roll skia 1111->1115
[chromium-blink-merge.git] / base / message_loop_unittest.cc
blobcd681f37b61c28de084340d1f34319c3f821f7d5
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <vector>
7 #include "base/eintr_wrapper.h"
8 #include "base/logging.h"
9 #include "base/memory/ref_counted.h"
10 #include "base/message_loop.h"
11 #include "base/task.h"
12 #include "base/threading/platform_thread.h"
13 #include "base/threading/thread.h"
14 #include "testing/gtest/include/gtest/gtest.h"
16 #if defined(OS_WIN)
17 #include "base/message_pump_win.h"
18 #include "base/win/scoped_handle.h"
19 #endif
20 #if defined(OS_POSIX)
21 #include "base/message_pump_libevent.h"
22 #endif
24 using base::PlatformThread;
25 using base::Thread;
26 using base::Time;
27 using base::TimeDelta;
29 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
30 // to avoid chopping this file up with so many #ifdefs.
32 namespace {
34 class MessageLoopTest : public testing::Test {};
36 class Foo : public base::RefCounted<Foo> {
37 public:
38 Foo() : test_count_(0) {
41 void Test0() {
42 ++test_count_;
45 void Test1ConstRef(const std::string& a) {
46 ++test_count_;
47 result_.append(a);
50 void Test1Ptr(std::string* a) {
51 ++test_count_;
52 result_.append(*a);
55 void Test1Int(int a) {
56 test_count_ += a;
59 void Test2Ptr(std::string* a, std::string* b) {
60 ++test_count_;
61 result_.append(*a);
62 result_.append(*b);
65 void Test2Mixed(const std::string& a, std::string* b) {
66 ++test_count_;
67 result_.append(a);
68 result_.append(*b);
71 int test_count() const { return test_count_; }
72 const std::string& result() const { return result_; }
74 private:
75 friend class base::RefCounted<Foo>;
77 ~Foo() {}
79 int test_count_;
80 std::string result_;
83 class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
84 public:
85 void QuitNow() {
86 MessageLoop::current()->Quit();
89 private:
90 friend class base::RefCounted<QuitMsgLoop>;
92 ~QuitMsgLoop() {}
95 void RunTest_PostTask(MessageLoop::Type message_loop_type) {
96 MessageLoop loop(message_loop_type);
98 // Add tests to message loop
99 scoped_refptr<Foo> foo(new Foo());
100 std::string a("a"), b("b"), c("c"), d("d");
101 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
102 foo.get(), &Foo::Test0));
103 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
104 foo.get(), &Foo::Test1ConstRef, a));
105 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
106 foo.get(), &Foo::Test1Ptr, &b));
107 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
108 foo.get(), &Foo::Test1Int, 100));
109 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
110 foo.get(), &Foo::Test2Ptr, &a, &c));
111 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
112 foo.get(), &Foo::Test2Mixed, a, &d));
114 // After all tests, post a message that will shut down the message loop
115 scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
116 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
117 quit.get(), &QuitMsgLoop::QuitNow));
119 // Now kick things off
120 MessageLoop::current()->Run();
122 EXPECT_EQ(foo->test_count(), 105);
123 EXPECT_EQ(foo->result(), "abacad");
126 void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
127 MessageLoop loop(message_loop_type);
129 // Add tests to message loop
130 scoped_refptr<Foo> foo(new Foo());
131 std::string a("a"), b("b"), c("c"), d("d");
132 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
133 foo.get(), &Foo::Test0));
134 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
135 foo.get(), &Foo::Test1ConstRef, a));
136 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
137 foo.get(), &Foo::Test1Ptr, &b));
138 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
139 foo.get(), &Foo::Test1Int, 100));
140 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
141 foo.get(), &Foo::Test2Ptr, &a, &c));
142 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
143 foo.get(), &Foo::Test2Mixed, a, &d));
145 // After all tests, post a message that will shut down the message loop
146 scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
147 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
148 quit.get(), &QuitMsgLoop::QuitNow));
150 // Now kick things off with the SEH block active.
151 MessageLoop::current()->set_exception_restoration(true);
152 MessageLoop::current()->Run();
153 MessageLoop::current()->set_exception_restoration(false);
155 EXPECT_EQ(foo->test_count(), 105);
156 EXPECT_EQ(foo->result(), "abacad");
159 // This class runs slowly to simulate a large amount of work being done.
160 class SlowTask : public Task {
161 public:
162 SlowTask(int pause_ms, int* quit_counter)
163 : pause_ms_(pause_ms), quit_counter_(quit_counter) {
165 virtual void Run() {
166 PlatformThread::Sleep(pause_ms_);
167 if (--(*quit_counter_) == 0)
168 MessageLoop::current()->Quit();
170 private:
171 int pause_ms_;
172 int* quit_counter_;
175 // This class records the time when Run was called in a Time object, which is
176 // useful for building a variety of MessageLoop tests.
177 class RecordRunTimeTask : public SlowTask {
178 public:
179 RecordRunTimeTask(Time* run_time, int* quit_counter)
180 : SlowTask(10, quit_counter), run_time_(run_time) {
182 virtual void Run() {
183 *run_time_ = Time::Now();
184 // Cause our Run function to take some time to execute. As a result we can
185 // count on subsequent RecordRunTimeTask objects running at a future time,
186 // without worry about the resolution of our system clock being an issue.
187 SlowTask::Run();
189 private:
190 Time* run_time_;
193 void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
194 MessageLoop loop(message_loop_type);
196 // Test that PostDelayedTask results in a delayed task.
198 const int kDelayMS = 100;
200 int num_tasks = 1;
201 Time run_time;
203 loop.PostDelayedTask(
204 FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);
206 Time time_before_run = Time::Now();
207 loop.Run();
208 Time time_after_run = Time::Now();
210 EXPECT_EQ(0, num_tasks);
211 EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
214 void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
215 MessageLoop loop(message_loop_type);
217 // Test that two tasks with different delays run in the right order.
219 int num_tasks = 2;
220 Time run_time1, run_time2;
222 loop.PostDelayedTask(
223 FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
224 // If we get a large pause in execution (due to a context switch) here, this
225 // test could fail.
