Protect WebURLLoaderImpl::Context while receiving responses.
[chromium-blink-merge.git] / base / bind_helpers.h
blob0ac9069c998b51bc550e4c4594f5149e8369c02a
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
8 //
9 // It also defines a set of simple functions and utilities that people want
10 // when using Callback<> and Bind().
13 // ARGUMENT BINDING WRAPPERS
15 // The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(),
16 // base::ConstRef(), and base::IgnoreResult().
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
19 // refcounting on arguments that are refcounted objects.
21 // Owned() transfers ownership of an object to the Callback resulting from
22 // bind; the object will be deleted when the Callback is deleted.
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25 // through a Callback. Logically, this signifies a destructive transfer of
26 // the state of the argument into the target function. Invoking
27 // Callback::Run() twice on a Callback that was created with a Passed()
28 // argument will CHECK() because the first invocation would have already
29 // transferred ownership to the target function.
31 // ConstRef() allows binding a constant reference to an argument rather
32 // than a copy.
34 // IgnoreResult() is used to adapt a function or Callback with a return type to
35 // one with a void return. This is most useful if you have a function with,
36 // say, a pesky ignorable bool return that you want to use with PostTask or
37 // something else that expect a Callback with a void return.
39 // EXAMPLE OF Unretained():
41 // class Foo {
42 // public:
43 // void func() { cout << "Foo:f" << endl; }
44 // };
46 // // In some function somewhere.
47 // Foo foo;
48 // Closure foo_callback =
49 // Bind(&Foo::func, Unretained(&foo));
50 // foo_callback.Run(); // Prints "Foo:f".
52 // Without the Unretained() wrapper on |&foo|, the above call would fail
53 // to compile because Foo does not support the AddRef() and Release() methods.
56 // EXAMPLE OF Owned():
58 // void foo(int* arg) { cout << *arg << endl }
60 // int* pn = new int(1);
61 // Closure foo_callback = Bind(&foo, Owned(pn));
63 // foo_callback.Run(); // Prints "1"
64 // foo_callback.Run(); // Prints "1"
65 // *n = 2;
66 // foo_callback.Run(); // Prints "2"
68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when
69 // // |foo_callback| goes out of scope.
71 // Without Owned(), someone would have to know to delete |pn| when the last
72 // reference to the Callback is deleted.
75 // EXAMPLE OF ConstRef():
77 // void foo(int arg) { cout << arg << endl }
79 // int n = 1;
80 // Closure no_ref = Bind(&foo, n);
81 // Closure has_ref = Bind(&foo, ConstRef(n));
83 // no_ref.Run(); // Prints "1"
84 // has_ref.Run(); // Prints "1"
86 // n = 2;
87 // no_ref.Run(); // Prints "1"
88 // has_ref.Run(); // Prints "2"
90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91 // its bound callbacks.
94 // EXAMPLE OF IgnoreResult():
96 // int DoSomething(int arg) { cout << arg << endl; }
98 // // Assign to a Callback with a void return type.
99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100 // cb->Run(1); // Prints "1".
102 // // Prints "1" on |ml|.
103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
106 // EXAMPLE OF Passed():
108 // void TakesOwnership(scoped_ptr<Foo> arg) { }
109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
111 // scoped_ptr<Foo> f(new Foo());
113 // // |cb| is given ownership of Foo(). |f| is now NULL.
114 // // You can use f.Pass() in place of &f, but it's more verbose.
115 // Closure cb = Bind(&TakesOwnership, Passed(&f));
117 // // Run was never called so |cb| still owns Foo() and deletes
118 // // it on Reset().
119 // cb.Reset();
121 // // |cb| is given a new Foo created by CreateFoo().
122 // cb = Bind(&TakesOwnership, Passed(CreateFoo()));
124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125 // // no longer owns Foo() and, if reset, would not delete Foo().
126 // cb.Run(); // Foo() is now transferred to |arg| and deleted.
127 // cb.Run(); // This CHECK()s since Foo() already been used once.
