Don't throw an exception if onfullscreenchanged fires after the plugin is
[chromium-blink-merge.git] / base / message_loop / message_pump_win.h
blob535a21320e020e6e29b4994c6ebe3d0d2f5bb110
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
6 #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
8 #include <windows.h>
10 #include <list>
12 #include "base/base_export.h"
13 #include "base/basictypes.h"
14 #include "base/message_loop/message_pump.h"
15 #include "base/message_loop/message_pump_dispatcher.h"
16 #include "base/message_loop/message_pump_observer.h"
17 #include "base/observer_list.h"
18 #include "base/time/time.h"
19 #include "base/win/scoped_handle.h"
21 namespace base {
23 // MessagePumpWin serves as the base for specialized versions of the MessagePump
24 // for Windows. It provides basic functionality like handling of observers and
25 // controlling the lifetime of the message pump.
26 class BASE_EXPORT MessagePumpWin : public MessagePump {
27 public:
28 MessagePumpWin() : have_work_(0), state_(NULL) {}
29 virtual ~MessagePumpWin() {}
31 // Add an Observer, which will start receiving notifications immediately.
32 void AddObserver(MessagePumpObserver* observer);
34 // Remove an Observer. It is safe to call this method while an Observer is
35 // receiving a notification callback.
36 void RemoveObserver(MessagePumpObserver* observer);
38 // Give a chance to code processing additional messages to notify the
39 // message loop observers that another message has been processed.
40 void WillProcessMessage(const MSG& msg);
41 void DidProcessMessage(const MSG& msg);
43 // Like MessagePump::Run, but MSG objects are routed through dispatcher.
44 void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher);
46 // MessagePump methods:
47 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
48 virtual void Quit();
50 protected:
51 struct RunState {
52 Delegate* delegate;
53 MessagePumpDispatcher* dispatcher;
55 // Used to flag that the current Run() invocation should return ASAP.
56 bool should_quit;
58 // Used to count how many Run() invocations are on the stack.
59 int run_depth;
62 virtual void DoRunLoop() = 0;
63 int GetCurrentDelay() const;
65 ObserverList<MessagePumpObserver> observers_;
67 // The time at which delayed work should run.
68 TimeTicks delayed_work_time_;
70 // A boolean value used to indicate if there is a kMsgDoWork message pending
71 // in the Windows Message queue. There is at most one such message, and it
72 // can drive execution of tasks when a native message pump is running.
73 LONG have_work_;
75 // State for the current invocation of Run.
76 RunState* state_;
79 //-----------------------------------------------------------------------------
80 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
81 // MessageLoop instantiated with TYPE_UI.
83 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
84 // a nearly infinite loop that peeks out messages, and then dispatches them.
85 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
86 // DoDelayedWork for pending timers. When there are no events to be serviced,
87 // this pump goes into a wait state. In most cases, this message pump handles
88 // all processing.
90 // However, when a task, or windows event, invokes on the stack a native dialog
91 // box or such, that window typically provides a bare bones (native?) message
92 // pump. That bare-bones message pump generally supports little more than a
93 // peek of the Windows message queue, followed by a dispatch of the peeked
94 // message. MessageLoop extends that bare-bones message pump to also service
95 // Tasks, at the cost of some complexity.
97 // The basic structure of the extension (refered to as a sub-pump) is that a
98 // special message, kMsgHaveWork, is repeatedly injected into the Windows
99 // Message queue. Each time the kMsgHaveWork message is peeked, checks are
100 // made for an extended set of events, including the availability of Tasks to
101 // run.
103 // After running a task, the special message kMsgHaveWork is again posted to
104 // the Windows Message queue, ensuring a future time slice for processing a
105 // future event. To prevent flooding the Windows Message queue, care is taken
106 // to be sure that at most one kMsgHaveWork message is EVER pending in the
107 // Window's Message queue.
