1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "url/url_canon_ip.h"
9 #include "base/basictypes.h"
10 #include "base/logging.h"
11 #include "url/url_canon_internal.h"
17 // Converts one of the character types that represent a numerical base to the
18 // corresponding base.
19 int BaseForType(SharedCharTypes type
) {
32 template<typename CHAR
, typename UCHAR
>
33 bool DoFindIPv4Components(const CHAR
* spec
,
34 const Component
& host
,
35 Component components
[4]) {
36 if (!host
.is_nonempty())
39 int cur_component
= 0; // Index of the component we're working on.
40 int cur_component_begin
= host
.begin
; // Start of the current component.
42 for (int i
= host
.begin
; /* nothing */; i
++) {
43 if (i
>= end
|| spec
[i
] == '.') {
44 // Found the end of the current component.
45 int component_len
= i
- cur_component_begin
;
46 components
[cur_component
] = Component(cur_component_begin
, component_len
);
48 // The next component starts after the dot.
49 cur_component_begin
= i
+ 1;
52 // Don't allow empty components (two dots in a row), except we may
53 // allow an empty component at the end (this would indicate that the
54 // input ends in a dot). We also want to error if the component is
55 // empty and it's the only component (cur_component == 1).
56 if (component_len
== 0 && (i
< end
|| cur_component
== 1))
60 break; // End of the input.
62 if (cur_component
== 4) {
63 // Anything else after the 4th component is an error unless it is a
64 // dot that would otherwise be treated as the end of input.
65 if (spec
[i
] == '.' && i
+ 1 == end
)
69 } else if (static_cast<UCHAR
>(spec
[i
]) >= 0x80 ||
70 !IsIPv4Char(static_cast<unsigned char>(spec
[i
]))) {
71 // Invalid character for an IPv4 address.
76 // Fill in any unused components.
77 while (cur_component
< 4)
78 components
[cur_component
++] = Component();
82 // Converts an IPv4 component to a 32-bit number, while checking for overflow.
84 // Possible return values:
85 // - IPV4 - The number was valid, and did not overflow.
86 // - BROKEN - The input was numeric, but too large for a 32-bit field.
87 // - NEUTRAL - Input was not numeric.
89 // The input is assumed to be ASCII. FindIPv4Components should have stripped
90 // out any input that is greater than 7 bits. The components are assumed
92 template<typename CHAR
>
93 CanonHostInfo::Family
IPv4ComponentToNumber(const CHAR
* spec
,
94 const Component
& component
,
96 // Figure out the base
98 int base_prefix_len
= 0; // Size of the prefix for this base.
99 if (spec
[component
.begin
] == '0') {
100 // Either hex or dec, or a standalone zero.
101 if (component
.len
== 1) {
103 } else if (spec
[component
.begin
+ 1] == 'X' ||
104 spec
[component
.begin
+ 1] == 'x') {
115 // Extend the prefix to consume all leading zeros.
116 while (base_prefix_len
< component
.len
&&
117 spec
[component
.begin
+ base_prefix_len
] == '0')
120 // Put the component, minus any base prefix, into a NULL-terminated buffer so
121 // we can call the standard library. Because leading zeros have already been
122 // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
124 const int kMaxComponentLen
= 16;
125 char buf
[kMaxComponentLen
+ 1]; // digits + '\0'
127 for (int i
= component
.begin
+ base_prefix_len
; i
< component
.end(); i
++) {
128 // We know the input is 7-bit, so convert to narrow (if this is the wide
129 // version of the template) by casting.
130 char input
= static_cast<char>(spec
[i
]);
132 // Validate that this character is OK for the given base.
133 if (!IsCharOfType(input
, base
))
134 return CanonHostInfo::NEUTRAL
;
136 // Fill the buffer, if there's space remaining. This check allows us to
137 // verify that all characters are numeric, even those that don't fit.
138 if (dest_i
< kMaxComponentLen
)
139 buf
[dest_i
++] = input
;
144 // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
145 // number can overflow a 64-bit number in <= 16 characters).
