Revert of Remove the last piece of deprecated synchronous IO code. (patchset #5 of...
[chromium-blink-merge.git] / media / audio / win / audio_low_latency_input_win.cc
blobd29d1b42c6a433e9aeee2a6e9ea787650918b723
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/audio/win/audio_low_latency_input_win.h"
7 #include "base/logging.h"
8 #include "base/memory/scoped_ptr.h"
9 #include "base/strings/utf_string_conversions.h"
10 #include "media/audio/win/audio_manager_win.h"
11 #include "media/audio/win/avrt_wrapper_win.h"
12 #include "media/audio/win/core_audio_util_win.h"
13 #include "media/base/audio_bus.h"
15 using base::win::ScopedComPtr;
16 using base::win::ScopedCOMInitializer;
18 namespace media {
19 namespace {
21 // Returns true if |device| represents the default communication capture device.
22 bool IsDefaultCommunicationDevice(IMMDeviceEnumerator* enumerator,
23 IMMDevice* device) {
24 ScopedComPtr<IMMDevice> communications;
25 if (FAILED(enumerator->GetDefaultAudioEndpoint(eCapture, eCommunications,
26 communications.Receive()))) {
27 return false;
30 base::win::ScopedCoMem<WCHAR> communications_id, device_id;
31 device->GetId(&device_id);
32 communications->GetId(&communications_id);
33 return lstrcmpW(communications_id, device_id) == 0;
36 } // namespace
38 WASAPIAudioInputStream::WASAPIAudioInputStream(AudioManagerWin* manager,
39 const AudioParameters& params,
40 const std::string& device_id)
41 : manager_(manager),
42 capture_thread_(NULL),
43 opened_(false),
44 started_(false),
45 frame_size_(0),
46 packet_size_frames_(0),
47 packet_size_bytes_(0),
48 endpoint_buffer_size_frames_(0),
49 effects_(params.effects()),
50 device_id_(device_id),
51 perf_count_to_100ns_units_(0.0),
52 ms_to_frame_count_(0.0),
53 sink_(NULL),
54 audio_bus_(media::AudioBus::Create(params)) {
55 DCHECK(manager_);
57 // Load the Avrt DLL if not already loaded. Required to support MMCSS.
58 bool avrt_init = avrt::Initialize();
59 DCHECK(avrt_init) << "Failed to load the Avrt.dll";
61 // Set up the desired capture format specified by the client.
62 format_.nSamplesPerSec = params.sample_rate();
63 format_.wFormatTag = WAVE_FORMAT_PCM;
64 format_.wBitsPerSample = params.bits_per_sample();
65 format_.nChannels = params.channels();
66 format_.nBlockAlign = (format_.wBitsPerSample / 8) * format_.nChannels;
67 format_.nAvgBytesPerSec = format_.nSamplesPerSec * format_.nBlockAlign;
68 format_.cbSize = 0;
70 // Size in bytes of each audio frame.
71 frame_size_ = format_.nBlockAlign;
72 // Store size of audio packets which we expect to get from the audio
73 // endpoint device in each capture event.
74 packet_size_frames_ = params.GetBytesPerBuffer() / format_.nBlockAlign;
75 packet_size_bytes_ = params.GetBytesPerBuffer();
76 DVLOG(1) << "Number of bytes per audio frame : " << frame_size_;
77 DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_;
79 // All events are auto-reset events and non-signaled initially.
81 // Create the event which the audio engine will signal each time
82 // a buffer becomes ready to be processed by the client.
83 audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
84 DCHECK(audio_samples_ready_event_.IsValid());
86 // Create the event which will be set in Stop() when capturing shall stop.
