1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // A Tuple is a generic templatized container, similar in concept to std::pair
6 // and std::tuple. The convenient MakeTuple() function takes any number of
7 // arguments and will construct and return the appropriate Tuple object. The
8 // functions DispatchToMethod and DispatchToFunction take a function pointer or
9 // instance and method pointer, and unpack a tuple into arguments to the call.
11 // Tuple elements are copied by value, and stored in the tuple. See the unit
12 // tests for more details of how/when the values are copied.
15 // // These two methods of creating a Tuple are identical.
16 // Tuple<int, const char*> tuple_a(1, "wee");
17 // Tuple<int, const char*> tuple_b = MakeTuple(1, "wee");
19 // void SomeFunc(int a, const char* b) { }
20 // DispatchToFunction(&SomeFunc, tuple_a); // SomeFunc(1, "wee")
21 // DispatchToFunction(
22 // &SomeFunc, MakeTuple(10, "foo")); // SomeFunc(10, "foo")
24 // struct { void SomeMeth(int a, int b, int c) { } } foo;
25 // DispatchToMethod(&foo, &Foo::SomeMeth, MakeTuple(1, 2, 3));
26 // // foo->SomeMeth(1, 2, 3);
28 #ifndef BASE_TUPLE_H__
29 #define BASE_TUPLE_H__
31 #include "base/bind_helpers.h"
35 // Minimal clone of the similarly-named C++14 functionality.
38 struct IndexSequence
{};
40 template <size_t... Ns
>
41 struct MakeIndexSequenceImpl
;
43 template <size_t... Ns
>
44 struct MakeIndexSequenceImpl
<0, Ns
...> {
45 using Type
= IndexSequence
<Ns
...>;
48 template <size_t N
, size_t... Ns
>
49 struct MakeIndexSequenceImpl
<N
, Ns
...>
50 : MakeIndexSequenceImpl
<N
- 1, N
- 1, Ns
...> {};
53 using MakeIndexSequence
= typename MakeIndexSequenceImpl
<N
>::Type
;
55 // Traits ----------------------------------------------------------------------
57 // A simple traits class for tuple arguments.
59 // ValueType: the bare, nonref version of a type (same as the type for nonrefs).
60 // RefType: the ref version of a type (same as the type for refs).
61 // ParamType: what type to pass to functions (refs should not be constified).
67 typedef const P
& ParamType
;
71 struct TupleTraits
<P
&> {
77 // Tuple -----------------------------------------------------------------------
79 // This set of classes is useful for bundling 0 or more heterogeneous data types
80 // into a single variable. The advantage of this is that it greatly simplifies
81 // function objects that need to take an arbitrary number of parameters; see
82 // RunnableMethod and IPC::MessageWithTuple.
84 // Tuple<> is supplied to act as a 'void' type. It can be used, for example,
85 // when dispatching to a function that accepts no arguments (see the
86 // Dispatchers below).
87 // Tuple<A> is rarely useful. One such use is when A is non-const ref that you
88 // want filled by the dispatchee, and the tuple is merely a container for that
89 // output (a "tier"). See MakeRefTuple and its usages.
91 template <typename IxSeq
, typename
... Ts
>
93 template <typename
... Ts
>
94 using TupleBase
= TupleBaseImpl
<MakeIndexSequence
<sizeof...(Ts
)>, Ts
...>;
95 template <size_t N
, typename T
>
98 template <typename
... Ts
>
99 struct Tuple
: TupleBase
<Ts
...> {
100 Tuple() : TupleBase
<Ts
...>() {}
101 explicit Tuple(typename TupleTraits
<Ts
>::ParamType
... args
)
102 : TupleBase
<Ts
...>(args
...) {}
105 // Avoids ambiguity between Tuple's two constructors.