146 uint64 num
= _strtoui64(buf
, NULL
, BaseForType(base
));
148 // Check for 32-bit overflow.
149 if (num
> kuint32max
)
150 return CanonHostInfo::BROKEN
;
152 // No overflow. Success!
153 *number
= static_cast<uint32
>(num
);
154 return CanonHostInfo::IPV4
;
157 // See declaration of IPv4AddressToNumber for documentation.
158 template<typename CHAR
>
159 CanonHostInfo::Family
DoIPv4AddressToNumber(const CHAR
* spec
,
160 const Component
& host
,
161 unsigned char address
[4],
162 int* num_ipv4_components
) {
163 // The identified components. Not all may exist.
164 Component components
[4];
165 if (!FindIPv4Components(spec
, host
, components
))
166 return CanonHostInfo::NEUTRAL
;
168 // Convert existing components to digits. Values up to
169 // |existing_components| will be valid.
170 uint32 component_values
[4];
171 int existing_components
= 0;
173 // Set to true if one or more components are BROKEN. BROKEN is only
174 // returned if all components are IPV4 or BROKEN, so, for example,
175 // 12345678912345.de returns NEUTRAL rather than broken.
177 for (int i
= 0; i
< 4; i
++) {
178 if (components
[i
].len
<= 0)
180 CanonHostInfo::Family family
= IPv4ComponentToNumber(
181 spec
, components
[i
], &component_values
[existing_components
]);
183 if (family
== CanonHostInfo::BROKEN
) {
185 } else if (family
!= CanonHostInfo::IPV4
) {
186 // Stop if we hit a non-BROKEN invalid non-empty component.
190 existing_components
++;
194 return CanonHostInfo::BROKEN
;
196 // Use that sequence of numbers to fill out the 4-component IP address.
198 // First, process all components but the last, while making sure each fits
199 // within an 8-bit field.
200 for (int i
= 0; i
< existing_components
- 1; i
++) {
201 if (component_values
[i
] > kuint8max
)
202 return CanonHostInfo::BROKEN
;
203 address
[i
] = static_cast<unsigned char>(component_values
[i
]);
206 // Next, consume the last component to fill in the remaining bytes.
207 // Work around a gcc 4.9 bug. crbug.com/392872
208 #if ((__GNUC__ == 4 && __GNUC_MINOR__ >= 9) || __GNUC__ > 4)
209 #pragma GCC diagnostic push
210 #pragma GCC diagnostic ignored "-Warray-bounds"
212 uint32 last_value
= component_values
[existing_components
- 1];
213 #if ((__GNUC__ == 4 && __GNUC_MINOR__ >= 9) || __GNUC__ > 4)
214 #pragma GCC diagnostic pop
216 for (int i
= 3; i
>= existing_components
- 1; i
--) {
217 address
[i
] = static_cast<unsigned char>(last_value
);
221 // If the last component has residual bits, report overflow.
223 return CanonHostInfo::BROKEN
;
225 // Tell the caller how many components we saw.
226 *num_ipv4_components
= existing_components
;
229 return CanonHostInfo::IPV4
;
232 // Return true if we've made a final IPV4/BROKEN decision, false if the result
233 // is NEUTRAL, and we could use a second opinion.
234 template<typename CHAR
, typename UCHAR
>
235 bool DoCanonicalizeIPv4Address(const CHAR
* spec
,
236 const Component
& host
,
238 CanonHostInfo
* host_info
) {
239 host_info
->family
= IPv4AddressToNumber(
240 spec
, host
, host_info
->address
, &host_info
->num_ipv4_components
);
242 switch (host_info
->family
) {
243 case CanonHostInfo::IPV4
:
244 // Definitely an IPv4 address.
245 host_info
->out_host
.begin
= output
->length();
246 AppendIPv4Address(host_info
->address
, output
);
247 host_info
->out_host
.len
= output
->length() - host_info
->out_host
.begin
;
249 case CanonHostInfo::BROKEN
:
250 // Definitely broken.
253 // Could be IPv6 or a hostname.