87 stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
88 DCHECK(stop_capture_event_.IsValid());
90 ms_to_frame_count_ = static_cast<double>(params.sample_rate()) / 1000.0;
92 LARGE_INTEGER performance_frequency;
93 if (QueryPerformanceFrequency(&performance_frequency)) {
94 perf_count_to_100ns_units_ =
95 (10000000.0 / static_cast<double>(performance_frequency.QuadPart));
96 } else {
97 DLOG(ERROR) << "High-resolution performance counters are not supported.";
101 WASAPIAudioInputStream::~WASAPIAudioInputStream() {
102 DCHECK(CalledOnValidThread());
105 bool WASAPIAudioInputStream::Open() {
106 DCHECK(CalledOnValidThread());
107 // Verify that we are not already opened.
108 if (opened_)
109 return false;
111 // Obtain a reference to the IMMDevice interface of the capturing
112 // device with the specified unique identifier or role which was
113 // set at construction.
114 HRESULT hr = SetCaptureDevice();
115 if (FAILED(hr))
116 return false;
118 // Obtain an IAudioClient interface which enables us to create and initialize
119 // an audio stream between an audio application and the audio engine.
120 hr = ActivateCaptureDevice();
121 if (FAILED(hr))
122 return false;
124 // Retrieve the stream format which the audio engine uses for its internal
125 // processing/mixing of shared-mode streams. This function call is for
126 // diagnostic purposes only and only in debug mode.
127 #ifndef NDEBUG
128 hr = GetAudioEngineStreamFormat();
129 #endif
131 // Verify that the selected audio endpoint supports the specified format
132 // set during construction.
133 if (!DesiredFormatIsSupported())
134 return false;
136 // Initialize the audio stream between the client and the device using
137 // shared mode and a lowest possible glitch-free latency.
138 hr = InitializeAudioEngine();
140 opened_ = SUCCEEDED(hr);
141 return opened_;
144 void WASAPIAudioInputStream::Start(AudioInputCallback* callback) {
145 DCHECK(CalledOnValidThread());
146 DCHECK(callback);
147 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
148 if (!opened_)
149 return;
151 if (started_)
152 return;
154 DCHECK(!sink_);
155 sink_ = callback;
157 // Starts periodic AGC microphone measurements if the AGC has been enabled
158 // using SetAutomaticGainControl().
159 StartAgc();
161 // Create and start the thread that will drive the capturing by waiting for
162 // capture events.
163 capture_thread_ =
164 new base::DelegateSimpleThread(this, "wasapi_capture_thread");
165 capture_thread_->Start();
167 // Start streaming data between the endpoint buffer and the audio engine.
168 HRESULT hr = audio_client_->Start();
169 DLOG_IF(ERROR, FAILED(hr)) << "Failed to start input streaming.";
171 if (SUCCEEDED(hr) && audio_render_client_for_loopback_)
172 hr = audio_render_client_for_loopback_->Start();
174 started_ = SUCCEEDED(hr);
177 void WASAPIAudioInputStream::Stop() {
178 DCHECK(CalledOnValidThread());
179 DVLOG(1) << "WASAPIAudioInputStream::Stop()";
180 if (!started_)
181 return;
183 // Stops periodic AGC microphone measurements.
184 StopAgc();
186 // Shut down the capture thread.
187 if (stop_capture_event_.IsValid()) {
188 SetEvent(stop_capture_event_.Get());
191 // Stop the input audio streaming.
192 HRESULT hr = audio_client_->Stop();
193 if (FAILED(hr)) {
194 LOG(ERROR) << "Failed to stop input streaming.";
197 // Wait until the thread completes and perform cleanup.
198 if (capture_thread_) {
199 SetEvent(stop_capture_event_.Get());
200 capture_thread_->Join();
201 capture_thread_ = NULL;
204 started_ = false;
205 sink_ = NULL;
208 void WASAPIAudioInputStream::Close() {
209 DVLOG(1) << "WASAPIAudioInputStream::Close()";
210 // It is valid to call Close() before calling open or Start().
211 // It is also valid to call Close() after Start() has been called.
212 Stop();
214 // Inform the audio manager that we have been closed. This will cause our
215 // destruction.
216 manager_->ReleaseInputStream(this);
219 double WASAPIAudioInputStream::GetMaxVolume() {
220 // Verify that Open() has been called succesfully, to ensure that an audio
221 // session exists and that an ISimpleAudioVolume interface has been created.
