.bin = tree_bin[ACTIVE_TREE];
642 tile_priority = active_priority;
643 break;
644 case NEW_CONTENT_TAKES_PRIORITY:
645 mts.bin = tree_bin[PENDING_TREE];
646 tile_priority = pending_priority;
647 break;
650 // Bump up the priority if we determined it's NEVER_BIN on one tree,
651 // but is still required on the other tree.
652 bool is_in_never_bin_on_both_trees = tree_bin[ACTIVE_TREE] == NEVER_BIN &&
653 tree_bin[PENDING_TREE] == NEVER_BIN;
655 if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees)
656 mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN;
658 mts.resolution = tile_priority.resolution;
659 mts.priority_bin = tile_priority.priority_bin;
660 mts.distance_to_visible = tile_priority.distance_to_visible;
661 mts.required_for_activation = tile_priority.required_for_activation;
663 mts.visible_and_ready_to_draw =
664 tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN;
666 // If the tile is in NEVER_BIN and it does not have an active task, then we
667 // can release the resources early. If it does have the task however, we
668 // should keep it in the prioritized tile set to ensure that AssignGpuMemory
669 // can visit it.
670 if (mts.bin == NEVER_BIN &&
671 !mts.tile_versions[mts.raster_mode].raster_task_) {
672 FreeResourcesForTile(tile);
673 continue;
676 // Insert the tile into a priority set.
677 tiles->InsertTile(tile, mts.bin);
681 void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) {
682 TRACE_EVENT0("cc", "TileManager::ManageTiles");
684 // Update internal state.
685 if (state != global_state_) {
686 global_state_ = state;
687 prioritized_tiles_dirty_ = true;
690 // We need to call CheckForCompletedTasks() once in-between each call
691 // to ScheduleTasks() to prevent canceled tasks from being scheduled.
692 if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
693 rasterizer_delegate_->CheckForCompletedTasks();
694 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
697 UpdatePrioritizedTileSetIfNeeded();
699 TileVector tiles_that_need_to_be_rasterized;
700 AssignGpuMemoryToTiles(&prioritized_tiles_,
701 &tiles_that_need_to_be_rasterized);
703 // Finally, schedule rasterizer tasks.
704 ScheduleTasks(tiles_that_need_to_be_rasterized);
706 TRACE_EVENT_INSTANT1("cc",
707 "DidManage",
708 TRACE_EVENT_SCOPE_THREAD,
709 "state",
710 TracedValue::FromValue(BasicStateAsValue().release()));
712 TRACE_COUNTER_ID1("cc",
713 "unused_memory_bytes",
714 this,
715 resource_pool_->total_memory_usage_bytes() -
716 resource_pool_->acquired_memory_usage_bytes());
719 bool TileManager::UpdateVisibleTiles() {
720 TRACE_EVENT0("cc", "TileManager::UpdateVisibleTiles");
722 rasterizer_delegate_->CheckForCompletedTasks();
723 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
725 TRACE_EVENT_INSTANT1(
726 "cc",
727 "DidUpdateVisibleTiles",
728 TRACE_EVENT_SCOPE_THREAD,
729 "stats",
730 TracedValue::FromValue(RasterTaskCompletionStatsAsValue(
731 update_visible_tiles_stats_).release()));
732 update_visible_tiles_stats_ = RasterTaskCompletionStats();
734 bool did_initialize_visible_tile = did_initialize_visible_tile_;
735 did_initialize_visible_tile_ = false;
736 return did_initialize_visible_tile;
739 void TileManager::GetMemoryStats(size_t* memory_required_bytes,
740 size_t* memory_nice_to_have_bytes,
741 size_t* memory_allocated_bytes,
742 size_t* memory_used_bytes) const {
743 *memory_required_bytes = memory_required_bytes_;
744 *memory_nice_to_have_bytes = memory_nice_to_have_bytes_;
745 *memory_allocated_bytes = resource_pool_->total_memory_usage_bytes();
746 *memory_used_bytes = resource_pool_->acquired_memory_usage_bytes();
749 scoped_ptr<base::Value> TileManager::BasicStateAsValue() const {
750 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
751 state->SetInteger("tile_count", tiles_.size());
752 state->Set("global_state", global_state_.AsValue().release());
753 state->Set("memory_requirements", GetMemoryRequirementsAsValue().release());
754 return state.PassAs<base::Value>();
757 scoped_ptr<base::Value> TileManager::AllTilesAsValue() const {
758 scoped_ptr<base::ListValue> state(new base::ListValue());
759 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
760 state->Append(it->second->AsValue().release());
762 return state.PassAs<base::Value>();
765 scoped_ptr<base::Value> TileManager::GetMemoryRequirementsAsValue() const {
766 scoped_ptr<base::DictionaryValue> requirements(new base::DictionaryValue());
768 size_t memory_required_bytes;
769 size_t memory_nice_to_have_bytes;
770 size_t memory_allocated_bytes;
771 size_t memory_used_bytes;
772 GetMemoryStats(&memory_required_bytes,
773 &memory_nice_to_have_bytes,
774 &memory_allocated_bytes,
775 &memory_used_bytes);
776 requirements->SetInteger("memory_required_bytes", memory_required_bytes);
777 requirements->SetInteger("memory_nice_to_have_bytes",
778 memory_nice_to_have_bytes);
779 requirements->SetInteger("memory_allocated_bytes", memory_allocated_bytes);
780 requirements->SetInteger("memory_used_bytes", memory_used_bytes);
781 return requirements.PassAs<base::Value>();
784 void TileManager::AssignGpuMemoryToTiles(
785 PrioritizedTileSet* tiles,
786 TileVector* tiles_that_need_to_be_rasterized) {
787 TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles");
789 // Maintain the list of released resources that can potentially be re-used
790 // or deleted.