258 // Helper class that describes the main components of an IPv6 input string.
259 // See the following examples to understand how it breaks up an input string:
261 // [Example 1]: input = "[::aa:bb]"
262 // ==> num_hex_components = 2
263 // ==> hex_components[0] = Component(3,2) "aa"
264 // ==> hex_components[1] = Component(6,2) "bb"
265 // ==> index_of_contraction = 0
266 // ==> ipv4_component = Component(0, -1)
268 // [Example 2]: input = "[1:2::3:4:5]"
269 // ==> num_hex_components = 5
270 // ==> hex_components[0] = Component(1,1) "1"
271 // ==> hex_components[1] = Component(3,1) "2"
272 // ==> hex_components[2] = Component(6,1) "3"
273 // ==> hex_components[3] = Component(8,1) "4"
274 // ==> hex_components[4] = Component(10,1) "5"
275 // ==> index_of_contraction = 2
276 // ==> ipv4_component = Component(0, -1)
278 // [Example 3]: input = "[::ffff:192.168.0.1]"
279 // ==> num_hex_components = 1
280 // ==> hex_components[0] = Component(3,4) "ffff"
281 // ==> index_of_contraction = 0
282 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
284 // [Example 4]: input = "[1::]"
285 // ==> num_hex_components = 1
286 // ==> hex_components[0] = Component(1,1) "1"
287 // ==> index_of_contraction = 1
288 // ==> ipv4_component = Component(0, -1)
290 // [Example 5]: input = "[::192.168.0.1]"
291 // ==> num_hex_components = 0
292 // ==> index_of_contraction = 0
293 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
296 // Zero-out the parse information.
298 num_hex_components
= 0;
299 index_of_contraction
= -1;
300 ipv4_component
.reset();
303 // There can be up to 8 hex components (colon separated) in the literal.
304 Component hex_components
[8];
306 // The count of hex components present. Ranges from [0,8].
307 int num_hex_components
;
309 // The index of the hex component that the "::" contraction precedes, or
310 // -1 if there is no contraction.
311 int index_of_contraction
;
313 // The range of characters which are an IPv4 literal.
314 Component ipv4_component
;
317 // Parse the IPv6 input string. If parsing succeeded returns true and fills
318 // |parsed| with the information. If parsing failed (because the input is
319 // invalid) returns false.
320 template<typename CHAR
, typename UCHAR
>
321 bool DoParseIPv6(const CHAR
* spec
, const Component
& host
, IPv6Parsed
* parsed
) {
322 // Zero-out the info.
325 if (!host
.is_nonempty())
328 // The index for start and end of address range (no brackets).
329 int begin
= host
.begin
;
330 int end
= host
.end();
332 int cur_component_begin
= begin
; // Start of the current component.
334 // Scan through the input, searching for hex components, "::" contractions,
335 // and IPv4 components.
336 for (int i
= begin
; /* i <= end */; i
++) {
337 bool is_colon
= spec
[i
] == ':';
338 bool is_contraction
= is_colon
&& i
< end
- 1 && spec
[i
+ 1] == ':';
340 // We reached the end of the current component if we encounter a colon
341 // (separator between hex components, or start of a contraction), or end of
343 if (is_colon
|| i
== end
) {
344 int component_len
= i
- cur_component_begin
;
346 // A component should not have more than 4 hex digits.
347 if (component_len
> 4)
350 // Don't allow empty components.
351 if (component_len
== 0) {
352 // The exception is when contractions appear at beginning of the
353 // input or at the end of the input.
354 if (!((is_contraction
&& i
== begin
) || (i
== end
&&
355 parsed
->index_of_contraction
== parsed
->num_hex_components
)))
359 // Add the hex component we just found to running list.
360 if (component_len
> 0) {
361 // Can't have more than 8 components!
362 if (parsed
->num_hex_components
>= 8)
365 parsed
->hex_components
[parsed
->num_hex_components
++] =
366 Component(cur_component_begin
, component_len
);
371 break; // Reached the end of the input, DONE.