222 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
223 if (!opened_)
224 return 0.0;
226 // The effective volume value is always in the range 0.0 to 1.0, hence
227 // we can return a fixed value (=1.0) here.
228 return 1.0;
231 void WASAPIAudioInputStream::SetVolume(double volume) {
232 DVLOG(1) << "SetVolume(volume=" << volume << ")";
233 DCHECK(CalledOnValidThread());
234 DCHECK_GE(volume, 0.0);
235 DCHECK_LE(volume, 1.0);
237 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
238 if (!opened_)
239 return;
241 // Set a new master volume level. Valid volume levels are in the range
242 // 0.0 to 1.0. Ignore volume-change events.
243 HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume),
244 NULL);
245 DLOG_IF(WARNING, FAILED(hr)) << "Failed to set new input master volume.";
247 // Update the AGC volume level based on the last setting above. Note that,
248 // the volume-level resolution is not infinite and it is therefore not
249 // possible to assume that the volume provided as input parameter can be
250 // used directly. Instead, a new query to the audio hardware is required.
251 // This method does nothing if AGC is disabled.
252 UpdateAgcVolume();
255 double WASAPIAudioInputStream::GetVolume() {
256 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
257 if (!opened_)
258 return 0.0;
260 // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
261 float level = 0.0f;
262 HRESULT hr = simple_audio_volume_->GetMasterVolume(&level);
263 DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume.";
265 return static_cast<double>(level);
268 // static
269 AudioParameters WASAPIAudioInputStream::GetInputStreamParameters(
270 const std::string& device_id) {
271 int sample_rate = 48000;
272 ChannelLayout channel_layout = CHANNEL_LAYOUT_STEREO;
274 base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
275 int effects = AudioParameters::NO_EFFECTS;
276 if (SUCCEEDED(GetMixFormat(device_id, &audio_engine_mix_format, &effects))) {
277 sample_rate = static_cast<int>(audio_engine_mix_format->nSamplesPerSec);
278 channel_layout = audio_engine_mix_format->nChannels == 1 ?
279 CHANNEL_LAYOUT_MONO : CHANNEL_LAYOUT_STEREO;
282 // Use 10ms frame size as default.
283 int frames_per_buffer = sample_rate / 100;
284 return AudioParameters(
285 AudioParameters::AUDIO_PCM_LOW_LATENCY, channel_layout, 0, sample_rate,
286 16, frames_per_buffer, effects);
289 // static
290 HRESULT WASAPIAudioInputStream::GetMixFormat(const std::string& device_id,
291 WAVEFORMATEX** device_format,
292 int* effects) {
293 DCHECK(effects);
295 // It is assumed that this static method is called from a COM thread, i.e.,
296 // CoInitializeEx() is not called here to avoid STA/MTA conflicts.
297 ScopedComPtr<IMMDeviceEnumerator> enumerator;
298 HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator), NULL,
299 CLSCTX_INPROC_SERVER);
300 if (FAILED(hr))
301 return hr;
303 ScopedComPtr<IMMDevice> endpoint_device;
304 if (device_id == AudioManagerBase::kDefaultDeviceId) {
305 // Retrieve the default capture audio endpoint.
306 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
307 endpoint_device.Receive());
308 } else if (device_id == AudioManagerBase::kLoopbackInputDeviceId) {
309 // Get the mix format of the default playback stream.
310 hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
311 endpoint_device.Receive());
312 } else {
313 // Retrieve a capture endpoint device that is specified by an endpoint
314 // device-identification string.
315 hr = enumerator->GetDevice(base::UTF8ToUTF16(device_id).c_str(),
316 endpoint_device.Receive());
319 if (FAILED(hr))
320 return hr;
322 *effects = IsDefaultCommunicationDevice(enumerator, endpoint_device) ?