791 // If this operation becomes expensive too, only do this after some
792 // resource(s) was returned. Note that in that case, one also need to
793 // invalidate when releasing some resource from the pool.
794 resource_pool_->CheckBusyResources();
796 // Now give memory out to the tiles until we're out, and build
797 // the needs-to-be-rasterized queue.
798 all_tiles_that_need_to_be_rasterized_have_memory_ = true;
799 all_tiles_required_for_activation_have_memory_ = true;
801 // Cast to prevent overflow.
802 int64 soft_bytes_available =
803 static_cast<int64>(bytes_releasable_) +
804 static_cast<int64>(global_state_.soft_memory_limit_in_bytes) -
805 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
806 int64 hard_bytes_available =
807 static_cast<int64>(bytes_releasable_) +
808 static_cast<int64>(global_state_.hard_memory_limit_in_bytes) -
809 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
810 int resources_available = resources_releasable_ +
811 global_state_.num_resources_limit -
812 resource_pool_->acquired_resource_count();
813 size_t soft_bytes_allocatable =
814 std::max(static_cast<int64>(0), soft_bytes_available);
815 size_t hard_bytes_allocatable =
816 std::max(static_cast<int64>(0), hard_bytes_available);
817 size_t resources_allocatable = std::max(0, resources_available);
819 size_t bytes_that_exceeded_memory_budget = 0;
820 size_t soft_bytes_left = soft_bytes_allocatable;
821 size_t hard_bytes_left = hard_bytes_allocatable;
823 size_t resources_left = resources_allocatable;
824 bool oomed_soft = false;
825 bool oomed_hard = false;
826 bool have_hit_soft_memory = false; // Soft memory comes after hard.
828 unsigned schedule_priority = 1u;
829 for (PrioritizedTileSet::Iterator it(tiles, true); it; ++it) {
830 Tile* tile = *it;
831 ManagedTileState& mts = tile->managed_state();
833 mts.scheduled_priority = schedule_priority++;
835 mts.raster_mode = tile->DetermineOverallRasterMode();
837 ManagedTileState::TileVersion& tile_version =
838 mts.tile_versions[mts.raster_mode];
840 // If this tile doesn't need a resource, then nothing to do.
841 if (!tile_version.requires_resource())
842 continue;
844 // If the tile is not needed, free it up.
845 if (mts.bin == NEVER_BIN) {
846 FreeResourcesForTile(tile);
847 continue;
850 const bool tile_uses_hard_limit = mts.bin <= NOW_BIN;
851 const size_t bytes_if_allocated = BytesConsumedIfAllocated(tile);
852 const size_t tile_bytes_left =
853 (tile_uses_hard_limit) ? hard_bytes_left : soft_bytes_left;
855 // Hard-limit is reserved for tiles that would cause a calamity
856 // if they were to go away, so by definition they are the highest
857 // priority memory, and must be at the front of the list.
858 DCHECK(!(have_hit_soft_memory && tile_uses_hard_limit));
859 have_hit_soft_memory |= !tile_uses_hard_limit;
861 size_t tile_bytes = 0;
862 size_t tile_resources = 0;
864 // It costs to maintain a resource.
865 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
866 if (mts.tile_versions[mode].resource_) {
867 tile_bytes += bytes_if_allocated;
868 tile_resources++;
872 // Allow lower priority tiles with initialized resources to keep
873 // their memory by only assigning memory to new raster tasks if
874 // they can be scheduled.
875 bool reached_scheduled_raster_tasks_limit =
876 tiles_that_need_to_be_rasterized->size() >= kScheduledRasterTasksLimit;
877 if (!reached_scheduled_raster_tasks_limit) {
878 // If we don't have the required version, and it's not in flight
879 // then we'll have to pay to create a new task.
