1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/process_util.h"
7 #import <Cocoa/Cocoa.h>
8 #include <crt_externs.h>
11 #include <mach/mach.h>
12 #include <mach/mach_init.h>
13 #include <mach/mach_vm.h>
14 #include <mach/shared_region.h>
15 #include <mach/task.h>
16 #include <mach-o/nlist.h>
17 #include <malloc/malloc.h>
18 #import <objc/runtime.h>
21 #include <sys/event.h>
23 #include <sys/sysctl.h>
24 #include <sys/types.h>
30 #include "base/debug/debugger.h"
31 #include "base/file_util.h"
32 #include "base/hash_tables.h"
33 #include "base/lazy_instance.h"
34 #include "base/logging.h"
35 #include "base/mac/mac_util.h"
36 #include "base/mac/scoped_mach_port.h"
37 #include "base/posix/eintr_wrapper.h"
38 #include "base/string_util.h"
39 #include "base/sys_info.h"
40 #include "base/threading/thread_local.h"
41 #include "third_party/apple_apsl/CFBase.h"
42 #include "third_party/apple_apsl/malloc.h"
43 #include "third_party/mach_override/mach_override.h"
47 void RestoreDefaultExceptionHandler() {
48 // This function is tailored to remove the Breakpad exception handler.
49 // exception_mask matches s_exception_mask in
50 // breakpad/src/client/mac/handler/exception_handler.cc
51 const exception_mask_t exception_mask = EXC_MASK_BAD_ACCESS |
52 EXC_MASK_BAD_INSTRUCTION |
56 // Setting the exception port to MACH_PORT_NULL may not be entirely
57 // kosher to restore the default exception handler, but in practice,
58 // it results in the exception port being set to Apple Crash Reporter,
59 // the desired behavior.
60 task_set_exception_ports(mach_task_self(), exception_mask, MACH_PORT_NULL,
61 EXCEPTION_DEFAULT, THREAD_STATE_NONE);
64 ProcessIterator::ProcessIterator(const ProcessFilter* filter)
65 : index_of_kinfo_proc_(0),
67 // Get a snapshot of all of my processes (yes, as we loop it can go stale, but
68 // but trying to find where we were in a constantly changing list is basically
71 int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, geteuid() };
73 // Since more processes could start between when we get the size and when
74 // we get the list, we do a loop to keep trying until we get it.
77 const int max_tries = 10;
79 // Get the size of the buffer
81 if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) {
82 DLOG(ERROR) << "failed to get the size needed for the process list";
83 kinfo_procs_.resize(0);
86 size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
87 // Leave some spare room for process table growth (more could show up
88 // between when we check and now)
89 num_of_kinfo_proc += 16;
90 kinfo_procs_.resize(num_of_kinfo_proc);
91 len = num_of_kinfo_proc * sizeof(struct kinfo_proc);
92 // Load the list of processes
93 if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) < 0) {
94 // If we get a mem error, it just means we need a bigger buffer, so
95 // loop around again. Anything else is a real error and give up.
96 if (errno != ENOMEM) {
97 DLOG(ERROR) << "failed to get the process list";
98 kinfo_procs_.resize(0);
102 // Got the list, just make sure we're sized exactly right
103 size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
104 kinfo_procs_.resize(num_of_kinfo_proc);
108 } while (!done && (try_num++ < max_tries));
111 DLOG(ERROR) << "failed to collect the process list in a few tries";
112 kinfo_procs_.resize(0);
116 ProcessIterator::~ProcessIterator() {
119 bool ProcessIterator::CheckForNextProcess() {
121 for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) {
122 kinfo_proc& kinfo = kinfo_procs_[index_of_kinfo_proc_];
124 // Skip processes just awaiting collection
125 if ((kinfo.kp_proc.p_pid > 0) && (kinfo.kp_proc.p_stat == SZOMB))
128 int mib[] = { CTL_KERN, KERN_PROCARGS, kinfo.kp_proc.p_pid };
130 // Find out what size buffer we need.
132 if (sysctl(mib, arraysize(mib), NULL, &data_len, NULL, 0) < 0) {
133 DVPLOG(1) << "failed to figure out the buffer size for a commandline";
137 data.resize(data_len);
138 if (sysctl(mib, arraysize(mib), &data[0], &data_len, NULL, 0) < 0) {
139 DVPLOG(1) << "failed to fetch a commandline";
143 // |data| contains all the command line parameters of the process, separated
144 // by blocks of one or more null characters. We tokenize |data| into a
145 // vector of strings using '\0' as a delimiter and populate
146 // |entry_.cmd_line_args_|.
147 std::string delimiters;
148 delimiters.push_back('\0');
149 Tokenize(data, delimiters, &entry_.cmd_line_args_);
151 // |data| starts with the full executable path followed by a null character.
152 // We search for the first instance of '\0' and extract everything before it
153 // to populate |entry_.exe_file_|.