323 AudioParameters::DUCKING : AudioParameters::NO_EFFECTS;
325 ScopedComPtr<IAudioClient> audio_client;
326 hr = endpoint_device->Activate(__uuidof(IAudioClient),
327 CLSCTX_INPROC_SERVER,
328 NULL,
329 audio_client.ReceiveVoid());
330 return SUCCEEDED(hr) ? audio_client->GetMixFormat(device_format) : hr;
333 void WASAPIAudioInputStream::Run() {
334 ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
336 // Increase the thread priority.
337 capture_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
339 // Enable MMCSS to ensure that this thread receives prioritized access to
340 // CPU resources.
341 DWORD task_index = 0;
342 HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
343 &task_index);
344 bool mmcss_is_ok =
345 (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
346 if (!mmcss_is_ok) {
347 // Failed to enable MMCSS on this thread. It is not fatal but can lead
348 // to reduced QoS at high load.
349 DWORD err = GetLastError();
350 LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
353 // Allocate a buffer with a size that enables us to take care of cases like:
354 // 1) The recorded buffer size is smaller, or does not match exactly with,
355 // the selected packet size used in each callback.
356 // 2) The selected buffer size is larger than the recorded buffer size in
357 // each event.
358 size_t buffer_frame_index = 0;
359 size_t capture_buffer_size = std::max(
360 2 * endpoint_buffer_size_frames_ * frame_size_,
361 2 * packet_size_frames_ * frame_size_);
362 scoped_ptr<uint8[]> capture_buffer(new uint8[capture_buffer_size]);
364 LARGE_INTEGER now_count;
365 bool recording = true;
366 bool error = false;
367 double volume = GetVolume();
368 HANDLE wait_array[2] = {stop_capture_event_, audio_samples_ready_event_};
370 while (recording && !error) {
371 HRESULT hr = S_FALSE;
373 // Wait for a close-down event or a new capture event.
374 DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE);
375 switch (wait_result) {
376 case WAIT_FAILED:
377 error = true;
378 break;
379 case WAIT_OBJECT_0 + 0:
380 // |stop_capture_event_| has been set.
381 recording = false;
382 break;
383 case WAIT_OBJECT_0 + 1:
385 // |audio_samples_ready_event_| has been set.
386 BYTE* data_ptr = NULL;
387 UINT32 num_frames_to_read = 0;
388 DWORD flags = 0;
389 UINT64 device_position = 0;
390 UINT64 first_audio_frame_timestamp = 0;
392 // Retrieve the amount of data in the capture endpoint buffer,
393 // replace it with silence if required, create callbacks for each
394 // packet and store non-delivered data for the next event.
395 hr = audio_capture_client_->GetBuffer(&data_ptr,
396 &num_frames_to_read,
397 &flags,
398 &device_position,
399 &first_audio_frame_timestamp);
400 if (FAILED(hr)) {
401 DLOG(ERROR) << "Failed to get data from the capture buffer";
402 continue;
405 if (num_frames_to_read != 0) {
406 size_t pos = buffer_frame_index * frame_size_;
407 size_t num_bytes = num_frames_to_read * frame_size_;
408 DCHECK_GE(capture_buffer_size, pos + num_bytes);
410 if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
411 // Clear out the local buffer since silence is reported.
412 memset(&capture_buffer[pos], 0, num_bytes);
413 } else {
414 // Copy captured data from audio engine buffer to local buffer.
415 memcpy(&capture_buffer[pos], data_ptr, num_bytes);
418 buffer_frame_index += num_frames_to_read;
421 hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read);
422 DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
424 // Derive a delay estimate for the captured audio packet.
425 // The value contains two parts (A+B), where A is the delay of the
426 // first audio frame in the packet and B is the extra delay
427 // contained in any stored data. Unit is in audio frames.
428 QueryPerformanceCounter(&now_count);
429 double audio_delay_frames =
430 ((perf_count_to_100ns_units_ * now_count.QuadPart -
431 first_audio_frame_timestamp) / 10000.0) * ms_to_frame_count_ +
432 buffer_frame_index - num_frames_to_read;
434 // Get a cached AGC volume level which is updated once every second
435 // on the audio manager thread. Note that, |volume| is also updated
436 // each time SetVolume() is called through IPC by the render-side AGC.
