Resize destination bus to the actual number of decoded frames.
[chromium-blink-merge.git] / base / tracked_objects.cc
blob38963c2343275cb6d025454c21de0900f543742f
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/tracked_objects.h"
7 #include <math.h>
8 #include <stdlib.h>
10 #include "base/compiler_specific.h"
11 #include "base/debug/leak_annotations.h"
12 #include "base/format_macros.h"
13 #include "base/memory/scoped_ptr.h"
14 #include "base/port.h"
15 #include "base/process/process_handle.h"
16 #include "base/profiler/alternate_timer.h"
17 #include "base/strings/stringprintf.h"
18 #include "base/third_party/valgrind/memcheck.h"
19 #include "base/threading/thread_restrictions.h"
21 using base::TimeDelta;
23 namespace tracked_objects {
25 namespace {
26 // Flag to compile out almost all of the task tracking code.
27 const bool kTrackAllTaskObjects = true;
29 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
30 // negligible, enable by default.
31 // Flag to compile out parent-child link recording.
32 const bool kTrackParentChildLinks = false;
34 // When ThreadData is first initialized, should we start in an ACTIVE state to
35 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
36 // that we only record after parsing the command line flag --enable-tracking.
37 // Note that the flag may force either state, so this really controls only the
38 // period of time up until that flag is parsed. If there is no flag seen, then
39 // this state may prevail for much or all of the process lifetime.
40 const ThreadData::Status kInitialStartupState =
41 ThreadData::PROFILING_CHILDREN_ACTIVE;
43 // Control whether an alternate time source (Now() function) is supported by
44 // the ThreadData class. This compile time flag should be set to true if we
45 // want other modules (such as a memory allocator, or a thread-specific CPU time
46 // clock) to be able to provide a thread-specific Now() function. Without this
47 // compile-time flag, the code will only support the wall-clock time. This flag
48 // can be flipped to efficiently disable this path (if there is a performance
49 // problem with its presence).
50 static const bool kAllowAlternateTimeSourceHandling = true;
52 } // namespace
54 //------------------------------------------------------------------------------
55 // DeathData tallies durations when a death takes place.
57 DeathData::DeathData() {
58 Clear();
61 DeathData::DeathData(int count) {
62 Clear();
63 count_ = count;
66 // TODO(jar): I need to see if this macro to optimize branching is worth using.
68 // This macro has no branching, so it is surely fast, and is equivalent to:
69 // if (assign_it)
70 // target = source;
71 // We use a macro rather than a template to force this to inline.
72 // Related code for calculating max is discussed on the web.
73 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
74 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
76 void DeathData::RecordDeath(const int32 queue_duration,
77 const int32 run_duration,
78 int32 random_number) {
79 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
80 if (count_ < INT_MAX)
81 ++count_;
82 queue_duration_sum_ += queue_duration;
83 run_duration_sum_ += run_duration;
85 if (queue_duration_max_ < queue_duration)
86 queue_duration_max_ = queue_duration;
87 if (run_duration_max_ < run_duration)
88 run_duration_max_ = run_duration;
90 // Take a uniformly distributed sample over all durations ever supplied.
91 // The probability that we (instead) use this new sample is 1/count_. This
92 // results in a completely uniform selection of the sample (at least when we
93 // don't clamp count_... but that should be inconsequentially likely).
94 // We ignore the fact that we correlated our selection of a sample to the run
95 // and queue times (i.e., we used them to generate random_number).