109 // There are a few additional complexities in this system where, when there are
110 // no Tasks to run, this otherwise infinite stream of messages which drives the
111 // sub-pump is halted. The pump is automatically re-started when Tasks are
112 // queued.
114 // A second complexity is that the presence of this stream of posted tasks may
115 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
116 // Such paint and timer events always give priority to a posted message, such as
117 // kMsgHaveWork messages. As a result, care is taken to do some peeking in
118 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
119 // is peeked, and before a replacement kMsgHaveWork is posted).
121 // NOTE: Although it may seem odd that messages are used to start and stop this
122 // flow (as opposed to signaling objects, etc.), it should be understood that
123 // the native message pump will *only* respond to messages. As a result, it is
124 // an excellent choice. It is also helpful that the starter messages that are
125 // placed in the queue when new task arrive also awakens DoRunLoop.
127 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
128 public:
129 // The application-defined code passed to the hook procedure.
130 static const int kMessageFilterCode = 0x5001;
132 MessagePumpForUI();
133 virtual ~MessagePumpForUI();
135 // MessagePump methods:
136 virtual void ScheduleWork();
137 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
139 private:
140 static LRESULT CALLBACK WndProcThunk(HWND window_handle,
141 UINT message,
142 WPARAM wparam,
143 LPARAM lparam);
144 virtual void DoRunLoop();
145 void InitMessageWnd();
146 void WaitForWork();
147 void HandleWorkMessage();
148 void HandleTimerMessage();
149 bool ProcessNextWindowsMessage();
150 bool ProcessMessageHelper(const MSG& msg);
151 bool ProcessPumpReplacementMessage();
153 // Atom representing the registered window class.
154 ATOM atom_;
156 // A hidden message-only window.
157 HWND message_hwnd_;
160 //-----------------------------------------------------------------------------
161 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
162 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
163 // deal with Windows mesagges, and instead has a Run loop based on Completion
164 // Ports so it is better suited for IO operations.
166 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
167 public:
168 struct IOContext;
170 // Clients interested in receiving OS notifications when asynchronous IO
171 // operations complete should implement this interface and register themselves
172 // with the message pump.
174 // Typical use #1:
175 // // Use only when there are no user's buffers involved on the actual IO,
176 // // so that all the cleanup can be done by the message pump.
177 // class MyFile : public IOHandler {
178 // MyFile() {
179 // ...
180 // context_ = new IOContext;
181 // context_->handler = this;
182 // message_pump->RegisterIOHandler(file_, this);
183 // }
184 // ~MyFile() {
185 // if (pending_) {
186 // // By setting the handler to NULL, we're asking for this context
187 // // to be deleted when received, without calling back to us.
188 // context_->handler = NULL;
189 // } else {
190 // delete context_;
191 // }
192 // }
193 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
194 // DWORD error) {
195 // pending_ = false;
196 // }
197 // void DoSomeIo() {
198 // ...
199 // // The only buffer required for this operation is the overlapped
200 // // structure.
201 // ConnectNamedPipe(file_, &context_->overlapped);
202 // pending_ = true;
203 // }
204 // bool pending_;
205 // IOContext* context_;
206 // HANDLE file_;
207 // };
209 // Typical use #2:
210 // class MyFile : public IOHandler {
211 // MyFile() {
212 // ...
213 // message_pump->RegisterIOHandler(file_, this);
214 // }
215 // // Plus some code to make sure that this destructor is not called
216 // // while there are pending IO operations.
217 // ~MyFile() {
218 // }
219 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
220 // DWORD error) {
221 // ...
222 // delete context;
223 // }
224 // void DoSomeIo() {
225 // ...
226 // IOContext* context = new IOContext;
227 // // This is not used for anything. It just prevents the context from
228 // // being considered "abandoned".
229 // context->handler = this;
230 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
231 // }
232 // HANDLE file_;
233 // };
235 // Typical use #3:
236 // Same as the previous example, except that in order to deal with the
237 // requirement stated for the destructor, the class calls WaitForIOCompletion
238 // from the destructor to block until all IO finishes.