129 // Passed() is particularly useful with PostTask() when you are transferring
130 // ownership of an argument into a task, but don't necessarily know if the
131 // task will always be executed. This can happen if the task is cancellable
132 // or if it is posted to a MessageLoopProxy.
135 // SIMPLE FUNCTIONS AND UTILITIES.
137 // DoNothing() - Useful for creating a Closure that does nothing when called.
138 // DeletePointer<T>() - Useful for creating a Closure that will delete a
139 // pointer when invoked. Only use this when necessary.
140 // In most cases MessageLoop::DeleteSoon() is a better
141 // fit.
142 // ScopedClosureRunner - Scoper object that runs the wrapped closure when it
143 // goes out of scope. It's conceptually similar to
144 // scoped_ptr<> but calls Run() instead of deleting
145 // the pointer.
147 #ifndef BASE_BIND_HELPERS_H_
148 #define BASE_BIND_HELPERS_H_
150 #include "base/basictypes.h"
151 #include "base/callback.h"
152 #include "base/memory/weak_ptr.h"
153 #include "base/template_util.h"
155 namespace base {
156 namespace internal {
158 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
159 // for the existence of AddRef() and Release() functions of the correct
160 // signature.
162 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
163 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
164 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
165 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
167 // The last link in particular show the method used below.
169 // For SFINAE to work with inherited methods, we need to pull some extra tricks
170 // with multiple inheritance. In the more standard formulation, the overloads
171 // of Check would be:
173 // template <typename C>
174 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
176 // template <typename C>
177 // No NotTheCheckWeWant(...);
179 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
181 // The problem here is that template resolution will not match
182 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if
183 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
184 // |value| will be false. This formulation only checks for whether or
185 // not TargetFunc exist directly in the class being introspected.
187 // To get around this, we play a dirty trick with multiple inheritance.
188 // First, We create a class BaseMixin that declares each function that we
189 // want to probe for. Then we create a class Base that inherits from both T
190 // (the class we wish to probe) and BaseMixin. Note that the function
191 // signature in BaseMixin does not need to match the signature of the function
192 // we are probing for; thus it's easiest to just use void(void).
194 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
195 // ambiguous resolution between BaseMixin and T. This lets us write the
196 // following:
198 // template <typename C>
199 // No GoodCheck(Helper<&C::TargetFunc>*);
201 // template <typename C>
202 // Yes GoodCheck(...);
204 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
206 // Notice here that the variadic version of GoodCheck() returns Yes here
207 // instead of No like the previous one. Also notice that we calculate |value|
208 // by specializing GoodCheck() on Base instead of T.
210 // We've reversed the roles of the variadic, and Helper overloads.
211 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
212 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
213 // to the variadic version if T has TargetFunc. If T::TargetFunc does not
214 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
215 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
217 // This method of SFINAE will correctly probe for inherited names, but it cannot
218 // typecheck those names. It's still a good enough sanity check though.
220 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
222 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
223 // this works well.
225 // TODO(ajwong): Make this check for Release() as well.
226 // See http://crbug.com/82038.
227 template <typename T>
228 class SupportsAddRefAndRelease {
229 typedef char Yes[1];
230 typedef char No[2];
232 struct BaseMixin {
233 void AddRef();
236 // MSVC warns when you try to use Base if T has a private destructor, the
237 // common pattern for refcounted types. It does this even though no attempt to
238 // instantiate Base is made. We disable the warning for this definition.
239 #if defined(OS_WIN)
240 #pragma warning(disable:4624)
241 #endif
242 struct Base : public T, public BaseMixin {
244 #if defined(OS_WIN)
245 #pragma warning(default:4624)
246 #endif
248 template <void(BaseMixin::*)(void)> struct Helper {};
250 template <typename C>
251 static No& Check(Helper<&C::AddRef>*);
253 template <typename >
254 static Yes& Check(...);
256 public:
257 static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes);
260 // Helpers to assert that arguments of a recounted type are bound with a
261 // scoped_refptr.