373 // We found a "::" contraction.
374 if (is_contraction
) {
375 // There can be at most one contraction in the literal.
376 if (parsed
->index_of_contraction
!= -1)
378 parsed
->index_of_contraction
= parsed
->num_hex_components
;
379 ++i
; // Consume the colon we peeked.
383 // Colons are separators between components, keep track of where the
384 // current component started (after this colon).
385 cur_component_begin
= i
+ 1;
387 if (static_cast<UCHAR
>(spec
[i
]) >= 0x80)
388 return false; // Not ASCII.
390 if (!IsHexChar(static_cast<unsigned char>(spec
[i
]))) {
391 // Regular components are hex numbers. It is also possible for
392 // a component to be an IPv4 address in dotted form.
393 if (IsIPv4Char(static_cast<unsigned char>(spec
[i
]))) {
394 // Since IPv4 address can only appear at the end, assume the rest
395 // of the string is an IPv4 address. (We will parse this separately
397 parsed
->ipv4_component
=
398 Component(cur_component_begin
, end
- cur_component_begin
);
401 // The character was neither a hex digit, nor an IPv4 character.
411 // Verifies the parsed IPv6 information, checking that the various components
412 // add up to the right number of bits (hex components are 16 bits, while
413 // embedded IPv4 formats are 32 bits, and contractions are placeholdes for
414 // 16 or more bits). Returns true if sizes match up, false otherwise. On
415 // success writes the length of the contraction (if any) to
416 // |out_num_bytes_of_contraction|.
417 bool CheckIPv6ComponentsSize(const IPv6Parsed
& parsed
,
418 int* out_num_bytes_of_contraction
) {
419 // Each group of four hex digits contributes 16 bits.
420 int num_bytes_without_contraction
= parsed
.num_hex_components
* 2;
422 // If an IPv4 address was embedded at the end, it contributes 32 bits.
423 if (parsed
.ipv4_component
.is_valid())
424 num_bytes_without_contraction
+= 4;
426 // If there was a "::" contraction, its size is going to be:
427 // MAX([16bits], [128bits] - num_bytes_without_contraction).
428 int num_bytes_of_contraction
= 0;
429 if (parsed
.index_of_contraction
!= -1) {
430 num_bytes_of_contraction
= 16 - num_bytes_without_contraction
;
431 if (num_bytes_of_contraction
< 2)
432 num_bytes_of_contraction
= 2;
435 // Check that the numbers add up.
436 if (num_bytes_without_contraction
+ num_bytes_of_contraction
!= 16)
439 *out_num_bytes_of_contraction
= num_bytes_of_contraction
;
443 // Converts a hex comonent into a number. This cannot fail since the caller has
444 // already verified that each character in the string was a hex digit, and
445 // that there were no more than 4 characters.
446 template<typename CHAR
>
447 uint16
IPv6HexComponentToNumber(const CHAR
* spec
, const Component
& component
) {
448 DCHECK(component
.len
<= 4);
450 // Copy the hex string into a C-string.
452 for (int i
= 0; i
< component
.len
; ++i
)
453 buf
[i
] = static_cast<char>(spec
[component
.begin
+ i
]);
454 buf
[component
.len
] = '\0';
456 // Convert it to a number (overflow is not possible, since with 4 hex
457 // characters we can at most have a 16 bit number).
458 return static_cast<uint16
>(_strtoui64(buf
, NULL
, 16));
461 // Converts an IPv6 address to a 128-bit number (network byte order), returning
462 // true on success. False means that the input was not a valid IPv6 address.
463 template<typename CHAR
, typename UCHAR
>
464 bool DoIPv6AddressToNumber(const CHAR
* spec
,
465 const Component
& host
,
466 unsigned char address
[16]) {
467 // Make sure the component is bounded by '[' and ']'.
468 int end
= host
.end();
469 if (!host
.is_nonempty() || spec
[host
.begin
] != '[' || spec
[end
- 1] != ']')
472 // Exclude the square brackets.