154 size_t exec_name_end = data.find('\0');
155 if (exec_name_end == std::string::npos) {
156 DLOG(ERROR) << "command line data didn't match expected format";
160 entry_.pid_ = kinfo.kp_proc.p_pid;
161 entry_.ppid_ = kinfo.kp_eproc.e_ppid;
162 entry_.gid_ = kinfo.kp_eproc.e_pgid;
163 size_t last_slash = data.rfind('/', exec_name_end);
164 if (last_slash == std::string::npos)
165 entry_.exe_file_.assign(data, 0, exec_name_end);
167 entry_.exe_file_.assign(data, last_slash + 1,
168 exec_name_end - last_slash - 1);
169 // Start w/ the next entry next time through
170 ++index_of_kinfo_proc_;
177 bool NamedProcessIterator::IncludeEntry() {
178 return (executable_name_ == entry().exe_file() &&
179 ProcessIterator::IncludeEntry());
183 // ------------------------------------------------------------------------
184 // NOTE: about ProcessMetrics
186 // Getting a mach task from a pid for another process requires permissions in
187 // general, so there doesn't really seem to be a way to do these (and spinning
188 // up ps to fetch each stats seems dangerous to put in a base api for anyone to
189 // call). Child processes ipc their port, so return something if available,
190 // otherwise return 0.
193 ProcessMetrics::ProcessMetrics(ProcessHandle process,
194 ProcessMetrics::PortProvider* port_provider)
197 last_system_time_(0),
198 port_provider_(port_provider) {
199 processor_count_ = SysInfo::NumberOfProcessors();
203 ProcessMetrics* ProcessMetrics::CreateProcessMetrics(
204 ProcessHandle process,
205 ProcessMetrics::PortProvider* port_provider) {
206 return new ProcessMetrics(process, port_provider);
209 bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
213 static bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) {
214 if (task == MACH_PORT_NULL)
216 mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT;
217 kern_return_t kr = task_info(task,
219 reinterpret_cast<task_info_t>(task_info_data),
221 // Most likely cause for failure: |task| is a zombie.
222 return kr == KERN_SUCCESS;
225 size_t ProcessMetrics::GetPagefileUsage() const {
226 task_basic_info_64 task_info_data;
227 if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
229 return task_info_data.virtual_size;
232 size_t ProcessMetrics::GetPeakPagefileUsage() const {
236 size_t ProcessMetrics::GetWorkingSetSize() const {
237 task_basic_info_64 task_info_data;
238 if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
240 return task_info_data.resident_size;
243 size_t ProcessMetrics::GetPeakWorkingSetSize() const {
247 static bool GetCPUTypeForProcess(pid_t pid, cpu_type_t* cpu_type) {
248 size_t len = sizeof(*cpu_type);
249 int result = sysctlbyname("sysctl.proc_cputype",
255 DPLOG(ERROR) << "sysctlbyname(""sysctl.proc_cputype"")";
262 static bool IsAddressInSharedRegion(mach_vm_address_t addr, cpu_type_t type) {
263 if (type == CPU_TYPE_I386)
264 return addr >= SHARED_REGION_BASE_I386 &&
265 addr < (SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386);
266 else if (type == CPU_TYPE_X86_64)
267 return addr >= SHARED_REGION_BASE_X86_64 &&
268 addr < (SHARED_REGION_BASE_X86_64 + SHARED_REGION_SIZE_X86_64);
273 // This is a rough approximation of the algorithm that libtop uses.
274 // private_bytes is the size of private resident memory.
275 // shared_bytes is the size of shared resident memory.
276 bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
277 size_t* shared_bytes) {
279 size_t private_pages_count = 0;
280 size_t shared_pages_count = 0;
282 if (!private_bytes && !shared_bytes)
285 mach_port_t task = TaskForPid(process_);
286 if (task == MACH_PORT_NULL) {
287 DLOG(ERROR) << "Invalid process";
292 if (!GetCPUTypeForProcess(process_, &cpu_type))
295 // The same region can be referenced multiple times. To avoid double counting
296 // we need to keep track of which regions we've already counted.
297 base::hash_set<int> seen_objects;
299 // We iterate through each VM region in the task's address map. For shared
300 // memory we add up all the pages that are marked as shared. Like libtop we
301 // try to avoid counting pages that are also referenced by other tasks. Since
302 // we don't have access to the VM regions of other tasks the only hint we have
303 // is if the address is in the shared region area.
305 // Private memory is much simpler. We simply count the pages that are marked
306 // as private or copy on write (COW).
308 // See libtop_update_vm_regions in
309 // http://www.opensource.apple.com/source/top/top-67/libtop.c
310 mach_vm_size_t size = 0;
311 for (mach_vm_address_t address = MACH_VM_MIN_ADDRESS;; address += size) {
312 vm_region_top_info_data_t info;
313 mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT;
314 mach_port_t object_name;
315 kr = mach_vm_region(task,
319 (vm_region_info_t)&info,
322 if (kr == KERN_INVALID_ADDRESS) {
323 // We're at the end of the address space.
