1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef NET_SPDY_SPDY_PRIORITY_FOREST_H_
6 #define NET_SPDY_SPDY_PRIORITY_FOREST_H_
12 #include "base/basictypes.h"
13 #include "base/containers/hash_tables.h"
14 #include "base/logging.h"
15 #include "base/memory/scoped_ptr.h"
16 #include "base/rand_util.h"
20 // This data structure implements the SPDY prioriziation data structures
21 // defined in this document: http://go/spdy4-prioritization
23 // Nodes can be added and removed, and dependencies between them defined. Each
24 // node can have at most one parent and at most one child (forming a list), but
25 // there can be multiple lists, with each list root having its own priority.
26 // Individual nodes can also be marked as ready to read/write, and then the
27 // whole structure can be queried to pick the next node to read/write out of
30 // The NodeId and Priority types must be POD that support comparison (most
31 // likely, they will be numbers).
32 template <typename NodeId
, typename Priority
>
33 class SpdyPriorityForest
{
36 ~SpdyPriorityForest();
38 // Return the number of nodes currently in the forest.
39 int num_nodes() const;
41 // Return true if the forest contains a node with the given ID.
42 bool NodeExists(NodeId node_id
) const;
44 // Add a new root node to the forest, with the given priority. Returns true
45 // on success, or false if the node_id already exists within the forest.
46 bool AddRootNode(NodeId node_id
, Priority priority
);
48 // Add a new node to the forest, with the given parent. Returns true on
49 // success. Returns false and has no effect if the new node already exists,
50 // or if the parent doesn't exist, or if the parent already has a child.
51 bool AddNonRootNode(NodeId node_id
, NodeId parent_id
, bool unordered
);
53 // Remove an existing node from the forest. Returns true on success, or
54 // false if the node doesn't exist.
55 bool RemoveNode(NodeId node_id
);
57 // Get the priority of the given node. If the node doesn't exist, or is not
58 // a root node (and thus has no priority), returns Priority().
59 Priority
GetPriority(NodeId node_id
) const;
61 // Get the parent of the given node. If the node doesn't exist, or is a root
62 // node (and thus has no parent), returns NodeId().
63 NodeId
GetParent(NodeId node_id
) const;
65 // Determine if the given node is unordered with respect to its parent. If
66 // the node doesn't exist, or is a root node (and thus has no parent),
68 bool IsNodeUnordered(NodeId node_id
) const;
70 // Get the child of the given node. If the node doesn't exist, or has no
71 // child, returns NodeId().
72 NodeId
GetChild(NodeId node_id
) const;
74 // Set the priority of the given node. If the node was not already a root
75 // node, this makes it a root node. Returns true on success, or false if the
76 // node doesn't exist.
77 bool SetPriority(NodeId node_id
, Priority priority
);
79 // Set the parent of the given node. If the node was a root node, this makes
80 // it no longer a root. Returns true on success. Returns false and has no
81 // effect if (1) the node and/or the parent doesn't exist, (2) the new parent
82 // already has a different child than the node, or (3) if the new parent is a
83 // descendant of the node (so this would have created a cycle).
84 bool SetParent(NodeId node_id
, NodeId parent_id
, bool unordered
);
86 // Check if a node is marked as ready to read. Returns false if the node
88 bool IsMarkedReadyToRead(NodeId node_id
) const;
89 // Mark the node as ready or not ready to read. Returns true on success, or
90 // false if the node doesn't exist.
91 bool MarkReadyToRead(NodeId node_id
);
92 bool MarkNoLongerReadyToRead(NodeId node_id
);
93 // Return the ID of the next node that we should read, or return NodeId() if
94 // no node in the forest is ready to read.
95 NodeId
NextNodeToRead();
97 // Check if a node is marked as ready to write. Returns false if the node
99 bool IsMarkedReadyToWrite(NodeId node_id
) const;
100 // Mark the node as ready or not ready to write. Returns true on success, or
101 // false if the node doesn't exist.