473 Component
ipv6_comp(host
.begin
+ 1, host
.len
- 2);
475 // Parse the IPv6 address -- identify where all the colon separated hex
476 // components are, the "::" contraction, and the embedded IPv4 address.
477 IPv6Parsed ipv6_parsed
;
478 if (!DoParseIPv6
<CHAR
, UCHAR
>(spec
, ipv6_comp
, &ipv6_parsed
))
481 // Do some basic size checks to make sure that the address doesn't
482 // specify more than 128 bits or fewer than 128 bits. This also resolves
483 // how may zero bytes the "::" contraction represents.
484 int num_bytes_of_contraction
;
485 if (!CheckIPv6ComponentsSize(ipv6_parsed
, &num_bytes_of_contraction
))
488 int cur_index_in_address
= 0;
490 // Loop through each hex components, and contraction in order.
491 for (int i
= 0; i
<= ipv6_parsed
.num_hex_components
; ++i
) {
492 // Append the contraction if it appears before this component.
493 if (i
== ipv6_parsed
.index_of_contraction
) {
494 for (int j
= 0; j
< num_bytes_of_contraction
; ++j
)
495 address
[cur_index_in_address
++] = 0;
497 // Append the hex component's value.
498 if (i
!= ipv6_parsed
.num_hex_components
) {
499 // Get the 16-bit value for this hex component.
500 uint16 number
= IPv6HexComponentToNumber
<CHAR
>(
501 spec
, ipv6_parsed
.hex_components
[i
]);
502 // Append to |address|, in network byte order.
503 address
[cur_index_in_address
++] = (number
& 0xFF00) >> 8;
504 address
[cur_index_in_address
++] = (number
& 0x00FF);
508 // If there was an IPv4 section, convert it into a 32-bit number and append
510 if (ipv6_parsed
.ipv4_component
.is_valid()) {
511 // Append the 32-bit number to |address|.
512 int ignored_num_ipv4_components
;
513 if (CanonHostInfo::IPV4
!=
514 IPv4AddressToNumber(spec
,
515 ipv6_parsed
.ipv4_component
,
516 &address
[cur_index_in_address
],
517 &ignored_num_ipv4_components
))
524 // Searches for the longest sequence of zeros in |address|, and writes the
525 // range into |contraction_range|. The run of zeros must be at least 16 bits,
526 // and if there is a tie the first is chosen.
527 void ChooseIPv6ContractionRange(const unsigned char address
[16],
528 Component
* contraction_range
) {
529 // The longest run of zeros in |address| seen so far.
532 // The current run of zeros in |address| being iterated over.
535 for (int i
= 0; i
< 16; i
+= 2) {
536 // Test for 16 bits worth of zero.
537 bool is_zero
= (address
[i
] == 0 && address
[i
+ 1] == 0);
540 // Add the zero to the current range (or start a new one).
541 if (!cur_range
.is_valid())
542 cur_range
= Component(i
, 0);
546 if (!is_zero
|| i
== 14) {
547 // Just completed a run of zeros. If the run is greater than 16 bits,
548 // it is a candidate for the contraction.
549 if (cur_range
.len
> 2 && cur_range
.len
> max_range
.len
) {
550 max_range
= cur_range
;
555 *contraction_range
= max_range
;
558 // Return true if we've made a final IPV6/BROKEN decision, false if the result
559 // is NEUTRAL, and we could use a second opinion.
560 template<typename CHAR
, typename UCHAR
>
561 bool DoCanonicalizeIPv6Address(const CHAR
* spec
,
562 const Component
& host
,
564 CanonHostInfo
* host_info
) {
565 // Turn the IP address into a 128 bit number.
566 if (!IPv6AddressToNumber(spec
, host
, host_info
->address
)) {
567 // If it's not an IPv6 address, scan for characters that should *only*
568 // exist in an IPv6 address.
569 for (int i
= host
.begin
; i
< host
.end(); i
++) {
574 host_info
->family
= CanonHostInfo::BROKEN
;
579 // No invalid characters. Could still be IPv4 or a hostname.