325 } else if (kr != KERN_SUCCESS) {
326 DLOG(ERROR) << "Calling mach_vm_region failed with error: "
327 << mach_error_string(kr);
331 if (IsAddressInSharedRegion(address, cpu_type) &&
332 info.share_mode != SM_PRIVATE)
335 if (info.share_mode == SM_COW && info.ref_count == 1)
336 info.share_mode = SM_PRIVATE;
338 switch (info.share_mode) {
340 private_pages_count += info.private_pages_resident;
341 private_pages_count += info.shared_pages_resident;
344 private_pages_count += info.private_pages_resident;
347 if (seen_objects.count(info.obj_id) == 0) {
348 // Only count the first reference to this region.
349 seen_objects.insert(info.obj_id);
350 shared_pages_count += info.shared_pages_resident;
359 kr = host_page_size(task, &page_size);
360 if (kr != KERN_SUCCESS) {
361 DLOG(ERROR) << "Failed to fetch host page size, error: "
362 << mach_error_string(kr);
367 *private_bytes = private_pages_count * page_size;
369 *shared_bytes = shared_pages_count * page_size;
374 void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const {
377 bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
378 size_t priv = GetWorkingSetSize();
381 ws_usage->priv = priv / 1024;
382 ws_usage->shareable = 0;
383 ws_usage->shared = 0;
387 #define TIME_VALUE_TO_TIMEVAL(a, r) do { \
388 (r)->tv_sec = (a)->seconds; \
389 (r)->tv_usec = (a)->microseconds; \
392 double ProcessMetrics::GetCPUUsage() {
393 mach_port_t task = TaskForPid(process_);
394 if (task == MACH_PORT_NULL)
399 // Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage()
400 // in libtop.c), but this is more concise and gives the same results:
401 task_thread_times_info thread_info_data;
402 mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT;
404 TASK_THREAD_TIMES_INFO,
405 reinterpret_cast<task_info_t>(&thread_info_data),
407 if (kr != KERN_SUCCESS) {
408 // Most likely cause: |task| is a zombie.
412 task_basic_info_64 task_info_data;
413 if (!GetTaskInfo(task, &task_info_data))
416 /* Set total_time. */
417 // thread info contains live time...
418 struct timeval user_timeval, system_timeval, task_timeval;
419 TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval);
420 TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval);
421 timeradd(&user_timeval, &system_timeval, &task_timeval);
423 // ... task info contains terminated time.
424 TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval);
425 TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval);
426 timeradd(&user_timeval, &task_timeval, &task_timeval);
427 timeradd(&system_timeval, &task_timeval, &task_timeval);
430 int retval = gettimeofday(&now, NULL);
434 int64 time = TimeValToMicroseconds(now);
435 int64 task_time = TimeValToMicroseconds(task_timeval);
437 if ((last_system_time_ == 0) || (last_time_ == 0)) {
438 // First call, just set the last values.
439 last_system_time_ = task_time;
444 int64 system_time_delta = task_time - last_system_time_;
445 int64 time_delta = time - last_time_;
446 DCHECK_NE(0U, time_delta);
450 last_system_time_ = task_time;
453 return static_cast<double>(system_time_delta * 100.0) / time_delta;
456 mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const {
457 mach_port_t task = MACH_PORT_NULL;
459 task = port_provider_->TaskForPid(process_);
460 if (task == MACH_PORT_NULL && process_ == getpid())
461 task = mach_task_self();
465 // ------------------------------------------------------------------------
467 // Bytes committed by the system.
468 size_t GetSystemCommitCharge() {
469 base::mac::ScopedMachPort host(mach_host_self());
470 mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
471 vm_statistics_data_t data;
472 kern_return_t kr = host_statistics(host, HOST_VM_INFO,
473 reinterpret_cast<host_info_t>(&data),
476 DLOG(WARNING) << "Failed to fetch host statistics.";
481 kr = host_page_size(host, &page_size);
483 DLOG(ERROR) << "Failed to fetch host page size.";
487 return (data.active_count * page_size) / 1024;
492 // Finds the library path for malloc() and thus the libC part of libSystem,
493 // which in Lion is in a separate image.
494 const char* LookUpLibCPath() {
495 const void* addr = reinterpret_cast<void*>(&malloc);
498 if (dladdr(addr, &info))
499 return info.dli_fname;
501 DLOG(WARNING) << "Could not find image path for malloc()";
505 typedef void(*malloc_error_break_t)(void);
506 malloc_error_break_t g_original_malloc_error_break = NULL;
508 // Returns the function pointer for malloc_error_break. This symbol is declared
509 // as __private_extern__ and cannot be dlsym()ed. Instead, use nlist() to
511 malloc_error_break_t LookUpMallocErrorBreak() {
513 const char* lib_c_path = LookUpLibCPath();
517 // Only need to look up two symbols, but nlist() requires a NULL-terminated
518 // array and takes no count.
520 bzero(&nl, sizeof(nl));
522 // The symbol to find.