226 loop.PostDelayedTask(
227 FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
229 loop.Run();
230 EXPECT_EQ(0, num_tasks);
232 EXPECT_TRUE(run_time2 < run_time1);
235 void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
236 MessageLoop loop(message_loop_type);
238 // Test that two tasks with the same delay run in the order in which they
239 // were posted.
241 // NOTE: This is actually an approximate test since the API only takes a
242 // "delay" parameter, so we are not exactly simulating two tasks that get
243 // posted at the exact same time. It would be nice if the API allowed us to
244 // specify the desired run time.
246 const int kDelayMS = 100;
248 int num_tasks = 2;
249 Time run_time1, run_time2;
251 loop.PostDelayedTask(
252 FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
253 loop.PostDelayedTask(
254 FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);
256 loop.Run();
257 EXPECT_EQ(0, num_tasks);
259 EXPECT_TRUE(run_time1 < run_time2);
262 void RunTest_PostDelayedTask_InPostOrder_2(
263 MessageLoop::Type message_loop_type) {
264 MessageLoop loop(message_loop_type);
266 // Test that a delayed task still runs after a normal tasks even if the
267 // normal tasks take a long time to run.
269 const int kPauseMS = 50;
271 int num_tasks = 2;
272 Time run_time;
274 loop.PostTask(
275 FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
276 loop.PostDelayedTask(
277 FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);
279 Time time_before_run = Time::Now();
280 loop.Run();
281 Time time_after_run = Time::Now();
283 EXPECT_EQ(0, num_tasks);
285 EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
288 void RunTest_PostDelayedTask_InPostOrder_3(
289 MessageLoop::Type message_loop_type) {
290 MessageLoop loop(message_loop_type);
292 // Test that a delayed task still runs after a pile of normal tasks. The key
293 // difference between this test and the previous one is that here we return
294 // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
295 // to maybe run the delayed task. It should know not to do so until the
296 // delayed task's delay has passed.
298 int num_tasks = 11;
299 Time run_time1, run_time2;
301 // Clutter the ML with tasks.
302 for (int i = 1; i < num_tasks; ++i)
303 loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));
305 loop.PostDelayedTask(
306 FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);
308 loop.Run();
309 EXPECT_EQ(0, num_tasks);
311 EXPECT_TRUE(run_time2 > run_time1);
314 void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
315 MessageLoop loop(message_loop_type);
317 // Test that the interval of the timer, used to run the next delayed task, is
318 // set to a value corresponding to when the next delayed task should run.
320 // By setting num_tasks to 1, we ensure that the first task to run causes the
321 // run loop to exit.
322 int num_tasks = 1;
323 Time run_time1, run_time2;
325 loop.PostDelayedTask(
326 FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
327 loop.PostDelayedTask(
328 FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
330 Time start_time = Time::Now();
332 loop.Run();
333 EXPECT_EQ(0, num_tasks);
335 // Ensure that we ran in far less time than the slower timer.
336 TimeDelta total_time = Time::Now() - start_time;
337 EXPECT_GT(5000, total_time.InMilliseconds());
339 // In case both timers somehow run at nearly the same time, sleep a little
340 // and then run all pending to force them both to have run. This is just
341 // encouraging flakiness if there is any.
342 PlatformThread::Sleep(100);
343 loop.RunAllPending();
345 EXPECT_TRUE(run_time1.is_null());
346 EXPECT_FALSE(run_time2.is_null());
349 #if defined(OS_WIN)
351 class SubPumpTask : public Task {
352 public:
353 virtual void Run() {
354 MessageLoop::current()->SetNestableTasksAllowed(true);
355 MSG msg;
356 while (GetMessage(&msg, NULL, 0, 0)) {
357 TranslateMessage(&msg);
358 DispatchMessage(&msg);
360 MessageLoop::current()->Quit();
364 class SubPumpQuitTask : public Task {
365 public:
366 SubPumpQuitTask() {
368 virtual void Run() {
369 PostQuitMessage(0);
373 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
374 MessageLoop loop(MessageLoop::TYPE_UI);
376 // Test that the interval of the timer, used to run the next delayed task, is
377 // set to a value corresponding to when the next delayed task should run.
379 // By setting num_tasks to 1, we ensure that the first task to run causes the
380 // run loop to exit.
381 int num_tasks = 1;
382 Time run_time;
384 loop.PostTask(FROM_HERE, new SubPumpTask());
386 // This very delayed task should never run.
387 loop.PostDelayedTask(
388 FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);
390 // This slightly delayed task should run from within SubPumpTask::Run().
391 loop.PostDelayedTask(
392 FROM_HERE, new SubPumpQuitTask(), 10);
394 Time start_time = Time::Now();
396 loop.Run();
397 EXPECT_EQ(1, num_tasks);
399 // Ensure that we ran in far less time than the slower timer.
400 TimeDelta total_time = Time::Now() - start_time;
401 EXPECT_GT(5000, total_time.InMilliseconds());
403 // In case both timers somehow run at nearly the same time, sleep a little
404 // and then run all pending to force them both to have run. This is just
405 // encouraging flakiness if there is any.