109 template <size_t... Ns
, typename
... Ts
>
110 struct TupleBaseImpl
<IndexSequence
<Ns
...>, Ts
...> : TupleLeaf
<Ns
, Ts
>... {
111 TupleBaseImpl() : TupleLeaf
<Ns
, Ts
>()... {}
112 explicit TupleBaseImpl(typename TupleTraits
<Ts
>::ParamType
... args
)
113 : TupleLeaf
<Ns
, Ts
>(args
)... {}
116 template <size_t N
, typename T
>
119 explicit TupleLeaf(typename TupleTraits
<T
>::ParamType x
) : x(x
) {}
121 T
& get() { return x
; }
122 const T
& get() const { return x
; }
127 // For legacy compatibility, we name the first 8 tuple elements "a", "b", ...
128 // TODO(mdempsky): Update users to use get<N>() (crbug.com/440675).
130 #define DEFINE_TUPLE_LEAF(N, x) \
131 template <typename T> \
132 struct TupleLeaf<N, T> { \
134 explicit TupleLeaf(typename TupleTraits<T>::ParamType x) : x(x) {} \
136 T& get() { return x; } \
137 const T& get() const { return x; } \
142 DEFINE_TUPLE_LEAF(0, a
);
143 DEFINE_TUPLE_LEAF(1, b
);
144 DEFINE_TUPLE_LEAF(2, c
);
145 DEFINE_TUPLE_LEAF(3, d
);
146 DEFINE_TUPLE_LEAF(4, e
);
147 DEFINE_TUPLE_LEAF(5, f
);
148 DEFINE_TUPLE_LEAF(6, g
);
149 DEFINE_TUPLE_LEAF(7, h
);
151 #undef DEFINE_TUPLE_LEAF
153 // Deprecated compat aliases
154 // TODO(mdempsky): Update users to just use Tuple instead (crbug.com/440675).
156 using Tuple0
= Tuple
<>;
157 template <typename A
>
158 using Tuple1
= Tuple
<A
>;
159 template <typename A
, typename B
>
160 using Tuple2
= Tuple
<A
, B
>;
161 template <typename A
, typename B
, typename C
>
162 using Tuple3
= Tuple
<A
, B
, C
>;
163 template <typename A
, typename B
, typename C
, typename D
>
164 using Tuple4
= Tuple
<A
, B
, C
, D
>;
165 template <typename A
, typename B
, typename C
, typename D
, typename E
>
166 using Tuple5
= Tuple
<A
, B
, C
, D
, E
>;
167 template <typename A
,
173 using Tuple6
= Tuple
<A
, B
, C
, D
, E
, F
>;
174 template <typename A
,
181 using Tuple7
= Tuple
<A
, B
, C
, D
, E
, F
, G
>;
182 template <typename A
,
190 using Tuple8
= Tuple
<A
, B
, C
, D
, E
, F
, G
, H
>;
192 // Tuple getters --------------------------------------------------------------
194 // Allows accessing an arbitrary tuple element by index.
197 // Tuple<int, double> t2;
199 // get<1>(t2) = 3.14;
201 template <size_t I
, typename T
>
202 T
& get(TupleLeaf
<I
, T
>& leaf
) {
206 template <size_t I
, typename T
>
207 const T
& get(const TupleLeaf
<I
, T
>& leaf
) {
211 // Tuple types ----------------------------------------------------------------
213 // Allows for selection of ValueTuple/RefTuple/ParamTuple without needing the
214 // definitions of class types the tuple takes as parameters.
216 template <typename T
>
219 template <typename
... Ts
>
220 struct TupleTypes
<Tuple
<Ts
...>> {
221 using ValueTuple
= Tuple
<typename TupleTraits
<Ts
>::ValueType
...>;
222 using RefTuple
= Tuple
<typename TupleTraits
<Ts
>::RefType
...>;
223 using ParamTuple
= Tuple
<typename TupleTraits
<Ts
>::ParamType
...>;
226 // Tuple creators -------------------------------------------------------------
228 // Helper functions for constructing tuples while inferring the template
231 template <typename
... Ts
>
232 inline Tuple
<Ts
...> MakeTuple(const Ts
&... arg
) {
233 return Tuple
<Ts
...>(arg
...);
236 // The following set of helpers make what Boost refers to as "Tiers" - a tuple
239 template <typename
... Ts
>
240 inline Tuple
<Ts
&...> MakeRefTuple(Ts
&... arg
) {
241 return Tuple
<Ts
&...>(arg
...);
244 // Dispatchers ----------------------------------------------------------------
246 // Helper functions that call the given method on an object, with the unpacked
247 // tuple arguments. Notice that they all have the same number of arguments,
248 // so you need only write:
249 // DispatchToMethod(object, &Object::method, args);
250 // This is very useful for templated dispatchers, since they don't need to know
251 // what type |args| is.