96 CHECK_GT(count_, 0);
97 if (0 == (random_number % count_)) {
98 queue_duration_sample_ = queue_duration;
99 run_duration_sample_ = run_duration;
103 int DeathData::count() const { return count_; }
105 int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
107 int32 DeathData::run_duration_max() const { return run_duration_max_; }
109 int32 DeathData::run_duration_sample() const {
110 return run_duration_sample_;
113 int32 DeathData::queue_duration_sum() const {
114 return queue_duration_sum_;
117 int32 DeathData::queue_duration_max() const {
118 return queue_duration_max_;
121 int32 DeathData::queue_duration_sample() const {
122 return queue_duration_sample_;
125 void DeathData::ResetMax() {
126 run_duration_max_ = 0;
127 queue_duration_max_ = 0;
130 void DeathData::Clear() {
131 count_ = 0;
132 run_duration_sum_ = 0;
133 run_duration_max_ = 0;
134 run_duration_sample_ = 0;
135 queue_duration_sum_ = 0;
136 queue_duration_max_ = 0;
137 queue_duration_sample_ = 0;
140 //------------------------------------------------------------------------------
141 DeathDataSnapshot::DeathDataSnapshot()
142 : count(-1),
143 run_duration_sum(-1),
144 run_duration_max(-1),
145 run_duration_sample(-1),
146 queue_duration_sum(-1),
147 queue_duration_max(-1),
148 queue_duration_sample(-1) {
151 DeathDataSnapshot::DeathDataSnapshot(
152 const tracked_objects::DeathData& death_data)
153 : count(death_data.count()),
154 run_duration_sum(death_data.run_duration_sum()),
155 run_duration_max(death_data.run_duration_max()),
156 run_duration_sample(death_data.run_duration_sample()),
157 queue_duration_sum(death_data.queue_duration_sum()),
158 queue_duration_max(death_data.queue_duration_max()),
159 queue_duration_sample(death_data.queue_duration_sample()) {
162 DeathDataSnapshot::~DeathDataSnapshot() {
165 //------------------------------------------------------------------------------
166 BirthOnThread::BirthOnThread(const Location& location,
167 const ThreadData& current)
168 : location_(location),
169 birth_thread_(&current) {
172 //------------------------------------------------------------------------------
173 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
176 BirthOnThreadSnapshot::BirthOnThreadSnapshot(
177 const tracked_objects::BirthOnThread& birth)
178 : location(birth.location()),
179 thread_name(birth.birth_thread()->thread_name()) {
182 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
185 //------------------------------------------------------------------------------
186 Births::Births(const Location& location, const ThreadData& current)
187 : BirthOnThread(location, current),
188 birth_count_(1) { }
190 int Births::birth_count() const { return birth_count_; }
192 void Births::RecordBirth() { ++birth_count_; }
194 void Births::ForgetBirth() { --birth_count_; }
196 void Births::Clear() { birth_count_ = 0; }
198 //------------------------------------------------------------------------------
199 // ThreadData maintains the central data for all births and deaths on a single
200 // thread.
202 // TODO(jar): We should pull all these static vars together, into a struct, and
203 // optimize layout so that we benefit from locality of reference during accesses
204 // to them.
206 // static
207 NowFunction* ThreadData::now_function_ = NULL;
209 // A TLS slot which points to the ThreadData instance for the current thread. We
210 // do a fake initialization here (zeroing out data), and then the real in-place
211 // construction happens when we call tls_index_.Initialize().
212 // static
213 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
215 // static
216 int ThreadData::worker_thread_data_creation_count_ = 0;
218 // static
219 int ThreadData::cleanup_count_ = 0;
221 // static
222 int ThreadData::incarnation_counter_ = 0;
224 // static
225 ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
227 // static
228 ThreadData* ThreadData::first_retired_worker_ = NULL;
230 // static
231 base::LazyInstance<base::Lock>::Leaky
232 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
234 // static
235 ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
237 ThreadData::ThreadData(const std::string& suggested_name)
238 : next_(NULL),
239 next_retired_worker_(NULL),
240 worker_thread_number_(0),
241 incarnation_count_for_pool_(-1) {
242 DCHECK_GE(suggested_name.size(), 0u);
243 thread_name_ = suggested_name;
244 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
247 ThreadData::ThreadData(int thread_number)
248 : next_(NULL),
249 next_retired_worker_(NULL),
250 worker_thread_number_(thread_number),
251 incarnation_count_for_pool_(-1) {
252 CHECK_GT(thread_number, 0);
253 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
254 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
257 ThreadData::~ThreadData() {}
259 void ThreadData::PushToHeadOfList() {
260 // Toss in a hint of randomness (atop the uniniitalized value).