406 PlatformThread::Sleep(100);
407 loop.RunAllPending();
409 EXPECT_TRUE(run_time.is_null());
412 #endif // defined(OS_WIN)
414 class RecordDeletionTask : public Task {
415 public:
416 RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
417 : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
419 ~RecordDeletionTask() {
420 *was_deleted_ = true;
421 if (post_on_delete_)
422 MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
424 virtual void Run() {}
425 private:
426 Task* post_on_delete_;
427 bool* was_deleted_;
430 void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
431 bool a_was_deleted = false;
432 bool b_was_deleted = false;
434 MessageLoop loop(message_loop_type);
435 loop.PostTask(
436 FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
437 loop.PostDelayedTask(
438 FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
440 EXPECT_TRUE(a_was_deleted);
441 EXPECT_TRUE(b_was_deleted);
444 void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
445 bool a_was_deleted = false;
446 bool b_was_deleted = false;
447 bool c_was_deleted = false;
449 MessageLoop loop(message_loop_type);
450 RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
451 RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
452 RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
453 loop.PostTask(FROM_HERE, c);
455 EXPECT_TRUE(a_was_deleted);
456 EXPECT_TRUE(b_was_deleted);
457 EXPECT_TRUE(c_was_deleted);
460 class NestingTest : public Task {
461 public:
462 explicit NestingTest(int* depth) : depth_(depth) {
464 void Run() {
465 if (*depth_ > 0) {
466 *depth_ -= 1;
467 MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
469 MessageLoop::current()->SetNestableTasksAllowed(true);
470 MessageLoop::current()->Run();
472 MessageLoop::current()->Quit();
474 private:
475 int* depth_;
478 #if defined(OS_WIN)
480 LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
481 ADD_FAILURE() << "bad exception handler";
482 ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
483 return EXCEPTION_EXECUTE_HANDLER;
486 // This task throws an SEH exception: initially write to an invalid address.
487 // If the right SEH filter is installed, it will fix the error.
488 class CrasherTask : public Task {
489 public:
490 // Ctor. If trash_SEH_handler is true, the task will override the unhandled
491 // exception handler with one sure to crash this test.
492 explicit CrasherTask(bool trash_SEH_handler)
493 : trash_SEH_handler_(trash_SEH_handler) {
495 void Run() {
496 PlatformThread::Sleep(1);
497 if (trash_SEH_handler_)
498 ::SetUnhandledExceptionFilter(&BadExceptionHandler);
499 // Generate a SEH fault. We do it in asm to make sure we know how to undo
500 // the damage.
502 #if defined(_M_IX86)
504 __asm {
505 mov eax, dword ptr [CrasherTask::bad_array_]
506 mov byte ptr [eax], 66
509 #elif defined(_M_X64)
511 bad_array_[0] = 66;
513 #else
514 #error "needs architecture support"
515 #endif
517 MessageLoop::current()->Quit();
519 // Points the bad array to a valid memory location.
520 static void FixError() {
521 bad_array_ = &valid_store_;
524 private:
525 bool trash_SEH_handler_;
526 static volatile char* bad_array_;
527 static char valid_store_;
530 volatile char* CrasherTask::bad_array_ = 0;
531 char CrasherTask::valid_store_ = 0;
533 // This SEH filter fixes the problem and retries execution. Fixing requires
534 // that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
535 // so we move the instruction pointer 5 bytes back.
536 LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
537 if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
538 return EXCEPTION_EXECUTE_HANDLER;
540 CrasherTask::FixError();
542 #if defined(_M_IX86)
544 ex_info->ContextRecord->Eip -= 5;
546 #elif defined(_M_X64)
548 ex_info->ContextRecord->Rip -= 5;
550 #endif
552 return EXCEPTION_CONTINUE_EXECUTION;
555 void RunTest_Crasher(MessageLoop::Type message_loop_type) {
556 MessageLoop loop(message_loop_type);
558 if (::IsDebuggerPresent())
559 return;
561 LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
562 ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
564 MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
565 MessageLoop::current()->set_exception_restoration(true);
566 MessageLoop::current()->Run();
567 MessageLoop::current()->set_exception_restoration(false);
569 ::SetUnhandledExceptionFilter(old_SEH_filter);
572 void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
573 MessageLoop loop(message_loop_type);
575 if (::IsDebuggerPresent())
576 return;
578 LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
579 ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
581 MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
582 MessageLoop::current()->set_exception_restoration(true);
583 MessageLoop::current()->Run();
584 MessageLoop::current()->set_exception_restoration(false);
586 ::SetUnhandledExceptionFilter(old_SEH_filter);
589 #endif // defined(OS_WIN)
591 void RunTest_Nesting(MessageLoop::Type message_loop_type) {
592 MessageLoop loop(message_loop_type);
594 int depth = 100;
595 MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
596 MessageLoop::current()->Run();
597 EXPECT_EQ(depth, 0);
600 const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
602 enum TaskType {
603 MESSAGEBOX,
604 ENDDIALOG,
605 RECURSIVE,
606 TIMEDMESSAGELOOP,
607 QUITMESSAGELOOP,
608 ORDERERD,
609 PUMPS,
610 SLEEP,
613 // Saves the order in which the tasks executed.
614 struct TaskItem {
615 TaskItem(TaskType t, int c, bool s)
616 : type(t),
617 cookie(c),
618 start(s) {
621 TaskType type;
622 int cookie;
623 bool start;
625 bool operator == (const TaskItem& other) const {
626 return type == other.type && cookie == other.cookie && start == other.start;
630 typedef std::vector<TaskItem> TaskList;
632 std::ostream& operator <<(std::ostream& os, TaskType type) {
633 switch (type) {
634 case MESSAGEBOX: os << "MESSAGEBOX"; break;
635 case ENDDIALOG: os << "ENDDIALOG"; break;
636 case RECURSIVE: os << "RECURSIVE"; break;
637 case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
638 case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
639 case ORDERERD: os << "ORDERERD"; break;
640 case PUMPS: os << "PUMPS"; break;
641 case SLEEP: os << "SLEEP"; break;
642 default:
643 NOTREACHED();
644 os << "Unknown TaskType";
645 break;
647 return os;
650 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
651 if (item.start)
652 return os << item.type << " " << item.cookie << " starts";
653 else
654 return os << item.type << " " << item.cookie << " ends";
657 // Saves the order the tasks ran.
658 class OrderedTasks : public Task {
659 public:
660 OrderedTasks(TaskList* order, int cookie)
661 : order_(order),
662 type_(ORDERERD),
663 cookie_(cookie) {
665 OrderedTasks(TaskList* order, TaskType type, int cookie)
666 : order_(order),
667 type_(type),
668 cookie_(cookie) {
671 void RunStart() {
672 TaskItem item(type_, cookie_, true);
673 DVLOG(1) << item;
674 order_->push_back(item);
676 void RunEnd() {
677 TaskItem item(type_, cookie_, false);
678 DVLOG(1) << item;
679 order_->push_back(item);
682 virtual void Run() {
683 RunStart();
684 RunEnd();
687 protected:
688 TaskList* order() const {
689 return order_;
692 int cookie() const {
693 return cookie_;
696 private:
697 TaskList* order_;
698 TaskType type_;
699 int cookie_;
702 #if defined(OS_WIN)
704 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
705 // common controls (like OpenFile) and StartDoc printing function can cause
706 // implicit message loops.