102 bool MarkReadyToWrite(NodeId node_id
);
103 bool MarkNoLongerReadyToWrite(NodeId node_id
);
104 // Return the ID of the next node that we should write, or return NodeId() if
105 // no node in the forest is ready to write.
106 NodeId
NextNodeToWrite();
108 // Return true if all internal invariants hold (useful for unit tests).
109 // Unless there are bugs, this should always return true.
110 bool ValidateInvariantsForTests() const;
113 enum NodeType
{ ROOT_NODE
, NONROOT_ORDERED
, NONROOT_UNORDERED
};
115 Node() : type(ROOT_NODE
), flags(0), child() {
116 depends_on
.priority
= Priority();
119 unsigned int flags
; // bitfield of flags
121 Priority priority
; // used for root nodes
122 NodeId parent_id
; // used for non-root nodes
124 NodeId child
; // node ID of child (or NodeId() for no child)
127 typedef base::hash_map
<NodeId
, Node
> NodeMap
;
129 // Constants for the Node.flags bitset:
130 // kReadToRead: set for nodes that are ready for reading
131 static const unsigned int kReadyToRead
= (1 << 0);
132 // kReadToWrite: set for nodes that are ready for writing
133 static const unsigned int kReadyToWrite
= (1 << 1);
135 // Common code for IsMarkedReadyToRead and IsMarkedReadyToWrite.
136 bool IsMarked(NodeId node_id
, unsigned int flag
) const;
137 // Common code for MarkReadyToRead and MarkReadyToWrite.
138 bool Mark(NodeId node_id
, unsigned int flag
);
139 // Common code for MarkNoLongerReadyToRead and MarkNoLongerReadyToWrite.
140 bool Unmark(NodeId node_id
, unsigned int flag
);
141 // Common code for NextNodeToRead and NextNodeToWrite;
142 NodeId
FirstMarkedNode(unsigned int flag
);
143 // Get the given node, or return NULL if it doesn't exist.
144 const Node
* FindNode(NodeId node_id
) const;
146 NodeMap all_nodes_
; // maps from node IDs to Node objects
148 DISALLOW_COPY_AND_ASSIGN(SpdyPriorityForest
);
151 template <typename NodeId
, typename Priority
>
152 SpdyPriorityForest
<NodeId
, Priority
>::SpdyPriorityForest() {}
154 template <typename NodeId
, typename Priority
>
155 SpdyPriorityForest
<NodeId
, Priority
>::~SpdyPriorityForest() {}
157 template <typename NodeId
, typename Priority
>
158 int SpdyPriorityForest
<NodeId
, Priority
>::num_nodes() const {
159 return all_nodes_
.size();
162 template <typename NodeId
, typename Priority
>
163 bool SpdyPriorityForest
<NodeId
, Priority
>::NodeExists(NodeId node_id
) const {
164 return all_nodes_
.count(node_id
) != 0;
167 template <typename NodeId
, typename Priority
>
168 bool SpdyPriorityForest
<NodeId
, Priority
>::AddRootNode(
169 NodeId node_id
, Priority priority
) {
170 if (NodeExists(node_id
)) {
173 Node
* new_node
= &all_nodes_
[node_id
];
174 new_node
->type
= ROOT_NODE
;
175 new_node
->depends_on
.priority
= priority
;
179 template <typename NodeId
, typename Priority
>
180 bool SpdyPriorityForest
<NodeId
, Priority
>::AddNonRootNode(
181 NodeId node_id
, NodeId parent_id
, bool unordered
) {
182 if (NodeExists(node_id
) || !NodeExists(parent_id
)) {
186 Node
* parent
= &all_nodes_
[parent_id
];
187 if (parent
->child
!= NodeId()) {
191 Node
* new_node
= &all_nodes_
[node_id
];
192 new_node
->type
= (unordered
? NONROOT_UNORDERED
: NONROOT_ORDERED
);
193 new_node
->depends_on
.parent_id
= parent_id
;
194 parent
->child
= node_id
;
198 template <typename NodeId
, typename Priority
>
199 bool SpdyPriorityForest
<NodeId
, Priority
>::RemoveNode(NodeId node_id
) {
200 if (!NodeExists(node_id
)) {
203 const Node
& node
= all_nodes_
[node_id
];
205 // If the node to be removed is not a root node, we need to change its
206 // parent's child ID.