261 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
262 sizeof(random_number_));
263 MSAN_UNPOISON(&random_number_, sizeof(random_number_));
264 random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0));
265 random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
267 DCHECK(!next_);
268 base::AutoLock lock(*list_lock_.Pointer());
269 incarnation_count_for_pool_ = incarnation_counter_;
270 next_ = all_thread_data_list_head_;
271 all_thread_data_list_head_ = this;
274 // static
275 ThreadData* ThreadData::first() {
276 base::AutoLock lock(*list_lock_.Pointer());
277 return all_thread_data_list_head_;
280 ThreadData* ThreadData::next() const { return next_; }
282 // static
283 void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
284 if (!Initialize()) // Always initialize if needed.
285 return;
286 ThreadData* current_thread_data =
287 reinterpret_cast<ThreadData*>(tls_index_.Get());
288 if (current_thread_data)
289 return; // Browser tests instigate this.
290 current_thread_data = new ThreadData(suggested_name);
291 tls_index_.Set(current_thread_data);
294 // static
295 ThreadData* ThreadData::Get() {
296 if (!tls_index_.initialized())
297 return NULL; // For unittests only.
298 ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
299 if (registered)
300 return registered;
302 // We must be a worker thread, since we didn't pre-register.
303 ThreadData* worker_thread_data = NULL;
304 int worker_thread_number = 0;
306 base::AutoLock lock(*list_lock_.Pointer());
307 if (first_retired_worker_) {
308 worker_thread_data = first_retired_worker_;
309 first_retired_worker_ = first_retired_worker_->next_retired_worker_;
310 worker_thread_data->next_retired_worker_ = NULL;
311 } else {
312 worker_thread_number = ++worker_thread_data_creation_count_;
316 // If we can't find a previously used instance, then we have to create one.
317 if (!worker_thread_data) {
318 DCHECK_GT(worker_thread_number, 0);
319 worker_thread_data = new ThreadData(worker_thread_number);
321 DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
323 tls_index_.Set(worker_thread_data);
324 return worker_thread_data;
327 // static
328 void ThreadData::OnThreadTermination(void* thread_data) {
329 DCHECK(thread_data); // TLS should *never* call us with a NULL.
330 // We must NOT do any allocations during this callback. There is a chance
331 // that the allocator is no longer active on this thread.
332 if (!kTrackAllTaskObjects)
333 return; // Not compiled in.
334 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
337 void ThreadData::OnThreadTerminationCleanup() {
338 // The list_lock_ was created when we registered the callback, so it won't be
339 // allocated here despite the lazy reference.
340 base::AutoLock lock(*list_lock_.Pointer());
341 if (incarnation_counter_ != incarnation_count_for_pool_)
342 return; // ThreadData was constructed in an earlier unit test.
343 ++cleanup_count_;
344 // Only worker threads need to be retired and reused.
345 if (!worker_thread_number_) {
346 return;
348 // We must NOT do any allocations during this callback.
349 // Using the simple linked lists avoids all allocations.
350 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
351 this->next_retired_worker_ = first_retired_worker_;
352 first_retired_worker_ = this;
355 // static
356 void ThreadData::Snapshot(bool reset_max, ProcessDataSnapshot* process_data) {
357 // Add births that have run to completion to |collected_data|.
358 // |birth_counts| tracks the total number of births recorded at each location
359 // for which we have not seen a death count.
360 BirthCountMap birth_counts;
361 ThreadData::SnapshotAllExecutedTasks(reset_max, process_data, &birth_counts);
363 // Add births that are still active -- i.e. objects that have tallied a birth,
364 // but have not yet tallied a matching death, and hence must be either
365 // running, queued up, or being held in limbo for future posting.
366 for (BirthCountMap::const_iterator it = birth_counts.begin();
367 it != birth_counts.end(); ++it) {
368 if (it->second > 0) {
369 process_data->tasks.push_back(
370 TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive"));
375 Births* ThreadData::TallyABirth(const Location& location) {
376 BirthMap::iterator it = birth_map_.find(location);
377 Births* child;
378 if (it != birth_map_.end()) {
379 child = it->second;
380 child->RecordBirth();
381 } else {
382 child = new Births(location, *this); // Leak this.