437 GetAgcVolume(&volume);
439 // Deliver captured data to the registered consumer using a packet
440 // size which was specified at construction.
441 uint32 delay_frames = static_cast<uint32>(audio_delay_frames + 0.5);
442 while (buffer_frame_index >= packet_size_frames_) {
443 // Copy data to audio bus to match the OnData interface.
444 uint8* audio_data = reinterpret_cast<uint8*>(capture_buffer.get());
445 audio_bus_->FromInterleaved(
446 audio_data, audio_bus_->frames(), format_.wBitsPerSample / 8);
448 // Deliver data packet, delay estimation and volume level to
449 // the user.
450 sink_->OnData(
451 this, audio_bus_.get(), delay_frames * frame_size_, volume);
453 // Store parts of the recorded data which can't be delivered
454 // using the current packet size. The stored section will be used
455 // either in the next while-loop iteration or in the next
456 // capture event.
457 memmove(&capture_buffer[0],
458 &capture_buffer[packet_size_bytes_],
459 (buffer_frame_index - packet_size_frames_) * frame_size_);
461 buffer_frame_index -= packet_size_frames_;
462 delay_frames -= packet_size_frames_;
465 break;
466 default:
467 error = true;
468 break;
472 if (recording && error) {
473 // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
474 // stopping the audio client, joining the thread etc.?
475 NOTREACHED() << "WASAPI capturing failed with error code "
476 << GetLastError();
479 // Disable MMCSS.
480 if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
481 PLOG(WARNING) << "Failed to disable MMCSS";
485 void WASAPIAudioInputStream::HandleError(HRESULT err) {
486 NOTREACHED() << "Error code: " << err;
487 if (sink_)
488 sink_->OnError(this);
491 HRESULT WASAPIAudioInputStream::SetCaptureDevice() {
492 DCHECK(!endpoint_device_);
494 ScopedComPtr<IMMDeviceEnumerator> enumerator;
495 HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
496 NULL, CLSCTX_INPROC_SERVER);
497 if (FAILED(hr))
498 return hr;
500 // Retrieve the IMMDevice by using the specified role or the specified
501 // unique endpoint device-identification string.
503 if (effects_ & AudioParameters::DUCKING) {
504 // Ducking has been requested and it is only supported for the default
505 // communication device. So, let's open up the communication device and
506 // see if the ID of that device matches the requested ID.
507 // We consider a kDefaultDeviceId as well as an explicit device id match,
508 // to be valid matches.
509 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eCommunications,
510 endpoint_device_.Receive());
511 if (endpoint_device_ && device_id_ != AudioManagerBase::kDefaultDeviceId) {
512 base::win::ScopedCoMem<WCHAR> communications_id;
513 endpoint_device_->GetId(&communications_id);
514 if (device_id_ !=
515 base::WideToUTF8(static_cast<WCHAR*>(communications_id))) {
516 DLOG(WARNING) << "Ducking has been requested for a non-default device."
517 "Not supported.";
518 // We can't honor the requested effect flag, so turn it off and
519 // continue. We'll check this flag later to see if we've actually
520 // opened up the communications device, so it's important that it
521 // reflects the active state.
522 effects_ &= ~AudioParameters::DUCKING;
523 endpoint_device_.Release(); // Fall back on code below.
528 if (!endpoint_device_) {
529 if (device_id_ == AudioManagerBase::kDefaultDeviceId) {
530 // Retrieve the default capture audio endpoint for the specified role.
531 // Note that, in Windows Vista, the MMDevice API supports device roles
532 // but the system-supplied user interface programs do not.
533 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
534 endpoint_device_.Receive());
535 } else if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
536 // Capture the default playback stream.
537 hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
538 endpoint_device_.Receive());
539 } else {
540 hr = enumerator->GetDevice(base::UTF8ToUTF16(device_id_).c_str(),
541 endpoint_device_.Receive());
545 if (FAILED(hr))
546 return hr;
548 // Verify that the audio endpoint device is active, i.e., the audio
549 // adapter that connects to the endpoint device is present and enabled.