707 class MessageBoxTask : public OrderedTasks {
708 public:
709 MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
710 : OrderedTasks(order, MESSAGEBOX, cookie),
711 is_reentrant_(is_reentrant) {
714 virtual void Run() {
715 RunStart();
716 if (is_reentrant_)
717 MessageLoop::current()->SetNestableTasksAllowed(true);
718 MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
719 RunEnd();
722 private:
723 bool is_reentrant_;
726 // Will end the MessageBox.
727 class EndDialogTask : public OrderedTasks {
728 public:
729 EndDialogTask(TaskList* order, int cookie)
730 : OrderedTasks(order, ENDDIALOG, cookie) {
733 virtual void Run() {
734 RunStart();
735 HWND window = GetActiveWindow();
736 if (window != NULL) {
737 EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
738 // Cheap way to signal that the window wasn't found if RunEnd() isn't
739 // called.
740 RunEnd();
745 #endif // defined(OS_WIN)
747 class RecursiveTask : public OrderedTasks {
748 public:
749 RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
750 : OrderedTasks(order, RECURSIVE, cookie),
751 depth_(depth),
752 is_reentrant_(is_reentrant) {
755 virtual void Run() {
756 RunStart();
757 if (depth_ > 0) {
758 if (is_reentrant_)
759 MessageLoop::current()->SetNestableTasksAllowed(true);
760 MessageLoop::current()->PostTask(FROM_HERE,
761 new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
763 RunEnd();
766 private:
767 int depth_;
768 bool is_reentrant_;
771 class RecursiveSlowTask : public RecursiveTask {
772 public:
773 RecursiveSlowTask(int depth, TaskList* order, int cookie, bool is_reentrant)
774 : RecursiveTask(depth, order, cookie, is_reentrant) {
777 virtual void Run() {
778 RecursiveTask::Run();
779 PlatformThread::Sleep(10); // milliseconds
783 class QuitTask : public OrderedTasks {
784 public:
785 QuitTask(TaskList* order, int cookie)
786 : OrderedTasks(order, QUITMESSAGELOOP, cookie) {
789 virtual void Run() {
790 RunStart();
791 MessageLoop::current()->Quit();
792 RunEnd();
796 class SleepTask : public OrderedTasks {
797 public:
798 SleepTask(TaskList* order, int cookie, int ms)
799 : OrderedTasks(order, SLEEP, cookie), ms_(ms) {
802 virtual void Run() {
803 RunStart();
804 PlatformThread::Sleep(ms_);
805 RunEnd();
808 private:
809 int ms_;
812 #if defined(OS_WIN)
814 class Recursive2Tasks : public Task {
815 public:
816 Recursive2Tasks(MessageLoop* target,
817 HANDLE event,
818 bool expect_window,
819 TaskList* order,
820 bool is_reentrant)
821 : target_(target),
822 event_(event),
823 expect_window_(expect_window),
824 order_(order),
825 is_reentrant_(is_reentrant) {
828 virtual void Run() {
829 target_->PostTask(FROM_HERE,
830 new RecursiveTask(2, order_, 1, is_reentrant_));
831 target_->PostTask(FROM_HERE,
832 new MessageBoxTask(order_, 2, is_reentrant_));
833 target_->PostTask(FROM_HERE,
834 new RecursiveTask(2, order_, 3, is_reentrant_));
835 // The trick here is that for recursive task processing, this task will be
836 // ran _inside_ the MessageBox message loop, dismissing the MessageBox
837 // without a chance.
838 // For non-recursive task processing, this will be executed _after_ the
839 // MessageBox will have been dismissed by the code below, where
840 // expect_window_ is true.
841 target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
842 target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
844 // Enforce that every tasks are sent before starting to run the main thread
845 // message loop.
846 ASSERT_TRUE(SetEvent(event_));
848 // Poll for the MessageBox. Don't do this at home! At the speed we do it,
849 // you will never realize one MessageBox was shown.
850 for (; expect_window_;) {
851 HWND window = FindWindow(L"#32770", kMessageBoxTitle);
852 if (window) {
853 // Dismiss it.
854 for (;;) {
855 HWND button = FindWindowEx(window, NULL, L"Button", NULL);
856 if (button != NULL) {
857 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
858 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
859 break;
862 break;
867 private:
868 MessageLoop* target_;
869 HANDLE event_;
870 TaskList* order_;
871 bool expect_window_;
872 bool is_reentrant_;
875 #endif // defined(OS_WIN)
877 void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
878 MessageLoop loop(message_loop_type);
880 EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
881 TaskList order;
882 MessageLoop::current()->PostTask(FROM_HERE,
883 new RecursiveTask(2, &order, 1, false));
884 MessageLoop::current()->PostTask(FROM_HERE,
885 new RecursiveTask(2, &order, 2, false));
886 MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
888 MessageLoop::current()->Run();
890 // FIFO order.
891 ASSERT_EQ(14U, order.size());
892 EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
893 EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
894 EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
895 EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
896 EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
897 EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
898 EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
899 EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
900 EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
901 EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
902 EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
903 EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
904 EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
905 EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
908 void RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type) {
909 MessageLoop loop(message_loop_type);
911 EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
912 TaskList order;
913 MessageLoop::current()->PostTask(FROM_HERE,
914 new RecursiveSlowTask(2, &order, 1, false));
915 MessageLoop::current()->PostTask(FROM_HERE,
916 new RecursiveSlowTask(2, &order, 2, false));
917 MessageLoop::current()->PostDelayedTask(FROM_HERE,
918 new OrderedTasks(&order, 3), 5);
919 MessageLoop::current()->PostDelayedTask(FROM_HERE,
920 new QuitTask(&order, 4), 5);
922 MessageLoop::current()->Run();
924 // FIFO order.