523 nl[0].n_un.n_name = const_cast<char*>("_malloc_error_break");
525 // A reference symbol by which the address of the desired symbol will be
527 nl[1].n_un.n_name = const_cast<char*>("_malloc");
529 int rv = nlist(lib_c_path, nl);
530 if (rv != 0 || nl[0].n_type == N_UNDF || nl[1].n_type == N_UNDF) {
534 // nlist() returns addresses as offsets in the image, not the instruction
535 // pointer in memory. Use the known in-memory address of malloc()
536 // to compute the offset for malloc_error_break().
537 uintptr_t reference_addr = reinterpret_cast<uintptr_t>(&malloc);
538 reference_addr -= nl[1].n_value;
539 reference_addr += nl[0].n_value;
541 return reinterpret_cast<malloc_error_break_t>(reference_addr);
542 #endif // ARCH_CPU_32_BITS
547 // Simple scoper that saves the current value of errno, resets it to 0, and on
548 // destruction puts the old value back. This is so that CrMallocErrorBreak can
549 // safely test errno free from the effects of other routines.
550 class ScopedClearErrno {
552 ScopedClearErrno() : old_errno_(errno) {
555 ~ScopedClearErrno() {
563 DISALLOW_COPY_AND_ASSIGN(ScopedClearErrno);
566 // Combines ThreadLocalBoolean with AutoReset. It would be convenient
567 // to compose ThreadLocalPointer<bool> with base::AutoReset<bool>, but that
568 // would require allocating some storage for the bool.
569 class ThreadLocalBooleanAutoReset {
571 ThreadLocalBooleanAutoReset(ThreadLocalBoolean* tlb, bool new_value)
573 original_value_(tlb->Get()) {
574 scoped_tlb_->Set(new_value);
576 ~ThreadLocalBooleanAutoReset() {
577 scoped_tlb_->Set(original_value_);
581 ThreadLocalBoolean* scoped_tlb_;
582 bool original_value_;
584 DISALLOW_COPY_AND_ASSIGN(ThreadLocalBooleanAutoReset);
587 base::LazyInstance<ThreadLocalBoolean>::Leaky
588 g_unchecked_malloc = LAZY_INSTANCE_INITIALIZER;
590 // NOTE(shess): This is called when the malloc library noticed that the heap
591 // is fubar. Avoid calls which will re-enter the malloc library.
592 void CrMallocErrorBreak() {
593 g_original_malloc_error_break();
595 // Out of memory is certainly not heap corruption, and not necessarily
596 // something for which the process should be terminated. Leave that decision
597 // to the OOM killer. The EBADF case comes up because the malloc library
598 // attempts to log to ASL (syslog) before calling this code, which fails
599 // accessing a Unix-domain socket because of sandboxing.
600 if (errno == ENOMEM || (errno == EBADF && g_unchecked_malloc.Get().Get()))
603 // A unit test checks this error message, so it needs to be in release builds.
605 "Terminating process due to a potential for future heap corruption: "
608 '0' + ((errno / 100) % 10),
609 '0' + ((errno / 10) % 10),
613 COMPILE_ASSERT(ELAST <= 999, errno_too_large_to_encode);
614 strlcat(buf, errnobuf, sizeof(buf));
617 // Crash by writing to NULL+errno to allow analyzing errno from
618 // crash dump info (setting a breakpad key would re-enter the malloc
619 // library). Max documented errno in intro(2) is actually 102, but
620 // it really just needs to be "small" to stay on the right vm page.
621 const int kMaxErrno = 256;
622 char* volatile death_ptr = NULL;
623 death_ptr += std::min(errno, kMaxErrno);
629 void EnableTerminationOnHeapCorruption() {
630 #ifdef ADDRESS_SANITIZER
631 // Don't do anything special on heap corruption, because it should be handled
632 // by AddressSanitizer.
