chromeos: bluetooth: add BluetoothInputClient
[chromium-blink-merge.git] / skia / ext / convolver.cc
blobee9d056fa436336338d92f8a3620d285c1d634cb
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <algorithm>
7 #include "skia/ext/convolver.h"
8 #include "third_party/skia/include/core/SkTypes.h"
10 #if defined(SIMD_SSE2)
11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
12 #endif
14 namespace skia {
16 namespace {
18 // Converts the argument to an 8-bit unsigned value by clamping to the range
19 // 0-255.
20 inline unsigned char ClampTo8(int a) {
21 if (static_cast<unsigned>(a) < 256)
22 return a; // Avoid the extra check in the common case.
23 if (a < 0)
24 return 0;
25 return 255;
28 // Stores a list of rows in a circular buffer. The usage is you write into it
29 // by calling AdvanceRow. It will keep track of which row in the buffer it
30 // should use next, and the total number of rows added.
31 class CircularRowBuffer {
32 public:
33 // The number of pixels in each row is given in |source_row_pixel_width|.
34 // The maximum number of rows needed in the buffer is |max_y_filter_size|
35 // (we only need to store enough rows for the biggest filter).
37 // We use the |first_input_row| to compute the coordinates of all of the
38 // following rows returned by Advance().
39 CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
40 int first_input_row)
41 : row_byte_width_(dest_row_pixel_width * 4),
42 num_rows_(max_y_filter_size),
43 next_row_(0),
44 next_row_coordinate_(first_input_row) {
45 buffer_.resize(row_byte_width_ * max_y_filter_size);
46 row_addresses_.resize(num_rows_);
49 // Moves to the next row in the buffer, returning a pointer to the beginning
50 // of it.
51 unsigned char* AdvanceRow() {
52 unsigned char* row = &buffer_[next_row_ * row_byte_width_];
53 next_row_coordinate_++;
55 // Set the pointer to the next row to use, wrapping around if necessary.
56 next_row_++;
57 if (next_row_ == num_rows_)
58 next_row_ = 0;
59 return row;
62 // Returns a pointer to an "unrolled" array of rows. These rows will start
63 // at the y coordinate placed into |*first_row_index| and will continue in
64 // order for the maximum number of rows in this circular buffer.
66 // The |first_row_index_| may be negative. This means the circular buffer
67 // starts before the top of the image (it hasn't been filled yet).
68 unsigned char* const* GetRowAddresses(int* first_row_index) {
69 // Example for a 4-element circular buffer holding coords 6-9.
70 // Row 0 Coord 8
71 // Row 1 Coord 9
72 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10.
73 // Row 3 Coord 7
75 // The "next" row is also the first (lowest) coordinate. This computation
76 // may yield a negative value, but that's OK, the math will work out
77 // since the user of this buffer will compute the offset relative
78 // to the first_row_index and the negative rows will never be used.
79 *first_row_index = next_row_coordinate_ - num_rows_;
81 int cur_row = next_row_;
82 for (int i = 0; i < num_rows_; i++) {
83 row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
85 // Advance to the next row, wrapping if necessary.
86 cur_row++;
87 if (cur_row == num_rows_)
88 cur_row = 0;
90 return &row_addresses_[0];
93 private:
94 // The buffer storing the rows. They are packed, each one row_byte_width_.
95 std::vector<unsigned char> buffer_;
97 // Number of bytes per row in the |buffer_|.
98 int row_byte_width_;
100 // The number of rows available in the buffer.
101 int num_rows_;
103 // The next row index we should write into. This wraps around as the
104 // circular buffer is used.
105 int next_row_;
107 // The y coordinate of the |next_row_|. This is incremented each time a
108 // new row is appended and does not wrap.
109 int next_row_coordinate_;
111 // Buffer used by GetRowAddresses().
112 std::vector<unsigned char*> row_addresses_;
115 // Convolves horizontally along a single row. The row data is given in
116 // |src_data| and continues for the num_values() of the filter.
117 template<bool has_alpha>
118 void ConvolveHorizontally(const unsigned char* src_data,
119 const ConvolutionFilter1D& filter,
120 unsigned char* out_row) {
121 // Loop over each pixel on this row in the output image.
122 int num_values = filter.num_values();
123 for (int out_x = 0; out_x < num_values; out_x++) {
124 // Get the filter that determines the current output pixel.
125 int filter_offset, filter_length;
126 const ConvolutionFilter1D::Fixed* filter_values =
127 filter.FilterForValue(out_x, &filter_offset, &filter_length);
129 // Compute the first pixel in this row that the filter affects. It will
130 // touch |filter_length| pixels (4 bytes each) after this.
131 const unsigned char* row_to_filter = &src_data[filter_offset * 4];
133 // Apply the filter to the row to get the destination pixel in |accum|.
134 int accum[4] = {0};
135 for (int filter_x = 0; filter_x < filter_length; filter_x++) {
136 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x];
137 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
138 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
139 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
140 if (has_alpha)
141 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
144 // Bring this value back in range. All of the filter scaling factors
145 // are in fixed point with kShiftBits bits of fractional part.