880 if (!tile_version.resource_ && !tile_version.raster_task_) {
881 tile_bytes += bytes_if_allocated;
882 tile_resources++;
886 // Tile is OOM.
887 if (tile_bytes > tile_bytes_left || tile_resources > resources_left) {
888 FreeResourcesForTile(tile);
890 // This tile was already on screen and now its resources have been
891 // released. In order to prevent checkerboarding, set this tile as
892 // rasterize on demand immediately.
893 if (mts.visible_and_ready_to_draw && use_rasterize_on_demand_)
894 tile_version.set_rasterize_on_demand();
896 oomed_soft = true;
897 if (tile_uses_hard_limit) {
898 oomed_hard = true;
899 bytes_that_exceeded_memory_budget += tile_bytes;
901 } else {
902 resources_left -= tile_resources;
903 hard_bytes_left -= tile_bytes;
904 soft_bytes_left =
905 (soft_bytes_left > tile_bytes) ? soft_bytes_left - tile_bytes : 0;
906 if (tile_version.resource_)
907 continue;
910 DCHECK(!tile_version.resource_);
912 // Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized|
913 // has reached it's limit or we've failed to assign gpu memory to this
914 // or any higher priority tile. Preventing tiles that fit into memory
915 // budget to be rasterized when higher priority tile is oom is
916 // important for two reasons:
917 // 1. Tile size should not impact raster priority.
918 // 2. Tiles with existing raster task could otherwise incorrectly
919 // be added as they are not affected by |bytes_allocatable|.
920 bool can_schedule_tile =
921 !oomed_soft && !reached_scheduled_raster_tasks_limit;
923 if (!can_schedule_tile) {
924 all_tiles_that_need_to_be_rasterized_have_memory_ = false;
925 if (tile->required_for_activation())
926 all_tiles_required_for_activation_have_memory_ = false;
927 it.DisablePriorityOrdering();
928 continue;
931 tiles_that_need_to_be_rasterized->push_back(tile);
934 // OOM reporting uses hard-limit, soft-OOM is normal depending on limit.
935 ever_exceeded_memory_budget_ |= oomed_hard;
936 if (ever_exceeded_memory_budget_) {
937 TRACE_COUNTER_ID2("cc",
938 "over_memory_budget",
939 this,
940 "budget",
941 global_state_.hard_memory_limit_in_bytes,
942 "over",
943 bytes_that_exceeded_memory_budget);
945 memory_stats_from_last_assign_.total_budget_in_bytes =
946 global_state_.hard_memory_limit_in_bytes;
947 memory_stats_from_last_assign_.bytes_allocated =
948 hard_bytes_allocatable - hard_bytes_left;
949 memory_stats_from_last_assign_.bytes_unreleasable =
950 resource_pool_->acquired_memory_usage_bytes() - bytes_releasable_;
951 memory_stats_from_last_assign_.bytes_over = bytes_that_exceeded_memory_budget;
954 void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) {
955 ManagedTileState& mts = tile->managed_state();
956 if (mts.tile_versions[mode].resource_) {
957 resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass());
959 DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile));
960 DCHECK_GE(resources_releasable_, 1u);
962 bytes_releasable_ -= BytesConsumedIfAllocated(tile);
963 --resources_releasable_;
967 void TileManager::FreeResourcesForTile(Tile* tile) {
968 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
969 FreeResourceForTile(tile, static_cast<RasterMode>(mode));
973 void TileManager::FreeUnusedResourcesForTile(Tile* tile) {
974 DCHECK(tile->IsReadyToDraw());
975 ManagedTileState& mts = tile->managed_state();
976 RasterMode used_mode = HIGH_QUALITY_NO_LCD_RASTER_MODE;
977 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
978 if (mts.tile_versions[mode].IsReadyToDraw()) {
979 used_mode = static_cast<RasterMode>(mode);
980 break;
984 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
985 if (mode != used_mode)
986 FreeResourceForTile(tile, static_cast<RasterMode>(mode));
990 void TileManager::ScheduleTasks(
991 const TileVector& tiles_that_need_to_be_rasterized) {
992 TRACE_EVENT1("cc",
993 "TileManager::ScheduleTasks",
994 "count",
995 tiles_that_need_to_be_rasterized.size());
997 DCHECK(did_check_for_completed_tasks_since_last_schedule_tasks_);
999 for (size_t i = 0; i < NUM_RASTERIZER_TYPES; ++i)
1000 raster_queue_[i].Reset();
1002 // Build a new task queue containing all task currently needed. Tasks
1003 // are added in order of priority, highest priority task first.