580 host_info
->family
= CanonHostInfo::NEUTRAL
;
584 host_info
->out_host
.begin
= output
->length();
585 output
->push_back('[');
586 AppendIPv6Address(host_info
->address
, output
);
587 output
->push_back(']');
588 host_info
->out_host
.len
= output
->length() - host_info
->out_host
.begin
;
590 host_info
->family
= CanonHostInfo::IPV6
;
596 void AppendIPv4Address(const unsigned char address
[4], CanonOutput
* output
) {
597 for (int i
= 0; i
< 4; i
++) {
599 _itoa_s(address
[i
], str
, 10);
601 for (int ch
= 0; str
[ch
] != 0; ch
++)
602 output
->push_back(str
[ch
]);
605 output
->push_back('.');
609 void AppendIPv6Address(const unsigned char address
[16], CanonOutput
* output
) {
610 // We will output the address according to the rules in:
611 // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
613 // Start by finding where to place the "::" contraction (if any).
614 Component contraction_range
;
615 ChooseIPv6ContractionRange(address
, &contraction_range
);
617 for (int i
= 0; i
<= 14;) {
618 // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
620 if (i
== contraction_range
.begin
&& contraction_range
.len
> 0) {
621 // Jump over the contraction.
623 output
->push_back(':');
624 output
->push_back(':');
625 i
= contraction_range
.end();
627 // Consume the next 16 bits from |address|.
628 int x
= address
[i
] << 8 | address
[i
+ 1];
632 // Stringify the 16 bit number (at most requires 4 hex digits).
635 for (int ch
= 0; str
[ch
] != 0; ++ch
)
636 output
->push_back(str
[ch
]);
638 // Put a colon after each number, except the last.
640 output
->push_back(':');
645 bool FindIPv4Components(const char* spec
,
646 const Component
& host
,
647 Component components
[4]) {
648 return DoFindIPv4Components
<char, unsigned char>(spec
, host
, components
);
651 bool FindIPv4Components(const base::char16
* spec
,
652 const Component
& host
,
653 Component components
[4]) {
654 return DoFindIPv4Components
<base::char16
, base::char16
>(
655 spec
, host
, components
);
658 void CanonicalizeIPAddress(const char* spec
,
659 const Component
& host
,
661 CanonHostInfo
* host_info
) {
662 if (DoCanonicalizeIPv4Address
<char, unsigned char>(
663 spec
, host
, output
, host_info
))
665 if (DoCanonicalizeIPv6Address
<char, unsigned char>(
666 spec
, host
, output
, host_info
))
670 void CanonicalizeIPAddress(const base::char16
* spec
,
671 const Component
& host
,
673 CanonHostInfo
* host_info
) {
674 if (DoCanonicalizeIPv4Address
<base::char16
, base::char16
>(
675 spec
, host
, output
, host_info
))
677 if (DoCanonicalizeIPv6Address
<base::char16
, base::char16
>(
678 spec
, host
, output
, host_info
))
682 CanonHostInfo::Family
IPv4AddressToNumber(const char* spec
,
683 const Component
& host
,
684 unsigned char address
[4],
685 int* num_ipv4_components
) {
686 return DoIPv4AddressToNumber
<char>(spec
, host
, address
, num_ipv4_components
);
689 CanonHostInfo::Family
IPv4AddressToNumber(const base::char16
* spec
,
690 const Component
& host
,
691 unsigned char address
[4],
692 int* num_ipv4_components
) {
693 return DoIPv4AddressToNumber
<base::char16
>(
694 spec
, host
, address
, num_ipv4_components
);
697 bool IPv6AddressToNumber(const char* spec
,
698 const Component
& host
,
699 unsigned char address
[16]) {
700 return DoIPv6AddressToNumber
<char, unsigned char>(spec
, host
, address
);
703 bool IPv6AddressToNumber(const base::char16
* spec
,
704 const Component
& host
,
705 unsigned char address
[16]) {
706 return DoIPv6AddressToNumber
<base::char16
, base::char16
>(spec
, host
, address
);