383 // Lock since the map may get relocated now, and other threads sometimes
384 // snapshot it (but they lock before copying it).
385 base::AutoLock lock(map_lock_);
386 birth_map_[location] = child;
389 if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
390 !parent_stack_.empty()) {
391 const Births* parent = parent_stack_.top();
392 ParentChildPair pair(parent, child);
393 if (parent_child_set_.find(pair) == parent_child_set_.end()) {
394 // Lock since the map may get relocated now, and other threads sometimes
395 // snapshot it (but they lock before copying it).
396 base::AutoLock lock(map_lock_);
397 parent_child_set_.insert(pair);
401 return child;
404 void ThreadData::TallyADeath(const Births& birth,
405 int32 queue_duration,
406 int32 run_duration) {
407 // Stir in some randomness, plus add constant in case durations are zero.
408 const int32 kSomePrimeNumber = 2147483647;
409 random_number_ += queue_duration + run_duration + kSomePrimeNumber;
410 // An address is going to have some randomness to it as well ;-).
411 random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0));
413 // We don't have queue durations without OS timer. OS timer is automatically
414 // used for task-post-timing, so the use of an alternate timer implies all
415 // queue times are invalid.
416 if (kAllowAlternateTimeSourceHandling && now_function_)
417 queue_duration = 0;
419 DeathMap::iterator it = death_map_.find(&birth);
420 DeathData* death_data;
421 if (it != death_map_.end()) {
422 death_data = &it->second;
423 } else {
424 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
425 death_data = &death_map_[&birth];
426 } // Release lock ASAP.
427 death_data->RecordDeath(queue_duration, run_duration, random_number_);
429 if (!kTrackParentChildLinks)
430 return;
431 if (!parent_stack_.empty()) { // We might get turned off.
432 DCHECK_EQ(parent_stack_.top(), &birth);
433 parent_stack_.pop();
437 // static
438 Births* ThreadData::TallyABirthIfActive(const Location& location) {
439 if (!kTrackAllTaskObjects)
440 return NULL; // Not compiled in.
442 if (!TrackingStatus())
443 return NULL;
444 ThreadData* current_thread_data = Get();
445 if (!current_thread_data)
446 return NULL;
447 return current_thread_data->TallyABirth(location);
450 // static
451 void ThreadData::TallyRunOnNamedThreadIfTracking(
452 const base::TrackingInfo& completed_task,
453 const TrackedTime& start_of_run,
454 const TrackedTime& end_of_run) {
455 if (!kTrackAllTaskObjects)
456 return; // Not compiled in.
458 // Even if we have been DEACTIVATED, we will process any pending births so
459 // that our data structures (which counted the outstanding births) remain
460 // consistent.
461 const Births* birth = completed_task.birth_tally;
462 if (!birth)
463 return;
464 ThreadData* current_thread_data = Get();
465 if (!current_thread_data)
466 return;
468 // Watch out for a race where status_ is changing, and hence one or both
469 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
470 // get a time value since we "weren't tracking" and we were trying to be
471 // efficient by not calling for a genuine time value. For simplicity, we'll
472 // use a default zero duration when we can't calculate a true value.
473 int32 queue_duration = 0;
474 int32 run_duration = 0;
475 if (!start_of_run.is_null()) {
476 queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
477 .InMilliseconds();
478 if (!end_of_run.is_null())
479 run_duration = (end_of_run - start_of_run).InMilliseconds();
481 current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
484 // static
485 void ThreadData::TallyRunOnWorkerThreadIfTracking(
486 const Births* birth,
487 const TrackedTime& time_posted,
488 const TrackedTime& start_of_run,
489 const TrackedTime& end_of_run) {
490 if (!kTrackAllTaskObjects)
491 return; // Not compiled in.
493 // Even if we have been DEACTIVATED, we will process any pending births so
494 // that our data structures (which counted the outstanding births) remain
495 // consistent.
496 if (!birth)
497 return;
499 // TODO(jar): Support the option to coalesce all worker-thread activity under
500 // one ThreadData instance that uses locks to protect *all* access. This will
501 // reduce memory (making it provably bounded), but run incrementally slower
502 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
503 // that the locks on TallyADeath will be *after* the worker thread has run,
504 // and hence nothing will be waiting for the completion (... besides some
505 // other thread that might like to run). Also, the worker threads tasks are
506 // generally longer, and hence the cost of the lock may perchance be amortized
507 // over the long task's lifetime.
