Add background page to good2.crx
[chromium-blink-merge.git] / courgette / ensemble_create.cc
blob550f0ad02e770ec5b111cd6bbf1ef8b140d0834b
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // The main idea in Courgette is to do patching *under a tranformation*. The
6 // input is transformed into a new representation, patching occurs in the new
7 // repesentation, and then the tranform is reversed to get the patched data.
8 //
9 // The idea is applied to pieces (or 'elements') of the whole (or 'ensemble').
10 // Each of the elements has to go through the same set of steps in lock-step.
12 // This file contains the code to create the patch.
15 #include "courgette/ensemble.h"
17 #include <limits>
18 #include <vector>
20 #include "base/basictypes.h"
21 #include "base/logging.h"
22 #include "base/time/time.h"
24 #include "courgette/crc.h"
25 #include "courgette/difference_estimator.h"
26 #include "courgette/region.h"
27 #include "courgette/simple_delta.h"
28 #include "courgette/streams.h"
29 #include "courgette/third_party/bsdiff.h"
31 #include "courgette/patcher_x86_32.h"
32 #include "courgette/patch_generator_x86_32.h"
34 namespace courgette {
36 TransformationPatchGenerator::TransformationPatchGenerator(
37 Element* old_element,
38 Element* new_element,
39 TransformationPatcher* patcher)
40 : old_element_(old_element),
41 new_element_(new_element),
42 patcher_(patcher) {
45 TransformationPatchGenerator::~TransformationPatchGenerator() {
46 delete patcher_;
49 // The default implementation of PredictTransformParameters delegates to the
50 // patcher.
51 Status TransformationPatchGenerator::PredictTransformParameters(
52 SinkStreamSet* prediction) {
53 return patcher_->PredictTransformParameters(prediction);
56 // The default implementation of Reform delegates to the patcher.
57 Status TransformationPatchGenerator::Reform(
58 SourceStreamSet* transformed_element,
59 SinkStream* reformed_element) {
60 return patcher_->Reform(transformed_element, reformed_element);
63 // Makes a TransformationPatchGenerator of the appropriate variety for the
64 // Element kind.
65 TransformationPatchGenerator* MakeGenerator(Element* old_element,
66 Element* new_element) {
67 switch (new_element->kind()) {
68 case EXE_UNKNOWN:
69 break;
70 case EXE_WIN_32_X86: {
71 TransformationPatchGenerator* generator =
72 new PatchGeneratorX86_32(
73 old_element,
74 new_element,
75 new PatcherX86_32(old_element->region()),
76 EXE_WIN_32_X86);
77 return generator;
79 case EXE_ELF_32_X86: {
80 TransformationPatchGenerator* generator =
81 new PatchGeneratorX86_32(
82 old_element,
83 new_element,
84 new PatcherX86_32(old_element->region()),
85 EXE_ELF_32_X86);
86 return generator;
88 case EXE_ELF_32_ARM: {
89 TransformationPatchGenerator* generator =
90 new PatchGeneratorX86_32(
91 old_element,
92 new_element,
93 new PatcherX86_32(old_element->region()),
94 EXE_ELF_32_ARM);
95 return generator;
99 LOG(WARNING) << "Unexpected Element::Kind " << old_element->kind();
100 return NULL;
103 // Checks to see if the proposed comparison is 'unsafe'. Sometimes one element
104 // from 'old' is matched as the closest element to multiple elements from 'new'.
105 // Each time this happens, the old element is transformed and serialized. This
106 // is a problem when the old element is huge compared with the new element
107 // because the mutliple serialized copies can be much bigger than the size of
108 // either ensemble.
110 // The right way to avoid this is to ensure any one element from 'old' is
111 // serialized once, which requires matching code in the patch application.
113 // This is a quick hack to avoid the problem by prohibiting a big difference in
114 // size between matching elements.