207 if (node
.type
!= ROOT_NODE
) {
208 DCHECK(NodeExists(node
.depends_on
.parent_id
));
209 Node
* parent
= &all_nodes_
[node
.depends_on
.parent_id
];
210 DCHECK_EQ(node_id
, parent
->child
);
211 parent
->child
= node
.child
;
214 // If the node has a child, we need to change the child's priority or parent.
215 if (node
.child
!= NodeId()) {
216 DCHECK(NodeExists(node
.child
));
217 Node
* child
= &all_nodes_
[node
.child
];
218 DCHECK_NE(ROOT_NODE
, child
->type
);
219 DCHECK_EQ(node_id
, child
->depends_on
.parent_id
);
220 // Make the child's new depends_on be the node's depends_on (whether that
221 // be a priority or a parent node ID).
222 child
->depends_on
= node
.depends_on
;
223 // If the removed node was a root, its child is now a root. Otherwise, the
224 // child will be be unordered if and only if it was already unordered and
225 // the removed not is also not ordered.
226 if (node
.type
== ROOT_NODE
) {
227 child
->type
= ROOT_NODE
;
228 } else if (node
.type
== NONROOT_ORDERED
) {
229 child
->type
= NONROOT_ORDERED
;
234 all_nodes_
.erase(node_id
);
238 template <typename NodeId
, typename Priority
>
239 Priority SpdyPriorityForest
<NodeId
, Priority
>::GetPriority(
240 NodeId node_id
) const {
241 const Node
* node
= FindNode(node_id
);
242 if (node
!= NULL
&& node
->type
== ROOT_NODE
) {
243 return node
->depends_on
.priority
;
249 template <typename NodeId
, typename Priority
>
250 NodeId SpdyPriorityForest
<NodeId
, Priority
>::GetParent(NodeId node_id
) const {
251 const Node
* node
= FindNode(node_id
);
252 if (node
!= NULL
&& node
->type
!= ROOT_NODE
) {
253 return node
->depends_on
.parent_id
;
259 template <typename NodeId
, typename Priority
>
260 bool SpdyPriorityForest
<NodeId
, Priority
>::IsNodeUnordered(
261 NodeId node_id
) const {
262 const Node
* node
= FindNode(node_id
);
263 return node
!= NULL
&& node
->type
== NONROOT_UNORDERED
;
266 template <typename NodeId
, typename Priority
>
267 NodeId SpdyPriorityForest
<NodeId
, Priority
>::GetChild(NodeId node_id
) const {
268 const Node
* node
= FindNode(node_id
);
276 template <typename NodeId
, typename Priority
>
277 bool SpdyPriorityForest
<NodeId
, Priority
>::SetPriority(
278 NodeId node_id
, Priority priority
) {
279 if (!NodeExists(node_id
)) {
283 Node
* node
= &all_nodes_
[node_id
];
284 // If this is not already a root node, we need to make it be a root node.
285 if (node
->type
!= ROOT_NODE
) {
286 DCHECK(NodeExists(node
->depends_on
.parent_id
));
287 Node
* parent
= &all_nodes_
[node
->depends_on
.parent_id
];
288 parent
->child
= NodeId();
289 node
->type
= ROOT_NODE
;
292 node
->depends_on
.priority
= priority
;
296 template <typename NodeId
, typename Priority
>
297 bool SpdyPriorityForest
<NodeId
, Priority
>::SetParent(
298 NodeId node_id
, NodeId parent_id
, bool unordered
) {
299 if (!NodeExists(node_id
) || !NodeExists(parent_id
)) {
303 Node
* node
= &all_nodes_
[node_id
];
304 Node
* new_parent
= &all_nodes_
[parent_id
];
305 // If the new parent is already the node's parent, all we have to do is
306 // update the node type and we're done.
307 if (new_parent
->child
== node_id
) {
308 node
->type
= (unordered
? NONROOT_UNORDERED
: NONROOT_ORDERED
);
311 // Otherwise, if the new parent already has a child, we fail.