508 ThreadData* current_thread_data = Get();
509 if (!current_thread_data)
510 return;
512 int32 queue_duration = 0;
513 int32 run_duration = 0;
514 if (!start_of_run.is_null()) {
515 queue_duration = (start_of_run - time_posted).InMilliseconds();
516 if (!end_of_run.is_null())
517 run_duration = (end_of_run - start_of_run).InMilliseconds();
519 current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
522 // static
523 void ThreadData::TallyRunInAScopedRegionIfTracking(
524 const Births* birth,
525 const TrackedTime& start_of_run,
526 const TrackedTime& end_of_run) {
527 if (!kTrackAllTaskObjects)
528 return; // Not compiled in.
530 // Even if we have been DEACTIVATED, we will process any pending births so
531 // that our data structures (which counted the outstanding births) remain
532 // consistent.
533 if (!birth)
534 return;
536 ThreadData* current_thread_data = Get();
537 if (!current_thread_data)
538 return;
540 int32 queue_duration = 0;
541 int32 run_duration = 0;
542 if (!start_of_run.is_null() && !end_of_run.is_null())
543 run_duration = (end_of_run - start_of_run).InMilliseconds();
544 current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
547 // static
548 void ThreadData::SnapshotAllExecutedTasks(bool reset_max,
549 ProcessDataSnapshot* process_data,
550 BirthCountMap* birth_counts) {
551 if (!kTrackAllTaskObjects)
552 return; // Not compiled in.
554 // Get an unchanging copy of a ThreadData list.
555 ThreadData* my_list = ThreadData::first();
557 // Gather data serially.
558 // This hackish approach *can* get some slighly corrupt tallies, as we are
559 // grabbing values without the protection of a lock, but it has the advantage
560 // of working even with threads that don't have message loops. If a user
561 // sees any strangeness, they can always just run their stats gathering a
562 // second time.
563 for (ThreadData* thread_data = my_list;
564 thread_data;
565 thread_data = thread_data->next()) {
566 thread_data->SnapshotExecutedTasks(reset_max, process_data, birth_counts);
570 void ThreadData::SnapshotExecutedTasks(bool reset_max,
571 ProcessDataSnapshot* process_data,
572 BirthCountMap* birth_counts) {
573 // Get copy of data, so that the data will not change during the iterations
574 // and processing.
575 ThreadData::BirthMap birth_map;
576 ThreadData::DeathMap death_map;
577 ThreadData::ParentChildSet parent_child_set;
578 SnapshotMaps(reset_max, &birth_map, &death_map, &parent_child_set);
580 for (ThreadData::DeathMap::const_iterator it = death_map.begin();
581 it != death_map.end(); ++it) {
582 process_data->tasks.push_back(
583 TaskSnapshot(*it->first, it->second, thread_name()));
584 (*birth_counts)[it->first] -= it->first->birth_count();
587 for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
588 it != birth_map.end(); ++it) {
589 (*birth_counts)[it->second] += it->second->birth_count();
592 if (!kTrackParentChildLinks)
593 return;
595 for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin();
596 it != parent_child_set.end(); ++it) {
597 process_data->descendants.push_back(ParentChildPairSnapshot(*it));
601 // This may be called from another thread.