636 // Only override once, otherwise CrMallocErrorBreak() will recurse
638 if (g_original_malloc_error_break)
641 malloc_error_break_t malloc_error_break = LookUpMallocErrorBreak();
642 if (!malloc_error_break) {
643 DLOG(WARNING) << "Could not find malloc_error_break";
647 mach_error_t err = mach_override_ptr(
648 (void*)malloc_error_break,
649 (void*)&CrMallocErrorBreak,
650 (void**)&g_original_malloc_error_break);
653 DLOG(WARNING) << "Could not override malloc_error_break; error = " << err;
656 // ------------------------------------------------------------------------
660 bool g_oom_killer_enabled;
662 // === C malloc/calloc/valloc/realloc/posix_memalign ===
664 typedef void* (*malloc_type)(struct _malloc_zone_t* zone,
666 typedef void* (*calloc_type)(struct _malloc_zone_t* zone,
669 typedef void* (*valloc_type)(struct _malloc_zone_t* zone,
671 typedef void (*free_type)(struct _malloc_zone_t* zone,
673 typedef void* (*realloc_type)(struct _malloc_zone_t* zone,
676 typedef void* (*memalign_type)(struct _malloc_zone_t* zone,
680 malloc_type g_old_malloc;
681 calloc_type g_old_calloc;
682 valloc_type g_old_valloc;
683 free_type g_old_free;
684 realloc_type g_old_realloc;
685 memalign_type g_old_memalign;
687 malloc_type g_old_malloc_purgeable;
688 calloc_type g_old_calloc_purgeable;
689 valloc_type g_old_valloc_purgeable;
690 free_type g_old_free_purgeable;
691 realloc_type g_old_realloc_purgeable;
692 memalign_type g_old_memalign_purgeable;
694 void* oom_killer_malloc(struct _malloc_zone_t* zone,
696 ScopedClearErrno clear_errno;
697 void* result = g_old_malloc(zone, size);
699 debug::BreakDebugger();
703 void* oom_killer_calloc(struct _malloc_zone_t* zone,
706 ScopedClearErrno clear_errno;
707 void* result = g_old_calloc(zone, num_items, size);
708 if (!result && num_items && size)
709 debug::BreakDebugger();
713 void* oom_killer_valloc(struct _malloc_zone_t* zone,
715 ScopedClearErrno clear_errno;
716 void* result = g_old_valloc(zone, size);
718 debug::BreakDebugger();
722 void oom_killer_free(struct _malloc_zone_t* zone,
724 ScopedClearErrno clear_errno;
725 g_old_free(zone, ptr);
728 void* oom_killer_realloc(struct _malloc_zone_t* zone,
731 ScopedClearErrno clear_errno;
732 void* result = g_old_realloc(zone, ptr, size);
734 debug::BreakDebugger();
738 void* oom_killer_memalign(struct _malloc_zone_t* zone,
741 ScopedClearErrno clear_errno;
742 void* result = g_old_memalign(zone, alignment, size);
743 // Only die if posix_memalign would have returned ENOMEM, since there are
744 // other reasons why NULL might be returned (see
745 // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
746 if (!result && size && alignment >= sizeof(void*)
747 && (alignment & (alignment - 1)) == 0) {
748 debug::BreakDebugger();
753 void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone,
755 ScopedClearErrno clear_errno;
756 void* result = g_old_malloc_purgeable(zone, size);
758 debug::BreakDebugger();
762 void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone,
765 ScopedClearErrno clear_errno;
766 void* result = g_old_calloc_purgeable(zone, num_items, size);
767 if (!result && num_items && size)
768 debug::BreakDebugger();
772 void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone,
774 ScopedClearErrno clear_errno;
775 void* result = g_old_valloc_purgeable(zone, size);
777 debug::BreakDebugger();
781 void oom_killer_free_purgeable(struct _malloc_zone_t* zone,
783 ScopedClearErrno clear_errno;
784 g_old_free_purgeable(zone, ptr);
787 void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone,
790 ScopedClearErrno clear_errno;
791 void* result = g_old_realloc_purgeable(zone, ptr, size);
793 debug::BreakDebugger();
797 void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone,
800 ScopedClearErrno clear_errno;
801 void* result = g_old_memalign_purgeable(zone, alignment, size);
802 // Only die if posix_memalign would have returned ENOMEM, since there are
803 // other reasons why NULL might be returned (see
804 // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
805 if (!result && size && alignment >= sizeof(void*)
806 && (alignment & (alignment - 1)) == 0) {
807 debug::BreakDebugger();
812 // === C++ operator new ===
814 void oom_killer_new() {
815 debug::BreakDebugger();
818 // === Core Foundation CFAllocators ===
820 bool CanGetContextForCFAllocator() {
821 return !base::mac::IsOSLaterThanMountainLion_DontCallThis();
824 CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) {
825 if (base::mac::IsOSSnowLeopard()) {
826 ChromeCFAllocatorLeopards* our_allocator =
827 const_cast<ChromeCFAllocatorLeopards*>(
828 reinterpret_cast<const ChromeCFAllocatorLeopards*>(allocator));
829 return &our_allocator->_context;
830 } else if (base::mac::IsOSLion() || base::mac::IsOSMountainLion()) {
831 ChromeCFAllocatorLions* our_allocator =
832 const_cast<ChromeCFAllocatorLions*>(
833 reinterpret_cast<const ChromeCFAllocatorLions*>(allocator));
834 return &our_allocator->_context;
840 CFAllocatorAllocateCallBack g_old_cfallocator_system_default;
841 CFAllocatorAllocateCallBack g_old_cfallocator_malloc;
842 CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone;
844 void* oom_killer_cfallocator_system_default(CFIndex alloc_size,
847 void* result = g_old_cfallocator_system_default(alloc_size, hint, info);
849 debug::BreakDebugger();
853 void* oom_killer_cfallocator_malloc(CFIndex alloc_size,
856 void* result = g_old_cfallocator_malloc(alloc_size, hint, info);
858 debug::BreakDebugger();
862 void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size,
865 void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info);
867 debug::BreakDebugger();
871 // === Cocoa NSObject allocation ===
873 typedef id (*allocWithZone_t)(id, SEL, NSZone*);
874 allocWithZone_t g_old_allocWithZone;
876 id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone)
878 id result = g_old_allocWithZone(self, _cmd, zone);
880 debug::BreakDebugger();
886 void* UncheckedMalloc(size_t size) {
888 ScopedClearErrno clear_errno;
889 ThreadLocalBooleanAutoReset flag(g_unchecked_malloc.Pointer(), true);
890 return g_old_malloc(malloc_default_zone(), size);
895 void EnableTerminationOnOutOfMemory() {
896 if (g_oom_killer_enabled)
899 g_oom_killer_enabled = true;
901 // === C malloc/calloc/valloc/realloc/posix_memalign ===
903 // This approach is not perfect, as requests for amounts of memory larger than
904 // MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will
905 // still fail with a NULL rather than dying (see
906 // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c for details).