262 template <bool IsClasstype, typename T>
263 struct UnsafeBindtoRefCountedArgHelper : false_type {
266 template <typename T>
267 struct UnsafeBindtoRefCountedArgHelper<true, T>
268 : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
271 template <typename T>
272 struct UnsafeBindtoRefCountedArg : false_type {
275 template <typename T>
276 struct UnsafeBindtoRefCountedArg<T*>
277 : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
280 template <typename T>
281 class HasIsMethodTag {
282 typedef char Yes[1];
283 typedef char No[2];
285 template <typename U>
286 static Yes& Check(typename U::IsMethod*);
288 template <typename U>
289 static No& Check(...);
291 public:
292 static const bool value = sizeof(Check<T>(0)) == sizeof(Yes);
295 template <typename T>
296 class UnretainedWrapper {
297 public:
298 explicit UnretainedWrapper(T* o) : ptr_(o) {}
299 T* get() const { return ptr_; }
300 private:
301 T* ptr_;
304 template <typename T>
305 class ConstRefWrapper {
306 public:
307 explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
308 const T& get() const { return *ptr_; }
309 private:
310 const T* ptr_;
313 template <typename T>
314 struct IgnoreResultHelper {
315 explicit IgnoreResultHelper(T functor) : functor_(functor) {}
317 T functor_;
320 template <typename T>
321 struct IgnoreResultHelper<Callback<T> > {
322 explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
324 const Callback<T>& functor_;
327 // An alternate implementation is to avoid the destructive copy, and instead
328 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
329 // a class that is essentially a scoped_ptr<>.
331 // The current implementation has the benefit though of leaving ParamTraits<>
332 // fully in callback_internal.h as well as avoiding type conversions during
333 // storage.
334 template <typename T>
335 class OwnedWrapper {
336 public:
337 explicit OwnedWrapper(T* o) : ptr_(o) {}
338 ~OwnedWrapper() { delete ptr_; }
339 T* get() const { return ptr_; }
340 OwnedWrapper(const OwnedWrapper& other) {
341 ptr_ = other.ptr_;
342 other.ptr_ = NULL;
345 private:
346 mutable T* ptr_;
349 // PassedWrapper is a copyable adapter for a scoper that ignores const.
351 // It is needed to get around the fact that Bind() takes a const reference to
352 // all its arguments. Because Bind() takes a const reference to avoid
353 // unnecessary copies, it is incompatible with movable-but-not-copyable
354 // types; doing a destructive "move" of the type into Bind() would violate
355 // the const correctness.
357 // This conundrum cannot be solved without either C++11 rvalue references or
358 // a O(2^n) blowup of Bind() templates to handle each combination of regular
359 // types and movable-but-not-copyable types. Thus we introduce a wrapper type
360 // that is copyable to transmit the correct type information down into
361 // BindState<>. Ignoring const in this type makes sense because it is only
362 // created when we are explicitly trying to do a destructive move.
364 // Two notes:
365 // 1) PassedWrapper supports any type that has a "Pass()" function.
366 // This is intentional. The whitelisting of which specific types we
367 // support is maintained by CallbackParamTraits<>.
368 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
369 // scoper to a Callback and allow the Callback to execute once.
370 template <typename T>
371 class PassedWrapper {
372 public:
373 explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
374 PassedWrapper(const PassedWrapper& other)
375 : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {
377 T Pass() const {
378 CHECK(is_valid_);
379 is_valid_ = false;
380 return scoper_.Pass();
383 private:
384 mutable bool is_valid_;
385 mutable T scoper_;
388 // Unwrap the stored parameters for the wrappers above.
389 template <typename T>
390 struct UnwrapTraits {
391 typedef const T& ForwardType;
392 static ForwardType Unwrap(const T& o) { return o; }
395 template <typename T>
396 struct UnwrapTraits<UnretainedWrapper<T> > {
397 typedef T* ForwardType;
398 static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
399 return unretained.get();
403 template <typename T>
404 struct UnwrapTraits<ConstRefWrapper<T> > {
405 typedef const T& ForwardType;
406 static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
407 return const_ref.get();
411 template <typename T>
412 struct UnwrapTraits<scoped_refptr<T> > {
413 typedef T* ForwardType;
414 static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
417 template <typename T>
418 struct UnwrapTraits<WeakPtr<T> > {
419 typedef const WeakPtr<T>& ForwardType;
420 static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
423 template <typename T>
424 struct UnwrapTraits<OwnedWrapper<T> > {
425 typedef T* ForwardType;
426 static ForwardType Unwrap(const OwnedWrapper<T>& o) {
427 return o.get();
431 template <typename T>
432 struct UnwrapTraits<PassedWrapper<T> > {
433 typedef T ForwardType;
434 static T Unwrap(PassedWrapper<T>& o) {
435 return o.Pass();
439 // Utility for handling different refcounting semantics in the Bind()
440 // function.