925 ASSERT_EQ(16U, order.size());
926 EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
927 EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
928 EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
929 EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
930 EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 1, true));
931 EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 1, false));
932 EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 3, true));
933 EXPECT_EQ(order[ 7], TaskItem(ORDERERD, 3, false));
934 EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
935 EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
936 EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 4, true));
937 EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 4, false));
938 EXPECT_EQ(order[12], TaskItem(RECURSIVE, 1, true));
939 EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, false));
940 EXPECT_EQ(order[14], TaskItem(RECURSIVE, 2, true));
941 EXPECT_EQ(order[15], TaskItem(RECURSIVE, 2, false));
944 void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
945 MessageLoop loop(message_loop_type);
947 TaskList order;
948 MessageLoop::current()->PostTask(FROM_HERE,
949 new RecursiveTask(2, &order, 1, true));
950 MessageLoop::current()->PostTask(FROM_HERE,
951 new RecursiveTask(2, &order, 2, true));
952 MessageLoop::current()->PostTask(FROM_HERE,
953 new QuitTask(&order, 3));
955 MessageLoop::current()->Run();
957 // FIFO order.
958 ASSERT_EQ(14U, order.size());
959 EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
960 EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
961 EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
962 EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
963 EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
964 EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
965 EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
966 EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
967 EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
968 EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
969 EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
970 EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
971 EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
972 EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
975 #if defined(OS_WIN)
976 // TODO(darin): These tests need to be ported since they test critical
977 // message loop functionality.
979 // A side effect of this test is the generation a beep. Sorry.
980 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
981 MessageLoop loop(message_loop_type);
983 Thread worker("RecursiveDenial2_worker");
984 Thread::Options options;
985 options.message_loop_type = message_loop_type;
986 ASSERT_EQ(true, worker.StartWithOptions(options));
987 TaskList order;
988 base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
989 worker.message_loop()->PostTask(FROM_HERE,
990 new Recursive2Tasks(MessageLoop::current(),
991 event,
992 true,
993 &order,
994 false));
995 // Let the other thread execute.
996 WaitForSingleObject(event, INFINITE);
997 MessageLoop::current()->Run();
999 ASSERT_EQ(order.size(), 17);
1000 EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
1001 EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
1002 EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
1003 EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
1004 EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
1005 EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
1006 // When EndDialogTask is processed, the window is already dismissed, hence no
1007 // "end" entry.
1008 EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
1009 EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
1010 EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
1011 EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
1012 EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
1013 EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
1014 EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
1015 EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
1016 EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
1017 EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
1018 EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
1021 // A side effect of this test is the generation a beep. Sorry. This test also
1022 // needs to process windows messages on the current thread.
1023 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
1024 MessageLoop loop(message_loop_type);
1026 Thread worker("RecursiveSupport2_worker");
1027 Thread::Options options;
1028 options.message_loop_type = message_loop_type;
1029 ASSERT_EQ(true, worker.StartWithOptions(options));
1030 TaskList order;
1031 base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
1032 worker.message_loop()->PostTask(FROM_HERE,
1033 new Recursive2Tasks(MessageLoop::current(),
1034 event,
1035 false,
1036 &order,
1037 true));
1038 // Let the other thread execute.
1039 WaitForSingleObject(event, INFINITE);
1040 MessageLoop::current()->Run();
1042 ASSERT_EQ(order.size(), 18);
1043 EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
1044 EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
1045 EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
1046 // Note that this executes in the MessageBox modal loop.
1047 EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
1048 EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
1049 EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
1050 EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
1051 EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
1052 /* The order can subtly change here. The reason is that when RecursiveTask(1)
1053 is called in the main thread, if it is faster than getting to the
1054 PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
1055 change. We don't care anyway that the order isn't correct.
1056 EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
1057 EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
1058 EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
1059 EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
1061 EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
1062 EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
1063 EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
1064 EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
1065 EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
1066 EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
1069 #endif // defined(OS_WIN)
1071 class TaskThatPumps : public OrderedTasks {
1072 public:
1073 TaskThatPumps(TaskList* order, int cookie)
1074 : OrderedTasks(order, PUMPS, cookie) {
1077 virtual void Run() {
1078 RunStart();
1079 bool old_state = MessageLoop::current()->NestableTasksAllowed();
1080 MessageLoop::current()->SetNestableTasksAllowed(true);
1081 MessageLoop::current()->RunAllPending();
1082 MessageLoop::current()->SetNestableTasksAllowed(old_state);
1083 RunEnd();
1087 // Tests that non nestable tasks run in FIFO if there are no nested loops.
1088 void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
1089 MessageLoop loop(message_loop_type);
1091 TaskList order;
1093 Task* task = new OrderedTasks(&order, 1);
1094 MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1095 MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
1096 MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
1097 MessageLoop::current()->Run();
1099 // FIFO order.
1100 ASSERT_EQ(6U, order.size());
1101 EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
1102 EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
1103 EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
1104 EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
1105 EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
1106 EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
1109 // Tests that non nestable tasks don't run when there's code in the call stack.
1110 void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
1111 bool use_delayed) {
1112 MessageLoop loop(message_loop_type);
1114 TaskList order;
1116 MessageLoop::current()->PostTask(FROM_HERE,
1117 new TaskThatPumps(&order, 1));
1118 Task* task = new OrderedTasks(&order, 2);
1119 if (use_delayed) {
1120 MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1);
1121 } else {
1122 MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1124 MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
1125 MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50));
1126 MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5));
1127 Task* non_nestable_quit = new QuitTask(&order, 6);
1128 if (use_delayed) {
1129 MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE,
1130 non_nestable_quit,
1132 } else {
1133 MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
1136 MessageLoop::current()->Run();
1138 // FIFO order.