253 // Non-Static Dispatchers with no out params.
255 template <typename ObjT
, typename Method
, typename A
>
256 inline void DispatchToMethod(ObjT
* obj
, Method method
, const A
& arg
) {
257 (obj
->*method
)(base::internal::UnwrapTraits
<A
>::Unwrap(arg
));
260 template <typename ObjT
, typename Method
, typename
... Ts
, size_t... Ns
>
261 inline void DispatchToMethodImpl(ObjT
* obj
,
263 const Tuple
<Ts
...>& arg
,
264 IndexSequence
<Ns
...>) {
265 (obj
->*method
)(base::internal::UnwrapTraits
<Ts
>::Unwrap(get
<Ns
>(arg
))...);
268 template <typename ObjT
, typename Method
, typename
... Ts
>
269 inline void DispatchToMethod(ObjT
* obj
,
271 const Tuple
<Ts
...>& arg
) {
272 DispatchToMethodImpl(obj
, method
, arg
, MakeIndexSequence
<sizeof...(Ts
)>());
275 // Static Dispatchers with no out params.
277 template <typename Function
, typename A
>
278 inline void DispatchToMethod(Function function
, const A
& arg
) {
279 (*function
)(base::internal::UnwrapTraits
<A
>::Unwrap(arg
));
282 template <typename Function
, typename
... Ts
, size_t... Ns
>
283 inline void DispatchToFunctionImpl(Function function
,
284 const Tuple
<Ts
...>& arg
,
285 IndexSequence
<Ns
...>) {
286 (*function
)(base::internal::UnwrapTraits
<Ts
>::Unwrap(get
<Ns
>(arg
))...);
289 template <typename Function
, typename
... Ts
>
290 inline void DispatchToFunction(Function function
, const Tuple
<Ts
...>& arg
) {
291 DispatchToFunctionImpl(function
, arg
, MakeIndexSequence
<sizeof...(Ts
)>());
294 // Dispatchers with out parameters.
296 template <typename ObjT
,
301 inline void DispatchToMethodImpl(ObjT
* obj
,
304 Tuple
<OutTs
...>* out
,
305 IndexSequence
<OutNs
...>) {
306 (obj
->*method
)(base::internal::UnwrapTraits
<In
>::Unwrap(in
),
307 &get
<OutNs
>(*out
)...);
310 template <typename ObjT
, typename Method
, typename In
, typename
... OutTs
>
311 inline void DispatchToMethod(ObjT
* obj
,
314 Tuple
<OutTs
...>* out
) {
315 DispatchToMethodImpl(obj
, method
, in
, out
,
316 MakeIndexSequence
<sizeof...(OutTs
)>());
319 template <typename ObjT
,
325 inline void DispatchToMethodImpl(ObjT
* obj
,
327 const Tuple
<InTs
...>& in
,
328 Tuple
<OutTs
...>* out
,
329 IndexSequence
<InNs
...>,
330 IndexSequence
<OutNs
...>) {
331 (obj
->*method
)(base::internal::UnwrapTraits
<InTs
>::Unwrap(get
<InNs
>(in
))...,
332 &get
<OutNs
>(*out
)...);
335 template <typename ObjT
, typename Method
, typename
... InTs
, typename
... OutTs
>
336 inline void DispatchToMethod(ObjT
* obj
,
338 const Tuple
<InTs
...>& in
,
339 Tuple
<OutTs
...>* out
) {
340 DispatchToMethodImpl(obj
, method
, in
, out
,
341 MakeIndexSequence
<sizeof...(InTs
)>(),
342 MakeIndexSequence
<sizeof...(OutTs
)>());
345 #endif // BASE_TUPLE_H__