550 DWORD state = DEVICE_STATE_DISABLED;
551 hr = endpoint_device_->GetState(&state);
552 if (FAILED(hr))
553 return hr;
555 if (!(state & DEVICE_STATE_ACTIVE)) {
556 DLOG(ERROR) << "Selected capture device is not active.";
557 hr = E_ACCESSDENIED;
560 return hr;
563 HRESULT WASAPIAudioInputStream::ActivateCaptureDevice() {
564 // Creates and activates an IAudioClient COM object given the selected
565 // capture endpoint device.
566 HRESULT hr = endpoint_device_->Activate(__uuidof(IAudioClient),
567 CLSCTX_INPROC_SERVER,
568 NULL,
569 audio_client_.ReceiveVoid());
570 return hr;
573 HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
574 HRESULT hr = S_OK;
575 #ifndef NDEBUG
576 // The GetMixFormat() method retrieves the stream format that the
577 // audio engine uses for its internal processing of shared-mode streams.
578 // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
579 // of a stand-alone WAVEFORMATEX structure, to specify the format.
580 // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
581 // channels to speakers and the number of bits of precision in each sample.
582 base::win::ScopedCoMem<WAVEFORMATEXTENSIBLE> format_ex;
583 hr = audio_client_->GetMixFormat(
584 reinterpret_cast<WAVEFORMATEX**>(&format_ex));
586 // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
587 // for details on the WAVE file format.
588 WAVEFORMATEX format = format_ex->Format;
589 DVLOG(2) << "WAVEFORMATEX:";
590 DVLOG(2) << " wFormatTags : 0x" << std::hex << format.wFormatTag;
591 DVLOG(2) << " nChannels : " << format.nChannels;
592 DVLOG(2) << " nSamplesPerSec : " << format.nSamplesPerSec;
593 DVLOG(2) << " nAvgBytesPerSec: " << format.nAvgBytesPerSec;
594 DVLOG(2) << " nBlockAlign : " << format.nBlockAlign;
595 DVLOG(2) << " wBitsPerSample : " << format.wBitsPerSample;
596 DVLOG(2) << " cbSize : " << format.cbSize;
598 DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
599 DVLOG(2) << " wValidBitsPerSample: " <<
600 format_ex->Samples.wValidBitsPerSample;
601 DVLOG(2) << " dwChannelMask : 0x" << std::hex <<
602 format_ex->dwChannelMask;
603 if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_PCM)
604 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_PCM";
605 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)
606 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
607 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_WAVEFORMATEX)
608 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
609 #endif
610 return hr;
613 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
614 // An application that uses WASAPI to manage shared-mode streams can rely
615 // on the audio engine to perform only limited format conversions. The audio
616 // engine can convert between a standard PCM sample size used by the
617 // application and the floating-point samples that the engine uses for its
618 // internal processing. However, the format for an application stream
619 // typically must have the same number of channels and the same sample
620 // rate as the stream format used by the device.
621 // Many audio devices support both PCM and non-PCM stream formats. However,
622 // the audio engine can mix only PCM streams.
623 base::win::ScopedCoMem<WAVEFORMATEX> closest_match;
624 HRESULT hr = audio_client_->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED,
625 &format_,
626 &closest_match);
627 DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
628 << "but a closest match exists.";
629 return (hr == S_OK);
632 HRESULT WASAPIAudioInputStream::InitializeAudioEngine() {
633 DWORD flags;
634 // Use event-driven mode only fo regular input devices. For loopback the
635 // EVENTCALLBACK flag is specified when intializing
636 // |audio_render_client_for_loopback_|.
637 if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
638 flags = AUDCLNT_STREAMFLAGS_LOOPBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
639 } else {
640 flags =
641 AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
644 // Initialize the audio stream between the client and the device.
645 // We connect indirectly through the audio engine by using shared mode.