239 // ~MyFile() {
240 // while(pending_)
241 // message_pump->WaitForIOCompletion(INFINITE, this);
242 // }
244 class IOHandler {
245 public:
246 virtual ~IOHandler() {}
247 // This will be called once the pending IO operation associated with
248 // |context| completes. |error| is the Win32 error code of the IO operation
249 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
250 // on error.
251 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
252 DWORD error) = 0;
255 // An IOObserver is an object that receives IO notifications from the
256 // MessagePump.
258 // NOTE: An IOObserver implementation should be extremely fast!
259 class IOObserver {
260 public:
261 IOObserver() {}
263 virtual void WillProcessIOEvent() = 0;
264 virtual void DidProcessIOEvent() = 0;
266 protected:
267 virtual ~IOObserver() {}
270 // The extended context that should be used as the base structure on every
271 // overlapped IO operation. |handler| must be set to the registered IOHandler
272 // for the given file when the operation is started, and it can be set to NULL
273 // before the operation completes to indicate that the handler should not be
274 // called anymore, and instead, the IOContext should be deleted when the OS
275 // notifies the completion of this operation. Please remember that any buffers
276 // involved with an IO operation should be around until the callback is
277 // received, so this technique can only be used for IO that do not involve
278 // additional buffers (other than the overlapped structure itself).
279 struct IOContext {
280 OVERLAPPED overlapped;
281 IOHandler* handler;
284 MessagePumpForIO();
285 virtual ~MessagePumpForIO() {}
287 // MessagePump methods:
288 virtual void ScheduleWork();
289 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
291 // Register the handler to be used when asynchronous IO for the given file
292 // completes. The registration persists as long as |file_handle| is valid, so
293 // |handler| must be valid as long as there is pending IO for the given file.
294 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
296 // Register the handler to be used to process job events. The registration
297 // persists as long as the job object is live, so |handler| must be valid
298 // until the job object is destroyed. Returns true if the registration
299 // succeeded, and false otherwise.
300 bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
302 // Waits for the next IO completion that should be processed by |filter|, for
303 // up to |timeout| milliseconds. Return true if any IO operation completed,
304 // regardless of the involved handler, and false if the timeout expired. If
305 // the completion port received any message and the involved IO handler
306 // matches |filter|, the callback is called before returning from this code;
307 // if the handler is not the one that we are looking for, the callback will
308 // be postponed for another time, so reentrancy problems can be avoided.
309 // External use of this method should be reserved for the rare case when the
310 // caller is willing to allow pausing regular task dispatching on this thread.
311 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
313 void AddIOObserver(IOObserver* obs);
314 void RemoveIOObserver(IOObserver* obs);
316 private:
317 struct IOItem {
318 IOHandler* handler;
319 IOContext* context;
320 DWORD bytes_transfered;
321 DWORD error;
323 // In some cases |context| can be a non-pointer value casted to a pointer.
324 // |has_valid_io_context| is true if |context| is a valid IOContext
325 // pointer, and false otherwise.
326 bool has_valid_io_context;
329 virtual void DoRunLoop();
330 void WaitForWork();
331 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
332 bool GetIOItem(DWORD timeout, IOItem* item);
333 bool ProcessInternalIOItem(const IOItem& item);
334 void WillProcessIOEvent();
335 void DidProcessIOEvent();
337 // Converts an IOHandler pointer to a completion port key.
338 // |has_valid_io_context| specifies whether completion packets posted to
339 // |handler| will have valid OVERLAPPED pointers.
340 static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context);
342 // Converts a completion port key to an IOHandler pointer.
343 static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context);
345 // The completion port associated with this thread.
346 win::ScopedHandle port_;
347 // This list will be empty almost always. It stores IO completions that have
348 // not been delivered yet because somebody was doing cleanup.
349 std::list<IOItem> completed_io_;
351 ObserverList<IOObserver> io_observers_;
354 } // namespace base
356 #endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_