1004 for (TileVector::const_iterator it = tiles_that_need_to_be_rasterized.begin();
1005 it != tiles_that_need_to_be_rasterized.end();
1006 ++it) {
1007 Tile* tile = *it;
1008 ManagedTileState& mts = tile->managed_state();
1009 ManagedTileState::TileVersion& tile_version =
1010 mts.tile_versions[mts.raster_mode];
1012 DCHECK(tile_version.requires_resource());
1013 DCHECK(!tile_version.resource_);
1015 if (!tile_version.raster_task_)
1016 tile_version.raster_task_ = CreateRasterTask(tile);
1018 size_t pool_type = tile->use_gpu_rasterization() ? RASTERIZER_TYPE_GPU
1019 : RASTERIZER_TYPE_DEFAULT;
1021 raster_queue_[pool_type].items.push_back(RasterTaskQueue::Item(
1022 tile_version.raster_task_.get(), tile->required_for_activation()));
1023 raster_queue_[pool_type].required_for_activation_count +=
1024 tile->required_for_activation();
1027 // We must reduce the amount of unused resoruces before calling
1028 // ScheduleTasks to prevent usage from rising above limits.
1029 resource_pool_->ReduceResourceUsage();
1031 // Schedule running of |raster_tasks_|. This replaces any previously
1032 // scheduled tasks and effectively cancels all tasks not present
1033 // in |raster_tasks_|.
1034 rasterizer_delegate_->ScheduleTasks(raster_queue_);
1036 // It's now safe to clean up orphan tasks as raster worker pool is not
1037 // allowed to keep around unreferenced raster tasks after ScheduleTasks() has
1038 // been called.
1039 orphan_raster_tasks_.clear();
1041 did_check_for_completed_tasks_since_last_schedule_tasks_ = false;
1044 scoped_refptr<ImageDecodeTask> TileManager::CreateImageDecodeTask(
1045 Tile* tile,
1046 SkPixelRef* pixel_ref) {
1047 return make_scoped_refptr(new ImageDecodeTaskImpl(
1048 pixel_ref,
1049 tile->layer_id(),
1050 rendering_stats_instrumentation_,
1051 base::Bind(&TileManager::OnImageDecodeTaskCompleted,
1052 base::Unretained(this),
1053 tile->layer_id(),
1054 base::Unretained(pixel_ref))));
1057 scoped_refptr<RasterTask> TileManager::CreateRasterTask(Tile* tile) {
1058 ManagedTileState& mts = tile->managed_state();
1060 scoped_ptr<ScopedResource> resource =
1061 resource_pool_->AcquireResource(tile->tile_size_.size());
1062 const ScopedResource* const_resource = resource.get();
1064 // Create and queue all image decode tasks that this tile depends on.
1065 ImageDecodeTask::Vector decode_tasks;
1066 PixelRefTaskMap& existing_pixel_refs = image_decode_tasks_[tile->layer_id()];
1067 for (PicturePileImpl::PixelRefIterator iter(
1068 tile->content_rect(), tile->contents_scale(), tile->picture_pile());
1069 iter;
1070 ++iter) {
1071 SkPixelRef* pixel_ref = *iter;
1072 uint32_t id = pixel_ref->getGenerationID();
1074 // Append existing image decode task if available.
1075 PixelRefTaskMap::iterator decode_task_it = existing_pixel_refs.find(id);
1076 if (decode_task_it != existing_pixel_refs.end()) {
1077 decode_tasks.push_back(decode_task_it->second);
1078 continue;
1081 // Create and append new image decode task for this pixel ref.
1082 scoped_refptr<ImageDecodeTask> decode_task =
1083 CreateImageDecodeTask(tile, pixel_ref);
1084 decode_tasks.push_back(decode_task);
1085 existing_pixel_refs[id] = decode_task;
1088 // We analyze picture before rasterization to detect solid-color tiles.
1089 // If the tile is detected as such there is no need to raster or upload.
1090 // It is drawn directly as a solid-color quad saving raster and upload cost.
1091 // The analysis step is however expensive and is not justified when doing
1092 // gpu rasterization where there is no upload.
1094 // Additionally, we do not want to do the analysis if the layer that produced
1095 // this tile is narrow, since more likely than not the tile would not be
1096 // solid. We use the picture pile size as a proxy for layer size, since it
1097 // represents the recorded (and thus rasterizable) content.
1098 // Note that this last optimization is a heuristic that ensures that we don't
1099 // spend too much time analyzing tiles on a multitude of small layers, as it
1100 // is likely that these layers have some non-solid content.