646 // Note that, |hnsBufferDuration| is set of 0, which ensures that the
647 // buffer is never smaller than the minimum buffer size needed to ensure
648 // that glitches do not occur between the periodic processing passes.
649 // This setting should lead to lowest possible latency.
650 HRESULT hr = audio_client_->Initialize(
651 AUDCLNT_SHAREMODE_SHARED,
652 flags,
653 0, // hnsBufferDuration
655 &format_,
656 (effects_ & AudioParameters::DUCKING) ? &kCommunicationsSessionId : NULL);
658 if (FAILED(hr))
659 return hr;
661 // Retrieve the length of the endpoint buffer shared between the client
662 // and the audio engine. The buffer length determines the maximum amount
663 // of capture data that the audio engine can read from the endpoint buffer
664 // during a single processing pass.
665 // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
666 hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_);
667 if (FAILED(hr))
668 return hr;
670 DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
671 << " [frames]";
673 #ifndef NDEBUG
674 // The period between processing passes by the audio engine is fixed for a
675 // particular audio endpoint device and represents the smallest processing
676 // quantum for the audio engine. This period plus the stream latency between
677 // the buffer and endpoint device represents the minimum possible latency
678 // that an audio application can achieve.
679 // TODO(henrika): possibly remove this section when all parts are ready.
680 REFERENCE_TIME device_period_shared_mode = 0;
681 REFERENCE_TIME device_period_exclusive_mode = 0;
682 HRESULT hr_dbg = audio_client_->GetDevicePeriod(
683 &device_period_shared_mode, &device_period_exclusive_mode);
684 if (SUCCEEDED(hr_dbg)) {
685 DVLOG(1) << "device period: "
686 << static_cast<double>(device_period_shared_mode / 10000.0)
687 << " [ms]";
690 REFERENCE_TIME latency = 0;
691 hr_dbg = audio_client_->GetStreamLatency(&latency);
692 if (SUCCEEDED(hr_dbg)) {
693 DVLOG(1) << "stream latency: " << static_cast<double>(latency / 10000.0)
694 << " [ms]";
696 #endif
698 // Set the event handle that the audio engine will signal each time a buffer
699 // becomes ready to be processed by the client.
701 // In loopback case the capture device doesn't receive any events, so we
702 // need to create a separate playback client to get notifications. According
703 // to MSDN:
705 // A pull-mode capture client does not receive any events when a stream is
706 // initialized with event-driven buffering and is loopback-enabled. To
707 // work around this, initialize a render stream in event-driven mode. Each
708 // time the client receives an event for the render stream, it must signal
709 // the capture client to run the capture thread that reads the next set of
710 // samples from the capture endpoint buffer.
712 // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx
713 if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
714 hr = endpoint_device_->Activate(
715 __uuidof(IAudioClient), CLSCTX_INPROC_SERVER, NULL,
716 audio_render_client_for_loopback_.ReceiveVoid());
717 if (FAILED(hr))
718 return hr;
720 hr = audio_render_client_for_loopback_->Initialize(
721 AUDCLNT_SHAREMODE_SHARED,
722 AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST,
723 0, 0, &format_, NULL);
724 if (FAILED(hr))
725 return hr;
727 hr = audio_render_client_for_loopback_->SetEventHandle(
728 audio_samples_ready_event_.Get());
729 } else {
730 hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get());
733 if (FAILED(hr))
734 return hr;
736 // Get access to the IAudioCaptureClient interface. This interface
737 // enables us to read input data from the capture endpoint buffer.
738 hr = audio_client_->GetService(__uuidof(IAudioCaptureClient),
739 audio_capture_client_.ReceiveVoid());
740 if (FAILED(hr))
741 return hr;
743 // Obtain a reference to the ISimpleAudioVolume interface which enables
744 // us to control the master volume level of an audio session.
745 hr = audio_client_->GetService(__uuidof(ISimpleAudioVolume),
746 simple_audio_volume_.ReceiveVoid());
747 return hr;
750 } // namespace media