115 bool UnsafeDifference(Element* old_element, Element* new_element) {
116 double kMaxBloat = 2.0;
117 size_t kMinWorrysomeDifference = 2 << 20; // 2MB
118 size_t old_size = old_element->region().length();
119 size_t new_size = new_element->region().length();
120 size_t low_size = std::min(old_size, new_size);
121 size_t high_size = std::max(old_size, new_size);
122 if (high_size - low_size < kMinWorrysomeDifference) return false;
123 if (high_size < low_size * kMaxBloat) return false;
124 return true;
127 // FindGenerators finds TransformationPatchGenerators for the elements of
128 // |new_ensemble|. For each element of |new_ensemble| we find the closest
129 // matching element from |old_ensemble| and use that as the basis for
130 // differential compression. The elements have to be the same kind so as to
131 // support transformation into the same kind of 'new representation'.
133 Status FindGenerators(Ensemble* old_ensemble, Ensemble* new_ensemble,
134 std::vector<TransformationPatchGenerator*>* generators) {
135 base::Time start_find_time = base::Time::Now();
136 old_ensemble->FindEmbeddedElements();
137 new_ensemble->FindEmbeddedElements();
138 VLOG(1) << "done FindEmbeddedElements "
139 << (base::Time::Now() - start_find_time).InSecondsF();
141 std::vector<Element*> old_elements(old_ensemble->elements());
142 std::vector<Element*> new_elements(new_ensemble->elements());
144 VLOG(1) << "old has " << old_elements.size() << " elements";
145 VLOG(1) << "new has " << new_elements.size() << " elements";
147 DifferenceEstimator difference_estimator;
148 std::vector<DifferenceEstimator::Base*> bases;
150 base::Time start_bases_time = base::Time::Now();
151 for (size_t i = 0; i < old_elements.size(); ++i) {
152 bases.push_back(
153 difference_estimator.MakeBase(old_elements[i]->region()));
155 VLOG(1) << "done make bases "
156 << (base::Time::Now() - start_bases_time).InSecondsF() << "s";
158 for (size_t new_index = 0; new_index < new_elements.size(); ++new_index) {
159 Element* new_element = new_elements[new_index];
160 DifferenceEstimator::Subject* new_subject =
161 difference_estimator.MakeSubject(new_element->region());
163 // Search through old elements to find the best match.
165 // TODO(sra): This is O(N x M), i.e. O(N^2) since old_ensemble and
166 // new_ensemble probably have a very similar structure. We can make the
167 // search faster by making the comparison provided by DifferenceEstimator
168 // more nuanced, returning early if the measured difference is greater than
169 // the current best. This will be most effective if we can arrange that the
170 // first elements we try to match are likely the 'right' ones. We could
171 // prioritize elements that are of a similar size or similar position in the
172 // sequence of elements.
174 Element* best_old_element = NULL;
175 size_t best_difference = std::numeric_limits<size_t>::max();
176 for (size_t old_index = 0; old_index < old_elements.size(); ++old_index) {
177 Element* old_element = old_elements[old_index];
178 // Elements of different kinds are incompatible.
179 if (old_element->kind() != new_element->kind())
180 continue;
182 if (UnsafeDifference(old_element, new_element))
183 continue;
185 base::Time start_compare = base::Time::Now();
186 DifferenceEstimator::Base* old_base = bases[old_index];
187 size_t difference = difference_estimator.Measure(old_base, new_subject);
189 VLOG(1) << "Compare " << old_element->Name()
190 << " to " << new_element->Name()
191 << " --> " << difference
192 << " in " << (base::Time::Now() - start_compare).InSecondsF()
193 << "s";
194 if (difference == 0) {
195 VLOG(1) << "Skip " << new_element->Name()
196 << " - identical to " << old_element->Name();
197 best_difference = 0;
198 best_old_element = NULL;
199 break;
201 if (difference < best_difference) {
202 best_difference = difference;