1139 ASSERT_EQ(12U, order.size());
1140 EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
1141 EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
1142 EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
1143 EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true));
1144 EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false));
1145 EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true));
1146 EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false));
1147 EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false));
1148 EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true));
1149 EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false));
1150 EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true));
1151 EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false));
1154 #if defined(OS_WIN)
1156 class DispatcherImpl : public MessageLoopForUI::Dispatcher {
1157 public:
1158 DispatcherImpl() : dispatch_count_(0) {}
1160 virtual bool Dispatch(const MSG& msg) {
1161 ::TranslateMessage(&msg);
1162 ::DispatchMessage(&msg);
1163 // Do not count WM_TIMER since it is not what we post and it will cause
1164 // flakiness.
1165 if (msg.message != WM_TIMER)
1166 ++dispatch_count_;
1167 // We treat WM_LBUTTONUP as the last message.
1168 return msg.message != WM_LBUTTONUP;
1171 int dispatch_count_;
1174 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
1175 MessageLoop loop(message_loop_type);
1177 class MyTask : public Task {
1178 public:
1179 virtual void Run() {
1180 PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1181 PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1184 Task* task = new MyTask();
1185 MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1186 DispatcherImpl dispatcher;
1187 MessageLoopForUI::current()->Run(&dispatcher);
1188 ASSERT_EQ(2, dispatcher.dispatch_count_);
1191 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
1192 if (code == base::MessagePumpForUI::kMessageFilterCode) {
1193 MSG* msg = reinterpret_cast<MSG*>(lparam);
1194 if (msg->message == WM_LBUTTONDOWN)
1195 return TRUE;
1197 return FALSE;
1200 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
1201 MessageLoop loop(message_loop_type);
1203 class MyTask : public Task {
1204 public:
1205 virtual void Run() {
1206 PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1207 PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1210 Task* task = new MyTask();
1211 MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1212 HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
1213 MsgFilterProc,
1214 NULL,
1215 GetCurrentThreadId());
1216 DispatcherImpl dispatcher;
1217 MessageLoopForUI::current()->Run(&dispatcher);
1218 ASSERT_EQ(1, dispatcher.dispatch_count_);
1219 UnhookWindowsHookEx(msg_hook);
1222 class TestIOHandler : public MessageLoopForIO::IOHandler {
1223 public:
1224 TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
1226 virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
1227 DWORD bytes_transfered, DWORD error);
1229 void Init();
1230 void WaitForIO();
1231 OVERLAPPED* context() { return &context_.overlapped; }
1232 DWORD size() { return sizeof(buffer_); }
1234 private:
1235 char buffer_[48];
1236 MessageLoopForIO::IOContext context_;
1237 HANDLE signal_;
1238 base::win::ScopedHandle file_;
1239 bool wait_;
1242 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
1243 : signal_(signal), wait_(wait) {
1244 memset(buffer_, 0, sizeof(buffer_));
1245 memset(&context_, 0, sizeof(context_));
1246 context_.handler = this;
1248 file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
1249 FILE_FLAG_OVERLAPPED, NULL));
1250 EXPECT_TRUE(file_.IsValid());
1253 void TestIOHandler::Init() {
1254 MessageLoopForIO::current()->RegisterIOHandler(file_, this);
1256 DWORD read;
1257 EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
1258 EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
1259 if (wait_)
1260 WaitForIO();
1263 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
1264 DWORD bytes_transfered, DWORD error) {
1265 ASSERT_TRUE(context == &context_);
1266 ASSERT_TRUE(SetEvent(signal_));
1269 void TestIOHandler::WaitForIO() {
1270 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
1271 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
1274 class IOHandlerTask : public Task {
1275 public:
1276 explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
1277 virtual void Run() {
1278 handler_->Init();
1281 private:
1282 TestIOHandler* handler_;
1285 void RunTest_IOHandler() {
1286 base::win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
1287 ASSERT_TRUE(callback_called.IsValid());
1289 const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
1290 base::win::ScopedHandle server(
1291 CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1292 ASSERT_TRUE(server.IsValid());
1294 Thread thread("IOHandler test");
1295 Thread::Options options;
1296 options.message_loop_type = MessageLoop::TYPE_IO;
1297 ASSERT_TRUE(thread.StartWithOptions(options));
1299 MessageLoop* thread_loop = thread.message_loop();
1300 ASSERT_TRUE(NULL != thread_loop);
1302 TestIOHandler handler(kPipeName, callback_called, false);
1303 IOHandlerTask* task = new IOHandlerTask(&handler);
1304 thread_loop->PostTask(FROM_HERE, task);
1305 Sleep(100); // Make sure the thread runs and sleeps for lack of work.
1307 const char buffer[] = "Hello there!";
1308 DWORD written;
1309 EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
1311 DWORD result = WaitForSingleObject(callback_called, 1000);
1312 EXPECT_EQ(WAIT_OBJECT_0, result);
1314 thread.Stop();
1317 void RunTest_WaitForIO() {
1318 base::win::ScopedHandle callback1_called(
1319 CreateEvent(NULL, TRUE, FALSE, NULL));
1320 base::win::ScopedHandle callback2_called(
1321 CreateEvent(NULL, TRUE, FALSE, NULL));
1322 ASSERT_TRUE(callback1_called.IsValid());
1323 ASSERT_TRUE(callback2_called.IsValid());
1325 const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
1326 const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
1327 base::win::ScopedHandle server1(
1328 CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1329 base::win::ScopedHandle server2(
1330 CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1331 ASSERT_TRUE(server1.IsValid());
1332 ASSERT_TRUE(server2.IsValid());
1334 Thread thread("IOHandler test");
1335 Thread::Options options;
1336 options.message_loop_type = MessageLoop::TYPE_IO;
1337 ASSERT_TRUE(thread.StartWithOptions(options));
1339 MessageLoop* thread_loop = thread.message_loop();
1340 ASSERT_TRUE(NULL != thread_loop);
1342 TestIOHandler handler1(kPipeName1, callback1_called, false);
1343 TestIOHandler handler2(kPipeName2, callback2_called, true);
1344 IOHandlerTask* task1 = new IOHandlerTask(&handler1);
1345 IOHandlerTask* task2 = new IOHandlerTask(&handler2);
1346 thread_loop->PostTask(FROM_HERE, task1);
1347 Sleep(100); // Make sure the thread runs and sleeps for lack of work.
1348 thread_loop->PostTask(FROM_HERE, task2);
1349 Sleep(100);
1351 // At this time handler1 is waiting to be called, and the thread is waiting
1352 // on the Init method of handler2, filtering only handler2 callbacks.