441 template <bool is_method, typename T>
442 struct MaybeRefcount;
444 template <typename T>
445 struct MaybeRefcount<false, T> {
446 static void AddRef(const T&) {}
447 static void Release(const T&) {}
450 template <typename T, size_t n>
451 struct MaybeRefcount<false, T[n]> {
452 static void AddRef(const T*) {}
453 static void Release(const T*) {}
456 template <typename T>
457 struct MaybeRefcount<true, T> {
458 static void AddRef(const T&) {}
459 static void Release(const T&) {}
462 template <typename T>
463 struct MaybeRefcount<true, T*> {
464 static void AddRef(T* o) { o->AddRef(); }
465 static void Release(T* o) { o->Release(); }
468 // No need to additionally AddRef() and Release() since we are storing a
469 // scoped_refptr<> inside the storage object already.
470 template <typename T>
471 struct MaybeRefcount<true, scoped_refptr<T> > {
472 static void AddRef(const scoped_refptr<T>& o) {}
473 static void Release(const scoped_refptr<T>& o) {}
476 template <typename T>
477 struct MaybeRefcount<true, const T*> {
478 static void AddRef(const T* o) { o->AddRef(); }
479 static void Release(const T* o) { o->Release(); }
482 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
483 // method. It is used internally by Bind() to select the correct
484 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
485 // the target object is invalidated.
487 // P1 should be the type of the object that will be received of the method.
488 template <bool IsMethod, typename P1>
489 struct IsWeakMethod : public false_type {};
491 template <typename T>
492 struct IsWeakMethod<true, WeakPtr<T> > : public true_type {};
494 template <typename T>
495 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {};
497 } // namespace internal
499 template <typename T>
500 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
501 return internal::UnretainedWrapper<T>(o);
504 template <typename T>
505 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
506 return internal::ConstRefWrapper<T>(o);
509 template <typename T>
510 static inline internal::OwnedWrapper<T> Owned(T* o) {
511 return internal::OwnedWrapper<T>(o);
514 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and
515 // is best suited for use with the return value of a function. The second
516 // takes a pointer to the scoper and is just syntactic sugar to avoid having
517 // to write Passed(scoper.Pass()).
518 template <typename T>
519 static inline internal::PassedWrapper<T> Passed(T scoper) {
520 return internal::PassedWrapper<T>(scoper.Pass());
522 template <typename T>
523 static inline internal::PassedWrapper<T> Passed(T* scoper) {
524 return internal::PassedWrapper<T>(scoper->Pass());
527 template <typename T>
528 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
529 return internal::IgnoreResultHelper<T>(data);
532 template <typename T>
533 static inline internal::IgnoreResultHelper<Callback<T> >
534 IgnoreResult(const Callback<T>& data) {
535 return internal::IgnoreResultHelper<Callback<T> >(data);
538 BASE_EXPORT void DoNothing();
540 template<typename T>
541 void DeletePointer(T* obj) {
542 delete obj;
545 // ScopedClosureRunner is akin to scoped_ptr for Closures. It ensures that the
546 // Closure is executed and deleted no matter how the current scope exits.
547 class BASE_EXPORT ScopedClosureRunner {
548 public:
549 explicit ScopedClosureRunner(const Closure& closure);
550 ~ScopedClosureRunner();
552 Closure Release();
554 private:
555 Closure closure_;
557 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedClosureRunner);
560 } // namespace base
562 #endif // BASE_BIND_HELPERS_H_