312 if (new_parent
->child
!= NodeId()) {
316 // Next, make sure we won't create a cycle.
317 if (node_id
== parent_id
) return false;
319 NodeId last_id
= node_id
;
320 while (last
->child
!= NodeId()) {
321 if (last
->child
== parent_id
) return false;
322 last_id
= last
->child
;
323 DCHECK(NodeExists(last_id
));
324 last
= &all_nodes_
[last_id
];
327 // If the node is not a root, we need clear its old parent's child field
328 // (unless the old parent is the same as the new parent).
329 if (node
->type
!= ROOT_NODE
) {
330 const NodeId old_parent_id
= node
->depends_on
.parent_id
;
331 DCHECK(NodeExists(old_parent_id
));
332 DCHECK(old_parent_id
!= parent_id
);
333 Node
* old_parent
= &all_nodes_
[old_parent_id
];
334 DCHECK_EQ(node_id
, old_parent
->child
);
335 old_parent
->child
= NodeId();
339 node
->type
= (unordered
? NONROOT_UNORDERED
: NONROOT_ORDERED
);
340 node
->depends_on
.parent_id
= parent_id
;
341 new_parent
->child
= node_id
;
345 template <typename NodeId
, typename Priority
>
346 bool SpdyPriorityForest
<NodeId
, Priority
>::IsMarkedReadyToRead(
347 NodeId node_id
) const {
348 return IsMarked(node_id
, kReadyToRead
);
351 template <typename NodeId
, typename Priority
>
352 bool SpdyPriorityForest
<NodeId
, Priority
>::MarkReadyToRead(NodeId node_id
) {
353 return Mark(node_id
, kReadyToRead
);
356 template <typename NodeId
, typename Priority
>
357 bool SpdyPriorityForest
<NodeId
, Priority
>::MarkNoLongerReadyToRead(
359 return Unmark(node_id
, kReadyToRead
);
362 template <typename NodeId
, typename Priority
>
363 NodeId SpdyPriorityForest
<NodeId
, Priority
>::NextNodeToRead() {
364 return FirstMarkedNode(kReadyToRead
);
367 template <typename NodeId
, typename Priority
>
368 bool SpdyPriorityForest
<NodeId
, Priority
>::IsMarkedReadyToWrite(
369 NodeId node_id
) const {
370 return IsMarked(node_id
, kReadyToWrite
);
373 template <typename NodeId
, typename Priority
>
374 bool SpdyPriorityForest
<NodeId
, Priority
>::MarkReadyToWrite(NodeId node_id
) {
375 return Mark(node_id
, kReadyToWrite
);
378 template <typename NodeId
, typename Priority
>
379 bool SpdyPriorityForest
<NodeId
, Priority
>::MarkNoLongerReadyToWrite(
381 return Unmark(node_id
, kReadyToWrite
);
384 template <typename NodeId
, typename Priority
>
385 NodeId SpdyPriorityForest
<NodeId
, Priority
>::NextNodeToWrite() {
386 return FirstMarkedNode(kReadyToWrite
);
389 template <typename NodeId
, typename Priority
>
390 bool SpdyPriorityForest
<NodeId
, Priority
>::IsMarked(
391 NodeId node_id
, unsigned int flag
) const {
392 const Node
* node
= FindNode(node_id
);
393 return node
!= NULL
&& (node
->flags
& flag
) != 0;
396 template <typename NodeId
, typename Priority
>
397 bool SpdyPriorityForest
<NodeId
, Priority
>::Mark(
398 NodeId node_id
, unsigned int flag
) {
399 if (!NodeExists(node_id
)) {
402 all_nodes_
[node_id
].flags
|= flag
;
406 template <typename NodeId
, typename Priority
>
407 bool SpdyPriorityForest
<NodeId
, Priority
>::Unmark(
408 NodeId node_id
, unsigned int flag
) {
409 if (!NodeExists(node_id
)) {
412 all_nodes_
[node_id
].flags
&= ~flag
;
416 template <typename NodeId
, typename Priority
>
417 NodeId SpdyPriorityForest
<NodeId
, Priority
>::FirstMarkedNode(
419 // TODO(mdsteele): This is an *incredibly* stupid brute force solution.