1101 gfx::Size pile_size = tile->picture_pile()->tiling_rect().size();
1102 bool analyze_picture = !tile->use_gpu_rasterization() &&
1103 std::min(pile_size.width(), pile_size.height()) >=
1104 kMinDimensionsForAnalysis;
1106 return make_scoped_refptr(
1107 new RasterTaskImpl(const_resource,
1108 tile->picture_pile(),
1109 tile->content_rect(),
1110 tile->contents_scale(),
1111 mts.raster_mode,
1112 mts.resolution,
1113 tile->layer_id(),
1114 static_cast<const void*>(tile),
1115 tile->source_frame_number(),
1116 analyze_picture,
1117 rendering_stats_instrumentation_,
1118 base::Bind(&TileManager::OnRasterTaskCompleted,
1119 base::Unretained(this),
1120 tile->id(),
1121 base::Passed(&resource),
1122 mts.raster_mode),
1123 &decode_tasks));
1126 void TileManager::OnImageDecodeTaskCompleted(int layer_id,
1127 SkPixelRef* pixel_ref,
1128 bool was_canceled) {
1129 // If the task was canceled, we need to clean it up
1130 // from |image_decode_tasks_|.
1131 if (!was_canceled)
1132 return;
1134 LayerPixelRefTaskMap::iterator layer_it = image_decode_tasks_.find(layer_id);
1135 if (layer_it == image_decode_tasks_.end())
1136 return;
1138 PixelRefTaskMap& pixel_ref_tasks = layer_it->second;
1139 PixelRefTaskMap::iterator task_it =
1140 pixel_ref_tasks.find(pixel_ref->getGenerationID());
1142 if (task_it != pixel_ref_tasks.end())
1143 pixel_ref_tasks.erase(task_it);
1146 void TileManager::OnRasterTaskCompleted(
1147 Tile::Id tile_id,
1148 scoped_ptr<ScopedResource> resource,
1149 RasterMode raster_mode,
1150 const PicturePileImpl::Analysis& analysis,
1151 bool was_canceled) {
1152 TileMap::iterator it = tiles_.find(tile_id);
1153 if (it == tiles_.end()) {
1154 ++update_visible_tiles_stats_.canceled_count;
1155 resource_pool_->ReleaseResource(resource.Pass());
1156 return;
1159 Tile* tile = it->second;
1160 ManagedTileState& mts = tile->managed_state();
1161 ManagedTileState::TileVersion& tile_version = mts.tile_versions[raster_mode];
1162 DCHECK(tile_version.raster_task_);
1163 orphan_raster_tasks_.push_back(tile_version.raster_task_);
1164 tile_version.raster_task_ = NULL;
1166 if (was_canceled) {
1167 ++update_visible_tiles_stats_.canceled_count;
1168 resource_pool_->ReleaseResource(resource.Pass());
1169 return;
1172 ++update_visible_tiles_stats_.completed_count;
1174 tile_version.set_has_text(analysis.has_text);
1175 if (analysis.is_solid_color) {
1176 tile_version.set_solid_color(analysis.solid_color);
1177 resource_pool_->ReleaseResource(resource.Pass());
1178 } else {
1179 tile_version.set_use_resource();
1180 tile_version.resource_ = resource.Pass();
1182 bytes_releasable_ += BytesConsumedIfAllocated(tile);
1183 ++resources_releasable_;
1186 client_->NotifyTileInitialized(tile);
1188 FreeUnusedResourcesForTile(tile);
1189 if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f)
1190 did_initialize_visible_tile_ = true;
1193 scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile,
1194 const gfx::Size& tile_size,
1195 const gfx::Rect& content_rect,
1196 const gfx::Rect& opaque_rect,
1197 float contents_scale,
1198 int layer_id,
1199 int source_frame_number,
1200 int flags) {
1201 scoped_refptr<Tile> tile = make_scoped_refptr(new Tile(this,
1202 picture_pile,
1203 tile_size,
1204 content_rect,
1205 opaque_rect,
1206 contents_scale,
1207 layer_id,
1208 source_frame_number,
1209 flags));
1210 DCHECK(tiles_.find(tile->id()) == tiles_.end());
1212 tiles_[tile->id()] = tile;
1213 used_layer_counts_[tile->layer_id()]++;
1214 prioritized_tiles_dirty_ = true;
1215 return tile;
1218 void TileManager::RegisterPictureLayerImpl(PictureLayerImpl* layer) {
1219 DCHECK(std::find(layers_.begin(), layers_.end(), layer) == layers_.end());
1220 layers_.push_back(layer);
1223 void TileManager::UnregisterPictureLayerImpl(PictureLayerImpl* layer) {
1224 std::vector<PictureLayerImpl*>::iterator it =
1225 std::find(layers_.begin(), layers_.end(), layer);
1226 DCHECK(it != layers_.end());
1227 layers_.erase(it);
1230 void TileManager::GetPairedPictureLayers(
1231 std::vector<PairedPictureLayer>* paired_layers) const {
1232 paired_layers->clear();
1233 // Reserve a maximum possible paired layers.