907 // Unfortunately, it's the best we can do. Also note that this does not affect
908 // allocations from non-default zones.
910 CHECK(!g_old_malloc && !g_old_calloc && !g_old_valloc && !g_old_realloc &&
911 !g_old_memalign) << "Old allocators unexpectedly non-null";
913 CHECK(!g_old_malloc_purgeable && !g_old_calloc_purgeable &&
914 !g_old_valloc_purgeable && !g_old_realloc_purgeable &&
915 !g_old_memalign_purgeable) << "Old allocators unexpectedly non-null";
917 #if !defined(ADDRESS_SANITIZER)
918 // Don't do anything special on OOM for the malloc zones replaced by
919 // AddressSanitizer, as modifying or protecting them may not work correctly.
921 // See http://trac.webkit.org/changeset/53362/trunk/Tools/DumpRenderTree/mac
922 bool zone_allocators_protected = base::mac::IsOSLionOrLater();
924 ChromeMallocZone* default_zone =
925 reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
926 ChromeMallocZone* purgeable_zone =
927 reinterpret_cast<ChromeMallocZone*>(malloc_default_purgeable_zone());
929 vm_address_t page_start_default = 0;
930 vm_address_t page_start_purgeable = 0;
931 vm_size_t len_default = 0;
932 vm_size_t len_purgeable = 0;
933 if (zone_allocators_protected) {
934 page_start_default = reinterpret_cast<vm_address_t>(default_zone) &
935 static_cast<vm_size_t>(~(getpagesize() - 1));
936 len_default = reinterpret_cast<vm_address_t>(default_zone) -
937 page_start_default + sizeof(ChromeMallocZone);
938 mprotect(reinterpret_cast<void*>(page_start_default), len_default,
939 PROT_READ | PROT_WRITE);
941 if (purgeable_zone) {
942 page_start_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) &
943 static_cast<vm_size_t>(~(getpagesize() - 1));
944 len_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) -
945 page_start_purgeable + sizeof(ChromeMallocZone);
946 mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable,
947 PROT_READ | PROT_WRITE);
953 g_old_malloc = default_zone->malloc;
954 g_old_calloc = default_zone->calloc;
955 g_old_valloc = default_zone->valloc;
956 g_old_free = default_zone->free;
957 g_old_realloc = default_zone->realloc;
958 CHECK(g_old_malloc && g_old_calloc && g_old_valloc && g_old_free &&
960 << "Failed to get system allocation functions.";
962 default_zone->malloc = oom_killer_malloc;
963 default_zone->calloc = oom_killer_calloc;
964 default_zone->valloc = oom_killer_valloc;
965 default_zone->free = oom_killer_free;
966 default_zone->realloc = oom_killer_realloc;
968 if (default_zone->version >= 5) {
969 g_old_memalign = default_zone->memalign;
971 default_zone->memalign = oom_killer_memalign;
974 // Purgeable zone (if it exists)
976 if (purgeable_zone) {
977 g_old_malloc_purgeable = purgeable_zone->malloc;
978 g_old_calloc_purgeable = purgeable_zone->calloc;
979 g_old_valloc_purgeable = purgeable_zone->valloc;
980 g_old_free_purgeable = purgeable_zone->free;
981 g_old_realloc_purgeable = purgeable_zone->realloc;
982 CHECK(g_old_malloc_purgeable && g_old_calloc_purgeable &&
983 g_old_valloc_purgeable && g_old_free_purgeable &&
984 g_old_realloc_purgeable)
985 << "Failed to get system allocation functions.";
987 purgeable_zone->malloc = oom_killer_malloc_purgeable;
988 purgeable_zone->calloc = oom_killer_calloc_purgeable;
989 purgeable_zone->valloc = oom_killer_valloc_purgeable;
990 purgeable_zone->free = oom_killer_free_purgeable;
991 purgeable_zone->realloc = oom_killer_realloc_purgeable;
993 if (purgeable_zone->version >= 5) {
994 g_old_memalign_purgeable = purgeable_zone->memalign;
995 if (g_old_memalign_purgeable)
996 purgeable_zone->memalign = oom_killer_memalign_purgeable;
1000 if (zone_allocators_protected) {
1001 mprotect(reinterpret_cast<void*>(page_start_default), len_default,
1003 if (purgeable_zone) {
1004 mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable,
1010 // === C malloc_zone_batch_malloc ===
1012 // batch_malloc is omitted because the default malloc zone's implementation
1013 // only supports batch_malloc for "tiny" allocations from the free list. It
1014 // will fail for allocations larger than "tiny", and will only allocate as
1015 // many blocks as it's able to from the free list. These factors mean that it
1016 // can return less than the requested memory even in a non-out-of-memory
1017 // situation. There's no good way to detect whether a batch_malloc failure is
1018 // due to these other factors, or due to genuine memory or address space
1019 // exhaustion. The fact that it only allocates space from the "tiny" free list
1020 // means that it's likely that a failure will not be due to memory exhaustion.