1354 const char buffer[] = "Hello there!";
1355 DWORD written;
1356 EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
1357 Sleep(200);
1358 EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
1359 "handler1 has not been called";
1361 EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
1363 HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
1364 DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
1365 EXPECT_EQ(WAIT_OBJECT_0, result);
1367 thread.Stop();
1370 #endif // defined(OS_WIN)
1372 } // namespace
1374 //-----------------------------------------------------------------------------
1375 // Each test is run against each type of MessageLoop. That way we are sure
1376 // that message loops work properly in all configurations. Of course, in some
1377 // cases, a unit test may only be for a particular type of loop.
1379 TEST(MessageLoopTest, PostTask) {
1380 RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
1381 RunTest_PostTask(MessageLoop::TYPE_UI);
1382 RunTest_PostTask(MessageLoop::TYPE_IO);
1385 TEST(MessageLoopTest, PostTask_SEH) {
1386 RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
1387 RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
1388 RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
1391 TEST(MessageLoopTest, PostDelayedTask_Basic) {
1392 RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
1393 RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
1394 RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
1397 TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
1398 RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
1399 RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
1400 RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
1403 TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
1404 RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
1405 RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
1406 RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
1409 TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
1410 RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
1411 RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
1412 RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
1415 TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
1416 RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
1417 RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
1418 RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
1421 TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
1422 RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
1423 RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
1424 RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
1427 #if defined(OS_WIN)
1428 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
1429 RunTest_PostDelayedTask_SharedTimer_SubPump();
1431 #endif
1433 // TODO(darin): MessageLoop does not support deleting all tasks in the
1434 // destructor.
1435 // Fails, http://crbug.com/50272.
1436 TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) {
1437 RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
1438 RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
1439 RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
1442 // TODO(darin): MessageLoop does not support deleting all tasks in the
1443 // destructor.
1444 // Fails, http://crbug.com/50272.
1445 TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) {
1446 RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
1447 RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
1448 RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
1451 #if defined(OS_WIN)
1452 TEST(MessageLoopTest, Crasher) {
1453 RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
1454 RunTest_Crasher(MessageLoop::TYPE_UI);
1455 RunTest_Crasher(MessageLoop::TYPE_IO);
1458 TEST(MessageLoopTest, CrasherNasty) {
1459 RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
1460 RunTest_CrasherNasty(MessageLoop::TYPE_UI);
1461 RunTest_CrasherNasty(MessageLoop::TYPE_IO);
1463 #endif // defined(OS_WIN)
1465 TEST(MessageLoopTest, Nesting) {
1466 RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
1467 RunTest_Nesting(MessageLoop::TYPE_UI);
1468 RunTest_Nesting(MessageLoop::TYPE_IO);
1471 TEST(MessageLoopTest, RecursiveDenial1) {
1472 RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
1473 RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
1474 RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
1477 TEST(MessageLoopTest, RecursiveDenial3) {
1478 RunTest_RecursiveDenial3(MessageLoop::TYPE_DEFAULT);
1479 RunTest_RecursiveDenial3(MessageLoop::TYPE_UI);
1480 RunTest_RecursiveDenial3(MessageLoop::TYPE_IO);
1483 TEST(MessageLoopTest, RecursiveSupport1) {
1484 RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
1485 RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
1486 RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
1489 #if defined(OS_WIN)
1490 // This test occasionally hangs http://crbug.com/44567
1491 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
1492 RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
1493 RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
1494 RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
1497 TEST(MessageLoopTest, RecursiveSupport2) {
1498 // This test requires a UI loop
1499 RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
1501 #endif // defined(OS_WIN)
1503 TEST(MessageLoopTest, NonNestableWithNoNesting) {
1504 RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
1505 RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
1506 RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
1509 TEST(MessageLoopTest, NonNestableInNestedLoop) {
1510 RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
1511 RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
1512 RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
1515 TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
1516 RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
1517 RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
1518 RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
1521 class DummyTask : public Task {
1522 public:
1523 explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {}
1525 virtual void Run() {
1526 if (num_tasks_ > 1) {
1527 MessageLoop::current()->PostTask(
1528 FROM_HERE,
1529 new DummyTask(num_tasks_ - 1));
1530 } else {
1531 MessageLoop::current()->Quit();
1535 private:
1536 const int num_tasks_;
1539 class DummyTaskObserver : public MessageLoop::TaskObserver {
1540 public:
1541 explicit DummyTaskObserver(int num_tasks)
1542 : num_tasks_started_(0),
1543 num_tasks_processed_(0),
1544 num_tasks_(num_tasks) {}
1546 virtual ~DummyTaskObserver() {}
1548 virtual void WillProcessTask(const Task* task) {
1549 num_tasks_started_++;
1550 EXPECT_TRUE(task != NULL);
1551 EXPECT_LE(num_tasks_started_, num_tasks_);
1552 EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
1555 virtual void DidProcessTask(const Task* task) {
1556 num_tasks_processed_++;
1557 EXPECT_TRUE(task != NULL);
1558 EXPECT_LE(num_tasks_started_, num_tasks_);
1559 EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
1562 int num_tasks_started() const { return num_tasks_started_; }
1563 int num_tasks_processed() const { return num_tasks_processed_; }
1565 private:
1566 int num_tasks_started_;
1567 int num_tasks_processed_;
1568 const int num_tasks_;
1570 DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
1573 TEST(MessageLoopTest, TaskObserver) {
1574 const int kNumTasks = 6;
1575 DummyTaskObserver observer(kNumTasks);
1577 MessageLoop loop;
1578 loop.AddTaskObserver(&observer);
1579 loop.PostTask(FROM_HERE, new DummyTask(kNumTasks));
1580 loop.Run();
1581 loop.RemoveTaskObserver(&observer);
1583 EXPECT_EQ(kNumTasks, observer.num_tasks_started());
1584 EXPECT_EQ(kNumTasks, observer.num_tasks_processed());
1587 #if defined(OS_WIN)
1588 TEST(MessageLoopTest, Dispatcher) {
1589 // This test requires a UI loop
1590 RunTest_Dispatcher(MessageLoop::TYPE_UI);
1593 TEST(MessageLoopTest, DispatcherWithMessageHook) {
1594 // This test requires a UI loop
1595 RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
1598 TEST(MessageLoopTest, IOHandler) {
1599 RunTest_IOHandler();
1602 TEST(MessageLoopTest, WaitForIO) {
1603 RunTest_WaitForIO();
1606 TEST(MessageLoopTest, HighResolutionTimer) {
1607 MessageLoop loop;
1609 const int kFastTimerMs = 5;
1610 const int kSlowTimerMs = 100;
1612 EXPECT_FALSE(loop.high_resolution_timers_enabled());
1614 // Post a fast task to enable the high resolution timers.