1234 paired_layers->reserve(layers_.size());
1236 for (std::vector<PictureLayerImpl*>::const_iterator it = layers_.begin();
1237 it != layers_.end();
1238 ++it) {
1239 PictureLayerImpl* layer = *it;
1241 // This is a recycle tree layer, we can safely skip since the tiles on this
1242 // layer have to be accessible via the active tree.
1243 if (!layer->IsOnActiveOrPendingTree())
1244 continue;
1246 PictureLayerImpl* twin_layer = layer->GetTwinLayer();
1248 // If the twin layer is recycled, it is not a valid twin.
1249 if (twin_layer && !twin_layer->IsOnActiveOrPendingTree())
1250 twin_layer = NULL;
1252 PairedPictureLayer paired_layer;
1253 WhichTree tree = layer->GetTree();
1255 // If the current tree is ACTIVE_TREE, then always generate a paired_layer.
1256 // If current tree is PENDING_TREE, then only generate a paired_layer if
1257 // there is no twin layer.
1258 if (tree == ACTIVE_TREE) {
1259 DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE);
1260 paired_layer.active_layer = layer;
1261 paired_layer.pending_layer = twin_layer;
1262 paired_layers->push_back(paired_layer);
1263 } else if (!twin_layer) {
1264 paired_layer.active_layer = NULL;
1265 paired_layer.pending_layer = layer;
1266 paired_layers->push_back(paired_layer);
1271 TileManager::PairedPictureLayer::PairedPictureLayer()
1272 : active_layer(NULL), pending_layer(NULL) {}
1274 TileManager::PairedPictureLayer::~PairedPictureLayer() {}
1276 TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager,
1277 TreePriority tree_priority)
1278 : tree_priority_(tree_priority), comparator_(tree_priority) {
1279 std::vector<TileManager::PairedPictureLayer> paired_layers;
1280 tile_manager->GetPairedPictureLayers(&paired_layers);
1281 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1283 paired_iterators_.reserve(paired_layers.size());
1284 iterator_heap_.reserve(paired_layers.size());
1285 for (std::vector<TileManager::PairedPictureLayer>::iterator it =
1286 paired_layers.begin();
1287 it != paired_layers.end();
1288 ++it) {
1289 PairedPictureLayerIterator paired_iterator;
1290 if (it->active_layer) {
1291 paired_iterator.active_iterator =
1292 PictureLayerImpl::LayerRasterTileIterator(it->active_layer,
1293 prioritize_low_res);
1296 if (it->pending_layer) {
1297 paired_iterator.pending_iterator =
1298 PictureLayerImpl::LayerRasterTileIterator(it->pending_layer,
1299 prioritize_low_res);
1302 if (paired_iterator.PeekTile(tree_priority_) != NULL) {
1303 paired_iterators_.push_back(paired_iterator);
1304 iterator_heap_.push_back(&paired_iterators_.back());
1308 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1311 TileManager::RasterTileIterator::~RasterTileIterator() {}
1313 TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() {
1314 DCHECK(*this);
1316 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1317 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
1318 iterator_heap_.pop_back();
1320 paired_iterator->PopTile(tree_priority_);
1321 if (paired_iterator->PeekTile(tree_priority_) != NULL) {
1322 iterator_heap_.push_back(paired_iterator);
1323 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1325 return *this;
1328 TileManager::RasterTileIterator::operator bool() const {
1329 return !iterator_heap_.empty();
1332 Tile* TileManager::RasterTileIterator::operator*() {
1333 DCHECK(*this);
1334 return iterator_heap_.front()->PeekTile(tree_priority_);
1337 TileManager::RasterTileIterator::PairedPictureLayerIterator::
1338 PairedPictureLayerIterator() {}
1340 TileManager::RasterTileIterator::PairedPictureLayerIterator::
1341 ~PairedPictureLayerIterator() {}
1343 Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile(
1344 TreePriority tree_priority) {
1345 PictureLayerImpl::LayerRasterTileIterator* next_iterator =
1346 NextTileIterator(tree_priority).first;
1347 if (!next_iterator)
1348 return NULL;
1350 DCHECK(*next_iterator);
1351 DCHECK(std::find(returned_shared_tiles.begin(),
1352 returned_shared_tiles.end(),
1353 **next_iterator) == returned_shared_tiles.end());
1354 return **next_iterator;
1357 void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile(
1358 TreePriority tree_priority) {
1359 PictureLayerImpl::LayerRasterTileIterator* next_iterator =
1360 NextTileIterator(tree_priority).first;
1361 DCHECK(next_iterator);
1362 DCHECK(*next_iterator);
1363 returned_shared_tiles.push_back(**next_iterator);
1364 ++(*next_iterator);
1366 next_iterator = NextTileIterator(tree_priority).first;
1367 while (next_iterator &&
1368 std::find(returned_shared_tiles.begin(),
1369 returned_shared_tiles.end(),
1370 **next_iterator) != returned_shared_tiles.end()) {
1371 ++(*next_iterator);
1372 next_iterator = NextTileIterator(tree_priority).first;
1376 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>
1377 TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator(
1378 TreePriority tree_priority) {
1379 // If both iterators are out of tiles, return NULL.
