Remove no longer needed toolbar layer method.
[chromium-blink-merge.git] / media / filters / audio_clock.cc
blob117d603820585589c97fee96d960a567eca12e67
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/filters/audio_clock.h"
7 #include <algorithm>
9 #include "base/logging.h"
10 #include "media/base/buffers.h"
12 namespace media {
14 AudioClock::AudioClock(base::TimeDelta start_timestamp, int sample_rate)
15 : start_timestamp_(start_timestamp),
16 sample_rate_(sample_rate),
17 microseconds_per_frame_(
18 static_cast<double>(base::Time::kMicrosecondsPerSecond) /
19 sample_rate),
20 total_buffered_frames_(0),
21 front_timestamp_(start_timestamp),
22 back_timestamp_(start_timestamp) {
25 AudioClock::~AudioClock() {
28 void AudioClock::WroteAudio(int frames_written,
29 int frames_requested,
30 int delay_frames,
31 float playback_rate) {
32 DCHECK_GE(frames_written, 0);
33 DCHECK_LE(frames_written, frames_requested);
34 DCHECK_GE(delay_frames, 0);
35 DCHECK_GE(playback_rate, 0);
37 // First write: initialize buffer with silence.
38 if (start_timestamp_ == front_timestamp_ && buffered_.empty())
39 PushBufferedAudioData(delay_frames, 0.0f);
41 // Move frames from |buffered_| into the computed timestamp based on
42 // |delay_frames|.
44 // The ordering of compute -> push -> pop eliminates unnecessary memory
45 // reallocations in cases where |buffered_| gets emptied.
46 int64_t frames_played =
47 std::max(INT64_C(0), total_buffered_frames_ - delay_frames);
48 front_timestamp_ += ComputeBufferedMediaTime(frames_played);
49 PushBufferedAudioData(frames_written, playback_rate);
50 PushBufferedAudioData(frames_requested - frames_written, 0.0f);
51 PopBufferedAudioData(frames_played);
53 back_timestamp_ += base::TimeDelta::FromMicroseconds(
54 frames_written * playback_rate * microseconds_per_frame_);
56 // Update cached values.
57 double scaled_frames = 0;
58 double scaled_frames_at_same_rate = 0;
59 bool found_silence = false;
60 for (size_t i = 0; i < buffered_.size(); ++i) {
61 if (buffered_[i].playback_rate == 0) {
62 found_silence = true;
63 continue;
66 // Any buffered silence breaks our contiguous stretch of audio data.
67 if (found_silence)
68 break;
70 scaled_frames += (buffered_[i].frames * buffered_[i].playback_rate);
72 if (i == 0)
73 scaled_frames_at_same_rate = scaled_frames;
76 contiguous_audio_data_buffered_ = base::TimeDelta::FromMicroseconds(
77 scaled_frames * microseconds_per_frame_);
78 contiguous_audio_data_buffered_at_same_rate_ =
79 base::TimeDelta::FromMicroseconds(scaled_frames_at_same_rate *
80 microseconds_per_frame_);
83 base::TimeDelta AudioClock::TimestampSinceWriting(
84 base::TimeDelta time_since_writing) const {
85 int64_t frames_played_since_writing = std::min(
86 total_buffered_frames_,
87 static_cast<int64_t>(time_since_writing.InSecondsF() * sample_rate_));
88 return front_timestamp_ +
89 ComputeBufferedMediaTime(frames_played_since_writing);
92 base::TimeDelta AudioClock::TimeUntilPlayback(base::TimeDelta timestamp) const {
93 DCHECK(timestamp >= front_timestamp_);
94 DCHECK(timestamp <= back_timestamp_);
96 int64_t frames_until_timestamp = 0;
97 double timestamp_us = timestamp.InMicroseconds();
98 double media_time_us = front_timestamp_.InMicroseconds();
100 for (size_t i = 0; i < buffered_.size(); ++i) {
101 // Leading silence is always accounted prior to anything else.
102 if (buffered_[i].playback_rate == 0) {
103 frames_until_timestamp += buffered_[i].frames;
104 continue;
107 // Calculate upper bound on media time for current block of buffered frames.
108 double delta_us = buffered_[i].frames * buffered_[i].playback_rate *
109 microseconds_per_frame_;
110 double max_media_time_us = media_time_us + delta_us;
112 // Determine amount of media time to convert to frames for current block. If
113 // target timestamp falls within current block, scale the amount of frames
114 // based on remaining amount of media time.
115 if (timestamp_us <= max_media_time_us) {
116 frames_until_timestamp +=
117 buffered_[i].frames * (timestamp_us - media_time_us) / delta_us;
118 break;
121 media_time_us = max_media_time_us;
122 frames_until_timestamp += buffered_[i].frames;
125 return base::TimeDelta::FromMicroseconds(frames_until_timestamp *
126 microseconds_per_frame_);
129 AudioClock::AudioData::AudioData(int64_t frames, float playback_rate)
130 : frames(frames), playback_rate(playback_rate) {
133 void AudioClock::PushBufferedAudioData(int64_t frames, float playback_rate) {
134 if (frames == 0)
135 return;
137 total_buffered_frames_ += frames;
139 // Avoid creating extra elements where possible.
140 if (!buffered_.empty() && buffered_.back().playback_rate == playback_rate) {
141 buffered_.back().frames += frames;
142 return;
145 buffered_.push_back(AudioData(frames, playback_rate));
148 void AudioClock::PopBufferedAudioData(int64_t frames) {
149 DCHECK_LE(frames, total_buffered_frames_);
151 total_buffered_frames_ -= frames;
153 while (frames > 0) {
154 int64_t frames_to_pop = std::min(buffered_.front().frames, frames);
155 buffered_.front().frames -= frames_to_pop;
156 if (buffered_.front().frames == 0)
157 buffered_.pop_front();
159 frames -= frames_to_pop;
163 base::TimeDelta AudioClock::ComputeBufferedMediaTime(int64_t frames) const {
164 DCHECK_LE(frames, total_buffered_frames_);
166 double scaled_frames = 0;
167 for (size_t i = 0; i < buffered_.size() && frames > 0; ++i) {
168 int64_t min_frames = std::min(buffered_[i].frames, frames);
169 scaled_frames += min_frames * buffered_[i].playback_rate;
170 frames -= min_frames;
173 return base::TimeDelta::FromMicroseconds(scaled_frames *
174 microseconds_per_frame_);
177 } // namespace media