1021 // Similarly, these constraints on batch_malloc mean that callers must always
1022 // be expecting to receive less memory than was requested, even in situations
1023 // where memory pressure is not a concern. Finally, the only public interface
1024 // to batch_malloc is malloc_zone_batch_malloc, which is specific to the
1025 // system's malloc implementation. It's unlikely that anyone's even heard of
1028 // === C++ operator new ===
1030 // Yes, operator new does call through to malloc, but this will catch failures
1031 // that our imperfect handling of malloc cannot.
1033 std::set_new_handler(oom_killer_new);
1035 #ifndef ADDRESS_SANITIZER
1036 // === Core Foundation CFAllocators ===
1038 // This will not catch allocation done by custom allocators, but will catch
1039 // all allocation done by system-provided ones.
1041 CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc &&
1042 !g_old_cfallocator_malloc_zone)
1043 << "Old allocators unexpectedly non-null";
1045 bool cf_allocator_internals_known = CanGetContextForCFAllocator();
1047 if (cf_allocator_internals_known) {
1048 CFAllocatorContext* context =
1049 ContextForCFAllocator(kCFAllocatorSystemDefault);
1050 CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault.";
1051 g_old_cfallocator_system_default = context->allocate;
1052 CHECK(g_old_cfallocator_system_default)
1053 << "Failed to get kCFAllocatorSystemDefault allocation function.";
1054 context->allocate = oom_killer_cfallocator_system_default;
1056 context = ContextForCFAllocator(kCFAllocatorMalloc);
1057 CHECK(context) << "Failed to get context for kCFAllocatorMalloc.";
1058 g_old_cfallocator_malloc = context->allocate;
1059 CHECK(g_old_cfallocator_malloc)
1060 << "Failed to get kCFAllocatorMalloc allocation function.";
1061 context->allocate = oom_killer_cfallocator_malloc;
1063 context = ContextForCFAllocator(kCFAllocatorMallocZone);
1064 CHECK(context) << "Failed to get context for kCFAllocatorMallocZone.";
1065 g_old_cfallocator_malloc_zone = context->allocate;
1066 CHECK(g_old_cfallocator_malloc_zone)
1067 << "Failed to get kCFAllocatorMallocZone allocation function.";
1068 context->allocate = oom_killer_cfallocator_malloc_zone;
1070 NSLog(@"Internals of CFAllocator not known; out-of-memory failures via "
1071 "CFAllocator will not result in termination. http://crbug.com/45650");
1075 // === Cocoa NSObject allocation ===
1077 // Note that both +[NSObject new] and +[NSObject alloc] call through to
1078 // +[NSObject allocWithZone:].
1080 CHECK(!g_old_allocWithZone)
1081 << "Old allocator unexpectedly non-null";
1083 Class nsobject_class = [NSObject class];
1084 Method orig_method = class_getClassMethod(nsobject_class,
1085 @selector(allocWithZone:));
1086 g_old_allocWithZone = reinterpret_cast<allocWithZone_t>(
1087 method_getImplementation(orig_method));
1088 CHECK(g_old_allocWithZone)
1089 << "Failed to get allocWithZone allocation function.";
1090 method_setImplementation(orig_method,
1091 reinterpret_cast<IMP>(oom_killer_allocWithZone));
1094 ProcessId GetParentProcessId(ProcessHandle process) {
1095 struct kinfo_proc info;
1096 size_t length = sizeof(struct kinfo_proc);
1097 int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process };
1098 if (sysctl(mib, 4, &info, &length, NULL, 0) < 0) {
1099 DPLOG(ERROR) << "sysctl";
1104 return info.kp_eproc.e_ppid;
1109 const int kWaitBeforeKillSeconds = 2;
1111 // Reap |child| process. This call blocks until completion.
1112 void BlockingReap(pid_t child) {
1113 const pid_t result = HANDLE_EINTR(waitpid(child, NULL, 0));
1115 DPLOG(ERROR) << "waitpid(" << child << ", NULL, 0)";
1119 // Waits for |timeout| seconds for the given |child| to exit and reap it. If
1120 // the child doesn't exit within the time specified, kills it.
1122 // This function takes two approaches: first, it tries to use kqueue to
1123 // observe when the process exits. kevent can monitor a kqueue with a
1124 // timeout, so this method is preferred to wait for a specified period of
1125 // time. Once the kqueue indicates the process has exited, waitpid will reap
1126 // the exited child. If the kqueue doesn't provide an exit event notification,
1127 // before the timeout expires, or if the kqueue fails or misbehaves, the
1128 // process will be mercilessly killed and reaped.