1615 loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs);
1616 loop.Run();
1617 EXPECT_TRUE(loop.high_resolution_timers_enabled());
1619 // Post a slow task and verify high resolution timers
1620 // are still enabled.
1621 loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1622 loop.Run();
1623 EXPECT_TRUE(loop.high_resolution_timers_enabled());
1625 // Wait for a while so that high-resolution mode elapses.
1626 Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs);
1628 // Post a slow task to disable the high resolution timers.
1629 loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1630 loop.Run();
1631 EXPECT_FALSE(loop.high_resolution_timers_enabled());
1634 #endif // defined(OS_WIN)
1636 #if defined(OS_POSIX) && !defined(OS_NACL)
1638 namespace {
1640 class QuitDelegate : public base::MessagePumpLibevent::Watcher {
1641 public:
1642 virtual void OnFileCanWriteWithoutBlocking(int fd) {
1643 MessageLoop::current()->Quit();
1645 virtual void OnFileCanReadWithoutBlocking(int fd) {
1646 MessageLoop::current()->Quit();
1650 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
1651 // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
1652 // This could happen when people use the Singleton pattern or atexit.
1654 // Create a file descriptor. Doesn't need to be readable or writable,
1655 // as we don't need to actually get any notifications.
1656 // pipe() is just the easiest way to do it.
1657 int pipefds[2];
1658 int err = pipe(pipefds);
1659 ASSERT_EQ(0, err);
1660 int fd = pipefds[1];
1662 // Arrange for controller to live longer than message loop.
1663 base::MessagePumpLibevent::FileDescriptorWatcher controller;
1665 MessageLoopForIO message_loop;
1667 QuitDelegate delegate;
1668 message_loop.WatchFileDescriptor(fd,
1669 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1670 // and don't run the message loop, just destroy it.
1673 if (HANDLE_EINTR(close(pipefds[0])) < 0)
1674 PLOG(ERROR) << "close";
1675 if (HANDLE_EINTR(close(pipefds[1])) < 0)
1676 PLOG(ERROR) << "close";
1679 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
1680 // Verify that it's ok to call StopWatchingFileDescriptor().
1681 // (Errors only showed up in valgrind.)
1682 int pipefds[2];
1683 int err = pipe(pipefds);
1684 ASSERT_EQ(0, err);
1685 int fd = pipefds[1];
1687 // Arrange for message loop to live longer than controller.
1688 MessageLoopForIO message_loop;
1690 base::MessagePumpLibevent::FileDescriptorWatcher controller;
1692 QuitDelegate delegate;
1693 message_loop.WatchFileDescriptor(fd,
1694 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1695 controller.StopWatchingFileDescriptor();
1698 if (HANDLE_EINTR(close(pipefds[0])) < 0)
1699 PLOG(ERROR) << "close";
1700 if (HANDLE_EINTR(close(pipefds[1])) < 0)
1701 PLOG(ERROR) << "close";
1704 } // namespace
1706 #endif // defined(OS_POSIX) && !defined(OS_NACL)
1708 namespace {
1709 class RunAtDestructionTask : public Task {
1710 public:
1711 RunAtDestructionTask(bool* task_destroyed, bool* destruction_observer_called)
1712 : task_destroyed_(task_destroyed),
1713 destruction_observer_called_(destruction_observer_called) {
1715 ~RunAtDestructionTask() {
1716 EXPECT_FALSE(*destruction_observer_called_);
1717 *task_destroyed_ = true;
1719 virtual void Run() {
1720 // This task should never run.
1721 ADD_FAILURE();
1723 private:
1724 bool* task_destroyed_;
1725 bool* destruction_observer_called_;
1728 class MLDestructionObserver : public MessageLoop::DestructionObserver {
1729 public:
1730 MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
1731 : task_destroyed_(task_destroyed),
1732 destruction_observer_called_(destruction_observer_called),
1733 task_destroyed_before_message_loop_(false) {
1735 virtual void WillDestroyCurrentMessageLoop() {
1736 task_destroyed_before_message_loop_ = *task_destroyed_;
1737 *destruction_observer_called_ = true;
1739 bool task_destroyed_before_message_loop() const {
1740 return task_destroyed_before_message_loop_;
1742 private:
1743 bool* task_destroyed_;
1744 bool* destruction_observer_called_;
1745 bool task_destroyed_before_message_loop_;
1748 } // namespace
1750 TEST(MessageLoopTest, DestructionObserverTest) {
1751 // Verify that the destruction observer gets called at the very end (after
1752 // all the pending tasks have been destroyed).
1753 MessageLoop* loop = new MessageLoop;
1754 const int kDelayMS = 100;
1756 bool task_destroyed = false;
1757 bool destruction_observer_called = false;
1759 MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
1760 loop->AddDestructionObserver(&observer);
1761 loop->PostDelayedTask(
1762 FROM_HERE,
1763 new RunAtDestructionTask(&task_destroyed, &destruction_observer_called),
1764 kDelayMS);
1765 delete loop;
1766 EXPECT_TRUE(observer.task_destroyed_before_message_loop());
1767 // The task should have been destroyed when we deleted the loop.
1768 EXPECT_TRUE(task_destroyed);
1769 EXPECT_TRUE(destruction_observer_called);