602 void ThreadData::SnapshotMaps(bool reset_max,
603 BirthMap* birth_map,
604 DeathMap* death_map,
605 ParentChildSet* parent_child_set) {
606 base::AutoLock lock(map_lock_);
607 for (BirthMap::const_iterator it = birth_map_.begin();
608 it != birth_map_.end(); ++it)
609 (*birth_map)[it->first] = it->second;
610 for (DeathMap::iterator it = death_map_.begin();
611 it != death_map_.end(); ++it) {
612 (*death_map)[it->first] = it->second;
613 if (reset_max)
614 it->second.ResetMax();
617 if (!kTrackParentChildLinks)
618 return;
620 for (ParentChildSet::iterator it = parent_child_set_.begin();
621 it != parent_child_set_.end(); ++it)
622 parent_child_set->insert(*it);
625 // static
626 void ThreadData::ResetAllThreadData() {
627 ThreadData* my_list = first();
629 for (ThreadData* thread_data = my_list;
630 thread_data;
631 thread_data = thread_data->next())
632 thread_data->Reset();
635 void ThreadData::Reset() {
636 base::AutoLock lock(map_lock_);
637 for (DeathMap::iterator it = death_map_.begin();
638 it != death_map_.end(); ++it)
639 it->second.Clear();
640 for (BirthMap::iterator it = birth_map_.begin();
641 it != birth_map_.end(); ++it)
642 it->second->Clear();
645 static void OptionallyInitializeAlternateTimer() {
646 NowFunction* alternate_time_source = GetAlternateTimeSource();
647 if (alternate_time_source)
648 ThreadData::SetAlternateTimeSource(alternate_time_source);
651 bool ThreadData::Initialize() {
652 if (!kTrackAllTaskObjects)
653 return false; // Not compiled in.
654 if (status_ >= DEACTIVATED)
655 return true; // Someone else did the initialization.
656 // Due to racy lazy initialization in tests, we'll need to recheck status_
657 // after we acquire the lock.
659 // Ensure that we don't double initialize tls. We are called when single
660 // threaded in the product, but some tests may be racy and lazy about our
661 // initialization.
662 base::AutoLock lock(*list_lock_.Pointer());
663 if (status_ >= DEACTIVATED)
664 return true; // Someone raced in here and beat us.
666 // Put an alternate timer in place if the environment calls for it, such as
667 // for tracking TCMalloc allocations. This insertion is idempotent, so we
668 // don't mind if there is a race, and we'd prefer not to be in a lock while
669 // doing this work.
670 if (kAllowAlternateTimeSourceHandling)
671 OptionallyInitializeAlternateTimer();
673 // Perform the "real" TLS initialization now, and leave it intact through
674 // process termination.
675 if (!tls_index_.initialized()) { // Testing may have initialized this.
676 DCHECK_EQ(status_, UNINITIALIZED);
677 tls_index_.Initialize(&ThreadData::OnThreadTermination);
678 if (!tls_index_.initialized())
679 return false;
680 } else {
681 // TLS was initialzed for us earlier.
682 DCHECK_EQ(status_, DORMANT_DURING_TESTS);
685 // Incarnation counter is only significant to testing, as it otherwise will
686 // never again change in this process.
687 ++incarnation_counter_;
689 // The lock is not critical for setting status_, but it doesn't hurt. It also
690 // ensures that if we have a racy initialization, that we'll bail as soon as
691 // we get the lock earlier in this method.
692 status_ = kInitialStartupState;
693 if (!kTrackParentChildLinks &&
694 kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
695 status_ = PROFILING_ACTIVE;
696 DCHECK(status_ != UNINITIALIZED);
697 return true;
700 // static
701 bool ThreadData::InitializeAndSetTrackingStatus(Status status) {
702 DCHECK_GE(status, DEACTIVATED);
703 DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE);
705 if (!Initialize()) // No-op if already initialized.
706 return false; // Not compiled in.
708 if (!kTrackParentChildLinks && status > DEACTIVATED)
709 status = PROFILING_ACTIVE;
710 status_ = status;
711 return true;
714 // static
715 ThreadData::Status ThreadData::status() {
716 return status_;
719 // static
720 bool ThreadData::TrackingStatus() {
721 return status_ > DEACTIVATED;
724 // static
725 bool ThreadData::TrackingParentChildStatus() {
726 return status_ >= PROFILING_CHILDREN_ACTIVE;
729 // static
730 TrackedTime ThreadData::NowForStartOfRun(const Births* parent) {
731 if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
732 ThreadData* current_thread_data = Get();
733 if (current_thread_data)
734 current_thread_data->parent_stack_.push(parent);
736 return Now();
739 // static
740 TrackedTime ThreadData::NowForEndOfRun() {
741 return Now();
744 // static
745 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
746 DCHECK(now_function);
747 if (kAllowAlternateTimeSourceHandling)
748 now_function_ = now_function;
751 // static
752 TrackedTime ThreadData::Now() {
753 if (kAllowAlternateTimeSourceHandling && now_function_)
754 return TrackedTime::FromMilliseconds((*now_function_)());
755 if (kTrackAllTaskObjects && TrackingStatus())
756 return TrackedTime::Now();
757 return TrackedTime(); // Super fast when disabled, or not compiled.