1130 // A child process passed to this function may be in one of several states:
1131 // running, terminated and not yet reaped, and (apparently, and unfortunately)
1132 // terminated and already reaped. Normally, a process will at least have been
1133 // asked to exit before this function is called, but this is not required.
1134 // If a process is terminating and unreaped, there may be a window between the
1135 // time that kqueue will no longer recognize it and when it becomes an actual
1136 // zombie that a non-blocking (WNOHANG) waitpid can reap. This condition is
1137 // detected when kqueue indicates that the process is not running and a
1138 // non-blocking waitpid fails to reap the process but indicates that it is
1139 // still running. In this event, a blocking attempt to reap the process
1140 // collects the known-dying child, preventing zombies from congregating.
1142 // In the event that the kqueue misbehaves entirely, as it might under a
1143 // EMFILE condition ("too many open files", or out of file descriptors), this
1144 // function will forcibly kill and reap the child without delay. This
1145 // eliminates another potential zombie vector. (If you're out of file
1146 // descriptors, you're probably deep into something else, but that doesn't
1147 // mean that zombies be allowed to kick you while you're down.)
1149 // The fact that this function seemingly can be called to wait on a child
1150 // that's not only already terminated but already reaped is a bit of a
1151 // problem: a reaped child's pid can be reclaimed and may refer to a distinct
1152 // process in that case. The fact that this function can seemingly be called
1153 // to wait on a process that's not even a child is also a problem: kqueue will
1154 // work in that case, but waitpid won't, and killing a non-child might not be
1155 // the best approach.
1156 void WaitForChildToDie(pid_t child, int timeout) {
1158 DCHECK(timeout > 0);
1160 // DON'T ADD ANY EARLY RETURNS TO THIS FUNCTION without ensuring that
1161 // |child| has been reaped. Specifically, even if a kqueue, kevent, or other
1162 // call fails, this function should fall back to the last resort of trying
1163 // to kill and reap the process. Not observing this rule will resurrect
1168 int kq = HANDLE_EINTR(kqueue());
1170 DPLOG(ERROR) << "kqueue()";
1172 file_util::ScopedFD auto_close_kq(&kq);
1174 struct kevent change = {0};
1175 EV_SET(&change, child, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL);
1176 result = HANDLE_EINTR(kevent(kq, &change, 1, NULL, 0, NULL));
1179 if (errno != ESRCH) {
1180 DPLOG(ERROR) << "kevent (setup " << child << ")";
1182 // At this point, one of the following has occurred:
1183 // 1. The process has died but has not yet been reaped.
1184 // 2. The process has died and has already been reaped.
1185 // 3. The process is in the process of dying. It's no longer
1186 // kqueueable, but it may not be waitable yet either. Mark calls
1187 // this case the "zombie death race".
1189 result = HANDLE_EINTR(waitpid(child, NULL, WNOHANG));
1192 // A positive result indicates case 1. waitpid succeeded and reaped
1193 // the child. A result of -1 indicates case 2. The child has already
1194 // been reaped. In both of these cases, no further action is
1199 // |result| is 0, indicating case 3. The process will be waitable in
1200 // short order. Fall back out of the kqueue code to kill it (for good
1201 // measure) and reap it.
1204 // Keep track of the elapsed time to be able to restart kevent if it's
1206 TimeDelta remaining_delta = TimeDelta::FromSeconds(timeout);
1207 TimeTicks deadline = TimeTicks::Now() + remaining_delta;
1209 struct kevent event = {0};
1210 while (remaining_delta.InMilliseconds() > 0) {
1211 const struct timespec remaining_timespec = remaining_delta.ToTimeSpec();
1212 result = kevent(kq, NULL, 0, &event, 1, &remaining_timespec);
1213 if (result == -1 && errno == EINTR) {
1214 remaining_delta = deadline - TimeTicks::Now();
1222 DPLOG(ERROR) << "kevent (wait " << child << ")";
1223 } else if (result > 1) {
1224 DLOG(ERROR) << "kevent (wait " << child << "): unexpected result "
1226 } else if (result == 1) {
1227 if ((event.fflags & NOTE_EXIT) &&
1228 (event.ident == static_cast<uintptr_t>(child))) {
1229 // The process is dead or dying. This won't block for long, if at
1231 BlockingReap(child);
1234 DLOG(ERROR) << "kevent (wait " << child
1235 << "): unexpected event: fflags=" << event.fflags
1236 << ", ident=" << event.ident;
1242 // The child is still alive, or is very freshly dead. Be sure by sending it
1243 // a signal. This is safe even if it's freshly dead, because it will be a
1244 // zombie (or on the way to zombiedom) and kill will return 0 even if the
1245 // signal is not delivered to a live process.
1246 result = kill(child, SIGKILL);
1248 DPLOG(ERROR) << "kill(" << child << ", SIGKILL)";
1250 // The child is definitely on the way out now. BlockingReap won't need to
1251 // wait for long, if at all.
1252 BlockingReap(child);
1258 void EnsureProcessTerminated(ProcessHandle process) {
1259 WaitForChildToDie(process, kWaitBeforeKillSeconds);