421 // Get all root nodes that have at least one marked child.
422 uint64 total_weight
= 0;
423 std::map
<uint64
, NodeId
> roots
; // maps cumulative weight to root node ID
424 for (typename
NodeMap::const_iterator iter
= all_nodes_
.begin();
425 iter
!= all_nodes_
.end(); ++iter
) {
426 const NodeId root_id
= iter
->first
;
427 const Node
& root
= iter
->second
;
428 if (root
.type
== ROOT_NODE
) {
429 // See if there is at least one marked node in this root's chain.
430 for (const Node
* node
= &root
; ; node
= &all_nodes_
[node
->child
]) {
431 if ((node
->flags
& flag
) != 0) {
432 total_weight
+= static_cast<uint64
>(root
.depends_on
.priority
);
433 roots
[total_weight
] = root_id
;
436 if (node
->child
== NodeId()) {
439 DCHECK(NodeExists(node
->child
));
444 // If there are no ready nodes, then return NodeId().
445 if (total_weight
== 0) {
446 DCHECK(roots
.empty());
449 DCHECK(!roots
.empty());
452 // Randomly select a tree to use.
453 typename
std::map
<uint64
, NodeId
>::const_iterator root_iter
=
454 roots
.upper_bound(base::RandGenerator(total_weight
));
455 DCHECK(root_iter
!= roots
.end());
456 const NodeId root_id
= root_iter
->second
;
458 // Find the first node in the chain that is ready.
459 NodeId node_id
= root_id
;
461 DCHECK(NodeExists(node_id
));
462 Node
* node
= &all_nodes_
[node_id
];
463 if ((node
->flags
& flag
) != 0) {
464 // There might be more nodes that are ready and that are linked to this
465 // one in an unordered chain. Find all of them, then pick one randomly.
466 std::vector
<NodeId
> group
;
467 group
.push_back(node_id
);
468 for (Node
* next
= node
; next
->child
!= NodeId();) {
469 DCHECK(NodeExists(next
->child
));
470 Node
*child
= &all_nodes_
[next
->child
];
471 DCHECK_NE(ROOT_NODE
, child
->type
);
472 if (child
->type
!= NONROOT_UNORDERED
) {
475 if ((child
->flags
& flag
) != 0) {
476 group
.push_back(next
->child
);
480 return group
[base::RandGenerator(group
.size())];
482 node_id
= node
->child
;
486 template <typename NodeId
, typename Priority
>
487 const typename SpdyPriorityForest
<NodeId
, Priority
>::Node
*
488 SpdyPriorityForest
<NodeId
, Priority
>::FindNode(NodeId node_id
) const {
489 typename
NodeMap::const_iterator iter
= all_nodes_
.find(node_id
);
490 if (iter
== all_nodes_
.end()) {
493 return &iter
->second
;
496 template <typename NodeId
, typename Priority
>
497 bool SpdyPriorityForest
<NodeId
, Priority
>::ValidateInvariantsForTests() const {
498 for (typename
NodeMap::const_iterator iter
= all_nodes_
.begin();
499 iter
!= all_nodes_
.end(); ++iter
) {
500 const NodeId node_id
= iter
->first
;
501 const Node
& node
= iter
->second
;
502 if (node
.type
!= ROOT_NODE
&&
503 (!NodeExists(node
.depends_on
.parent_id
) ||
504 GetChild(node
.depends_on
.parent_id
) != node_id
)) {
507 if (node
.child
!= NodeId()) {
508 if (!NodeExists(node
.child
) || node_id
!= GetParent(node
.child
)) {
513 NodeId child_id
= node
.child
;
515 while (child_id
!= NodeId()) {
516 if (count
> num_nodes() || node_id
== child_id
) {
519 child_id
= GetChild(child_id
);
528 #endif // NET_SPDY_SPDY_PRIORITY_FOREST_H_