1380 if (!active_iterator && !pending_iterator) {
1381 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
1382 NULL, ACTIVE_TREE);
1385 // If we only have one iterator with tiles, return it.
1386 if (!active_iterator)
1387 return std::make_pair(&pending_iterator, PENDING_TREE);
1388 if (!pending_iterator)
1389 return std::make_pair(&active_iterator, ACTIVE_TREE);
1391 // Now both iterators have tiles, so we have to decide based on tree priority.
1392 switch (tree_priority) {
1393 case SMOOTHNESS_TAKES_PRIORITY:
1394 return std::make_pair(&active_iterator, ACTIVE_TREE);
1395 case NEW_CONTENT_TAKES_PRIORITY:
1396 return std::make_pair(&pending_iterator, ACTIVE_TREE);
1397 case SAME_PRIORITY_FOR_BOTH_TREES: {
1398 Tile* active_tile = *active_iterator;
1399 Tile* pending_tile = *pending_iterator;
1400 if (active_tile == pending_tile)
1401 return std::make_pair(&active_iterator, ACTIVE_TREE);
1403 const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE);
1404 const TilePriority& pending_priority =
1405 pending_tile->priority(PENDING_TREE);
1407 if (active_priority.IsHigherPriorityThan(pending_priority))
1408 return std::make_pair(&active_iterator, ACTIVE_TREE);
1409 return std::make_pair(&pending_iterator, PENDING_TREE);
1413 NOTREACHED();
1414 // Keep the compiler happy.
1415 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
1416 NULL, ACTIVE_TREE);
1419 TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator(
1420 TreePriority tree_priority)
1421 : tree_priority_(tree_priority) {}
1423 bool TileManager::RasterTileIterator::RasterOrderComparator::operator()(
1424 PairedPictureLayerIterator* a,
1425 PairedPictureLayerIterator* b) const {
1426 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair =
1427 a->NextTileIterator(tree_priority_);
1428 DCHECK(a_pair.first);
1429 DCHECK(*a_pair.first);
1431 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair =
1432 b->NextTileIterator(tree_priority_);
1433 DCHECK(b_pair.first);
1434 DCHECK(*b_pair.first);
1436 Tile* a_tile = **a_pair.first;
1437 Tile* b_tile = **b_pair.first;
1439 const TilePriority& a_priority =
1440 a_tile->priority_for_tree_priority(tree_priority_);
1441 const TilePriority& b_priority =
1442 b_tile->priority_for_tree_priority(tree_priority_);
1443 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1445 if (b_priority.resolution != a_priority.resolution) {
1446 return (prioritize_low_res && b_priority.resolution == LOW_RESOLUTION) ||
1447 (!prioritize_low_res && b_priority.resolution == HIGH_RESOLUTION) ||
1448 (a_priority.resolution == NON_IDEAL_RESOLUTION);
1451 return b_priority.IsHigherPriorityThan(a_priority);
1454 TileManager::EvictionTileIterator::EvictionTileIterator()
1455 : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {}
1457 TileManager::EvictionTileIterator::EvictionTileIterator(
1458 TileManager* tile_manager,
1459 TreePriority tree_priority)
1460 : tree_priority_(tree_priority), comparator_(tree_priority) {
1461 std::vector<TileManager::PairedPictureLayer> paired_layers;
1463 tile_manager->GetPairedPictureLayers(&paired_layers);
1465 paired_iterators_.reserve(paired_layers.size());
1466 iterator_heap_.reserve(paired_layers.size());
1467 for (std::vector<TileManager::PairedPictureLayer>::iterator it =
1468 paired_layers.begin();
1469 it != paired_layers.end();
1470 ++it) {
1471 PairedPictureLayerIterator paired_iterator;
1472 if (it->active_layer) {
1473 paired_iterator.active_iterator =
1474 PictureLayerImpl::LayerEvictionTileIterator(it->active_layer,
1475 tree_priority_);
1478 if (it->pending_layer) {
1479 paired_iterator.pending_iterator =
1480 PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer,
1481 tree_priority_);
1484 if (paired_iterator.PeekTile(tree_priority_) != NULL) {
1485 paired_iterators_.push_back(paired_iterator);
1486 iterator_heap_.push_back(&paired_iterators_.back());
1490 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1493 TileManager::EvictionTileIterator::~EvictionTileIterator() {}
1495 TileManager::EvictionTileIterator& TileManager::EvictionTileIterator::
1496 operator++() {