203 best_old_element = old_element;
207 if (best_old_element) {
208 VLOG(1) << "Matched " << best_old_element->Name()
209 << " to " << new_element->Name()
210 << " --> " << best_difference;
211 TransformationPatchGenerator* generator =
212 MakeGenerator(best_old_element, new_element);
213 if (generator)
214 generators->push_back(generator);
218 VLOG(1) << "done FindGenerators found " << generators->size()
219 << " in " << (base::Time::Now() - start_find_time).InSecondsF()
220 << "s";
222 return C_OK;
225 void FreeGenerators(std::vector<TransformationPatchGenerator*>* generators) {
226 for (size_t i = 0; i < generators->size(); ++i) {
227 delete (*generators)[i];
229 generators->clear();
232 ////////////////////////////////////////////////////////////////////////////////
234 Status GenerateEnsemblePatch(SourceStream* base,
235 SourceStream* update,
236 SinkStream* final_patch) {
237 VLOG(1) << "start GenerateEnsemblePatch";
238 base::Time start_time = base::Time::Now();
240 Region old_region(base->Buffer(), base->Remaining());
241 Region new_region(update->Buffer(), update->Remaining());
242 Ensemble old_ensemble(old_region, "old");
243 Ensemble new_ensemble(new_region, "new");
244 std::vector<TransformationPatchGenerator*> generators;
245 Status generators_status = FindGenerators(&old_ensemble, &new_ensemble,
246 &generators);
247 if (generators_status != C_OK)
248 return generators_status;
250 SinkStreamSet patch_streams;
252 SinkStream* tranformation_descriptions = patch_streams.stream(0);
253 SinkStream* parameter_correction = patch_streams.stream(1);
254 SinkStream* transformed_elements_correction = patch_streams.stream(2);
255 SinkStream* ensemble_correction = patch_streams.stream(3);
257 size_t number_of_transformations = generators.size();
258 if (!tranformation_descriptions->WriteSizeVarint32(number_of_transformations))
259 return C_STREAM_ERROR;
261 for (size_t i = 0; i < number_of_transformations; ++i) {
262 ExecutableType kind = generators[i]->Kind();
263 if (!tranformation_descriptions->WriteVarint32(kind))
264 return C_STREAM_ERROR;
267 for (size_t i = 0; i < number_of_transformations; ++i) {
268 Status status =
269 generators[i]->WriteInitialParameters(tranformation_descriptions);
270 if (status != C_OK)
271 return status;
275 // Generate sub-patch for parameters.
277 SinkStreamSet predicted_parameters_sink;
278 SinkStreamSet corrected_parameters_sink;
280 for (size_t i = 0; i < number_of_transformations; ++i) {
281 SinkStreamSet single_predicted_parameters;
282 Status status;
283 status = generators[i]->PredictTransformParameters(
284 &single_predicted_parameters);
285 if (status != C_OK)
286 return status;
287 if (!predicted_parameters_sink.WriteSet(&single_predicted_parameters))
288 return C_STREAM_ERROR;
290 SinkStreamSet single_corrected_parameters;
291 status = generators[i]->CorrectedTransformParameters(
292 &single_corrected_parameters);
293 if (status != C_OK)
294 return status;
295 if (!corrected_parameters_sink.WriteSet(&single_corrected_parameters))
296 return C_STREAM_ERROR;
299 SinkStream linearized_predicted_parameters;
300 SinkStream linearized_corrected_parameters;
302 if (!predicted_parameters_sink.CopyTo(&linearized_predicted_parameters))
303 return C_STREAM_ERROR;
304 if (!corrected_parameters_sink.CopyTo(&linearized_corrected_parameters))
305 return C_STREAM_ERROR;
307 SourceStream predicted_parameters_source;
308 SourceStream corrected_parameters_source;
309 predicted_parameters_source.Init(linearized_predicted_parameters);
310 corrected_parameters_source.Init(linearized_corrected_parameters);
312 Status delta1_status = GenerateSimpleDelta(&predicted_parameters_source,
313 &corrected_parameters_source,
314 parameter_correction);
315 if (delta1_status != C_OK)
316 return delta1_status;
319 // Generate sub-patch for elements.