760 // static
761 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
762 base::AutoLock lock(*list_lock_.Pointer());
763 if (worker_thread_data_creation_count_ == 0)
764 return; // We haven't really run much, and couldn't have leaked.
765 // Verify that we've at least shutdown/cleanup the major namesd threads. The
766 // caller should tell us how many thread shutdowns should have taken place by
767 // now.
768 return; // TODO(jar): until this is working on XP, don't run the real test.
769 CHECK_GT(cleanup_count_, major_threads_shutdown_count);
772 // static
773 void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
774 // This is only called from test code, where we need to cleanup so that
775 // additional tests can be run.
776 // We must be single threaded... but be careful anyway.
777 if (!InitializeAndSetTrackingStatus(DEACTIVATED))
778 return;
779 ThreadData* thread_data_list;
781 base::AutoLock lock(*list_lock_.Pointer());
782 thread_data_list = all_thread_data_list_head_;
783 all_thread_data_list_head_ = NULL;
784 ++incarnation_counter_;
785 // To be clean, break apart the retired worker list (though we leak them).
786 while (first_retired_worker_) {
787 ThreadData* worker = first_retired_worker_;
788 CHECK_GT(worker->worker_thread_number_, 0);
789 first_retired_worker_ = worker->next_retired_worker_;
790 worker->next_retired_worker_ = NULL;
794 // Put most global static back in pristine shape.
795 worker_thread_data_creation_count_ = 0;
796 cleanup_count_ = 0;
797 tls_index_.Set(NULL);
798 status_ = DORMANT_DURING_TESTS; // Almost UNINITIALIZED.
800 // To avoid any chance of racing in unit tests, which is the only place we
801 // call this function, we may sometimes leak all the data structures we
802 // recovered, as they may still be in use on threads from prior tests!
803 if (leak) {
804 ThreadData* thread_data = thread_data_list;
805 while (thread_data) {
806 ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
807 thread_data = thread_data->next();
809 return;
812 // When we want to cleanup (on a single thread), here is what we do.
814 // Do actual recursive delete in all ThreadData instances.
815 while (thread_data_list) {
816 ThreadData* next_thread_data = thread_data_list;
817 thread_data_list = thread_data_list->next();
819 for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
820 next_thread_data->birth_map_.end() != it; ++it)
821 delete it->second; // Delete the Birth Records.
822 delete next_thread_data; // Includes all Death Records.
826 //------------------------------------------------------------------------------
827 TaskSnapshot::TaskSnapshot() {
830 TaskSnapshot::TaskSnapshot(const BirthOnThread& birth,
831 const DeathData& death_data,
832 const std::string& death_thread_name)
833 : birth(birth),
834 death_data(death_data),
835 death_thread_name(death_thread_name) {
838 TaskSnapshot::~TaskSnapshot() {
841 //------------------------------------------------------------------------------
842 // ParentChildPairSnapshot
844 ParentChildPairSnapshot::ParentChildPairSnapshot() {
847 ParentChildPairSnapshot::ParentChildPairSnapshot(
848 const ThreadData::ParentChildPair& parent_child)
849 : parent(*parent_child.first),
850 child(*parent_child.second) {
853 ParentChildPairSnapshot::~ParentChildPairSnapshot() {
856 //------------------------------------------------------------------------------
857 // ProcessDataSnapshot
859 ProcessDataSnapshot::ProcessDataSnapshot()
860 #if !defined(OS_NACL)
861 : process_id(base::GetCurrentProcId()) {
862 #else
863 : process_id(0) {
864 #endif
867 ProcessDataSnapshot::~ProcessDataSnapshot() {
870 } // namespace tracked_objects