1497 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1498 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
1499 iterator_heap_.pop_back();
1501 paired_iterator->PopTile(tree_priority_);
1502 if (paired_iterator->PeekTile(tree_priority_) != NULL) {
1503 iterator_heap_.push_back(paired_iterator);
1504 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1506 return *this;
1509 TileManager::EvictionTileIterator::operator bool() const {
1510 return !iterator_heap_.empty();
1513 Tile* TileManager::EvictionTileIterator::operator*() {
1514 DCHECK(*this);
1515 return iterator_heap_.front()->PeekTile(tree_priority_);
1518 TileManager::EvictionTileIterator::PairedPictureLayerIterator::
1519 PairedPictureLayerIterator() {}
1521 TileManager::EvictionTileIterator::PairedPictureLayerIterator::
1522 ~PairedPictureLayerIterator() {}
1524 Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile(
1525 TreePriority tree_priority) {
1526 PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
1527 NextTileIterator(tree_priority);
1528 if (!next_iterator)
1529 return NULL;
1531 DCHECK(*next_iterator);
1532 DCHECK(std::find(returned_shared_tiles.begin(),
1533 returned_shared_tiles.end(),
1534 **next_iterator) == returned_shared_tiles.end());
1535 return **next_iterator;
1538 void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile(
1539 TreePriority tree_priority) {
1540 PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
1541 NextTileIterator(tree_priority);
1542 DCHECK(next_iterator);
1543 DCHECK(*next_iterator);
1544 returned_shared_tiles.push_back(**next_iterator);
1545 ++(*next_iterator);
1547 next_iterator = NextTileIterator(tree_priority);
1548 while (next_iterator &&
1549 std::find(returned_shared_tiles.begin(),
1550 returned_shared_tiles.end(),
1551 **next_iterator) != returned_shared_tiles.end()) {
1552 ++(*next_iterator);
1553 next_iterator = NextTileIterator(tree_priority);
1557 PictureLayerImpl::LayerEvictionTileIterator*
1558 TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator(
1559 TreePriority tree_priority) {
1560 // If both iterators are out of tiles, return NULL.
1561 if (!active_iterator && !pending_iterator)
1562 return NULL;
1564 // If we only have one iterator with tiles, return it.
1565 if (!active_iterator)
1566 return &pending_iterator;
1567 if (!pending_iterator)
1568 return &active_iterator;
1570 Tile* active_tile = *active_iterator;
1571 Tile* pending_tile = *pending_iterator;
1572 if (active_tile == pending_tile)
1573 return &active_iterator;
1575 const TilePriority& active_priority =
1576 active_tile->priority_for_tree_priority(tree_priority);
1577 const TilePriority& pending_priority =
1578 pending_tile->priority_for_tree_priority(tree_priority);
1580 if (pending_priority.IsHigherPriorityThan(active_priority))
1581 return &active_iterator;
1582 return &pending_iterator;
1585 TileManager::EvictionTileIterator::EvictionOrderComparator::
1586 EvictionOrderComparator(TreePriority tree_priority)
1587 : tree_priority_(tree_priority) {}
1589 bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()(
1590 PairedPictureLayerIterator* a,
1591 PairedPictureLayerIterator* b) const {
1592 PictureLayerImpl::LayerEvictionTileIterator* a_iterator =
1593 a->NextTileIterator(tree_priority_);
1594 DCHECK(a_iterator);
1595 DCHECK(*a_iterator);
1597 PictureLayerImpl::LayerEvictionTileIterator* b_iterator =
1598 b->NextTileIterator(tree_priority_);
1599 DCHECK(b_iterator);
1600 DCHECK(*b_iterator);
1602 Tile* a_tile = **a_iterator;
1603 Tile* b_tile = **b_iterator;
1605 const TilePriority& a_priority =
1606 a_tile->priority_for_tree_priority(tree_priority_);
1607 const TilePriority& b_priority =
1608 b_tile->priority_for_tree_priority(tree_priority_);
1609 bool prioritize_low_res = tree_priority_ != SMOOTHNESS_TAKES_PRIORITY;
1611 if (b_priority.resolution != a_priority.resolution) {
1612 return (prioritize_low_res && b_priority.resolution == LOW_RESOLUTION) ||
1613 (!prioritize_low_res && b_priority.resolution == HIGH_RESOLUTION) ||
1614 (a_priority.resolution == NON_IDEAL_RESOLUTION);
1616 return a_priority.IsHigherPriorityThan(b_priority);
1619 } // namespace cc