321 corrected_parameters_source.Init(linearized_corrected_parameters);
322 SourceStreamSet corrected_parameters_source_set;
323 if (!corrected_parameters_source_set.Init(&corrected_parameters_source))
324 return C_STREAM_ERROR;
326 SinkStreamSet predicted_transformed_elements;
327 SinkStreamSet corrected_transformed_elements;
329 for (size_t i = 0; i < number_of_transformations; ++i) {
330 SourceStreamSet single_parameters;
331 if (!corrected_parameters_source_set.ReadSet(&single_parameters))
332 return C_STREAM_ERROR;
333 SinkStreamSet single_predicted_transformed_element;
334 SinkStreamSet single_corrected_transformed_element;
335 Status status = generators[i]->Transform(
336 &single_parameters,
337 &single_predicted_transformed_element,
338 &single_corrected_transformed_element);
339 if (status != C_OK)
340 return status;
341 if (!single_parameters.Empty())
342 return C_STREAM_NOT_CONSUMED;
343 if (!predicted_transformed_elements.WriteSet(
344 &single_predicted_transformed_element))
345 return C_STREAM_ERROR;
346 if (!corrected_transformed_elements.WriteSet(
347 &single_corrected_transformed_element))
348 return C_STREAM_ERROR;
351 if (!corrected_parameters_source_set.Empty())
352 return C_STREAM_NOT_CONSUMED;
354 SinkStream linearized_predicted_transformed_elements;
355 SinkStream linearized_corrected_transformed_elements;
357 if (!predicted_transformed_elements.CopyTo(
358 &linearized_predicted_transformed_elements))
359 return C_STREAM_ERROR;
360 if (!corrected_transformed_elements.CopyTo(
361 &linearized_corrected_transformed_elements))
362 return C_STREAM_ERROR;
364 SourceStream predicted_transformed_elements_source;
365 SourceStream corrected_transformed_elements_source;
366 predicted_transformed_elements_source
367 .Init(linearized_predicted_transformed_elements);
368 corrected_transformed_elements_source
369 .Init(linearized_corrected_transformed_elements);
371 Status delta2_status =
372 GenerateSimpleDelta(&predicted_transformed_elements_source,
373 &corrected_transformed_elements_source,
374 transformed_elements_correction);
375 if (delta2_status != C_OK)
376 return delta2_status;
378 // Last use, free storage.
379 linearized_predicted_transformed_elements.Retire();
382 // Generate sub-patch for whole enchilada.
384 SinkStream predicted_ensemble;
386 if (!predicted_ensemble.Write(base->Buffer(), base->Remaining()))
387 return C_STREAM_ERROR;
389 SourceStreamSet corrected_transformed_elements_source_set;
390 corrected_transformed_elements_source
391 .Init(linearized_corrected_transformed_elements);
392 if (!corrected_transformed_elements_source_set
393 .Init(&corrected_transformed_elements_source))
394 return C_STREAM_ERROR;
396 for (size_t i = 0; i < number_of_transformations; ++i) {
397 SourceStreamSet single_corrected_transformed_element;
398 if (!corrected_transformed_elements_source_set.ReadSet(
399 &single_corrected_transformed_element))
400 return C_STREAM_ERROR;
401 Status status = generators[i]->Reform(&single_corrected_transformed_element,
402 &predicted_ensemble);
403 if (status != C_OK)
404 return status;
405 if (!single_corrected_transformed_element.Empty())
406 return C_STREAM_NOT_CONSUMED;
409 if (!corrected_transformed_elements_source_set.Empty())
410 return C_STREAM_NOT_CONSUMED;
412 // No more references to this stream's buffer.
413 linearized_corrected_transformed_elements.Retire();
415 FreeGenerators(&generators);
417 size_t final_patch_input_size = predicted_ensemble.Length();
418 SourceStream predicted_ensemble_source;
419 predicted_ensemble_source.Init(predicted_ensemble);
420 Status delta3_status = GenerateSimpleDelta(&predicted_ensemble_source,
421 update,
422 ensemble_correction);
423 if (delta3_status != C_OK)
424 return delta3_status;
427 // Final output stream has a header followed by a StreamSet.
429 if (!final_patch->WriteVarint32(CourgettePatchFile::kMagic) ||
430 !final_patch->WriteVarint32(CourgettePatchFile::kVersion) ||
431 !final_patch->WriteVarint32(CalculateCrc(old_region.start(),
432 old_region.length())) ||
433 !final_patch->WriteVarint32(CalculateCrc(new_region.start(),
434 new_region.length())) ||
435 !final_patch->WriteSizeVarint32(final_patch_input_size) ||
436 !patch_streams.CopyTo(final_patch)) {
437 return C_STREAM_ERROR;
440 VLOG(1) << "done GenerateEnsemblePatch "
441 << (base::Time::Now() - start_time).InSecondsF() << "s";
443 return C_OK;
446 } // namespace