146 accum[0] >>= ConvolutionFilter1D::kShiftBits;
147 accum[1] >>= ConvolutionFilter1D::kShiftBits;
148 accum[2] >>= ConvolutionFilter1D::kShiftBits;
149 if (has_alpha)
150 accum[3] >>= ConvolutionFilter1D::kShiftBits;
152 // Store the new pixel.
153 out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
154 out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
155 out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
156 if (has_alpha)
157 out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
161 // Does vertical convolution to produce one output row. The filter values and
162 // length are given in the first two parameters. These are applied to each
163 // of the rows pointed to in the |source_data_rows| array, with each row
164 // being |pixel_width| wide.
166 // The output must have room for |pixel_width * 4| bytes.
167 template<bool has_alpha>
168 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
169 int filter_length,
170 unsigned char* const* source_data_rows,
171 int pixel_width,
172 unsigned char* out_row) {
173 // We go through each column in the output and do a vertical convolution,
174 // generating one output pixel each time.
175 for (int out_x = 0; out_x < pixel_width; out_x++) {
176 // Compute the number of bytes over in each row that the current column
177 // we're convolving starts at. The pixel will cover the next 4 bytes.
178 int byte_offset = out_x * 4;
180 // Apply the filter to one column of pixels.
181 int accum[4] = {0};
182 for (int filter_y = 0; filter_y < filter_length; filter_y++) {
183 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y];
184 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
185 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
186 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
187 if (has_alpha)
188 accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
191 // Bring this value back in range. All of the filter scaling factors
192 // are in fixed point with kShiftBits bits of precision.
193 accum[0] >>= ConvolutionFilter1D::kShiftBits;
194 accum[1] >>= ConvolutionFilter1D::kShiftBits;
195 accum[2] >>= ConvolutionFilter1D::kShiftBits;
196 if (has_alpha)
197 accum[3] >>= ConvolutionFilter1D::kShiftBits;
199 // Store the new pixel.
200 out_row[byte_offset + 0] = ClampTo8(accum[0]);
201 out_row[byte_offset + 1] = ClampTo8(accum[1]);
202 out_row[byte_offset + 2] = ClampTo8(accum[2]);
203 if (has_alpha) {
204 unsigned char alpha = ClampTo8(accum[3]);
206 // Make sure the alpha channel doesn't come out smaller than any of the
207 // color channels. We use premultipled alpha channels, so this should
208 // never happen, but rounding errors will cause this from time to time.
209 // These "impossible" colors will cause overflows (and hence random pixel
210 // values) when the resulting bitmap is drawn to the screen.
212 // We only need to do this when generating the final output row (here).
213 int max_color_channel = std::max(out_row[byte_offset + 0],
214 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
215 if (alpha < max_color_channel)
216 out_row[byte_offset + 3] = max_color_channel;
217 else
218 out_row[byte_offset + 3] = alpha;
219 } else {
220 // No alpha channel, the image is opaque.
221 out_row[byte_offset + 3] = 0xff;
227 // Convolves horizontally along a single row. The row data is given in
228 // |src_data| and continues for the num_values() of the filter.
229 void ConvolveHorizontally_SSE2(const unsigned char* src_data,
230 const ConvolutionFilter1D& filter,
231 unsigned char* out_row) {
232 #if defined(SIMD_SSE2)
233 int num_values = filter.num_values();
235 int filter_offset, filter_length;
236 __m128i zero = _mm_setzero_si128();
237 __m128i mask[4];
238 // |mask| will be used to decimate all extra filter coefficients that are
239 // loaded by SIMD when |filter_length| is not divisible by 4.
240 // mask[0] is not used in following algorithm.
241 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
242 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
243 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
245 // Output one pixel each iteration, calculating all channels (RGBA) together.
246 for (int out_x = 0; out_x < num_values; out_x++) {
247 const ConvolutionFilter1D::Fixed* filter_values =
248 filter.FilterForValue(out_x, &filter_offset, &filter_length);
250 __m128i accum = _mm_setzero_si128();
252 // Compute the first pixel in this row that the filter affects. It will
253 // touch |filter_length| pixels (4 bytes each) after this.
254 const __m128i* row_to_filter =
255 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
257 // We will load and accumulate with four coefficients per iteration.
258 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
260 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
261 __m128i coeff, coeff16;
262 // [16] xx xx xx xx c3 c2 c1 c0
263 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
264 // [16] xx xx xx xx c1 c1 c0 c0
265 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
266 // [16] c1 c1 c1 c1 c0 c0 c0 c0
267 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
269 // Load four pixels => unpack the first two pixels to 16 bits =>
270 // multiply with coefficients => accumulate the convolution result.
271 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
272 __m128i src8 = _mm_loadu_si128(row_to_filter);
273 // [16] a1 b1 g1 r1 a0 b0 g0 r0
274 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
275 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
276 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
277 // [32] a0*c0 b0*c0 g0*c0 r0*c0
278 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
279 accum = _mm_add_epi32(accum, t);
280 // [32] a1*c1 b1*c1 g1*c1 r1*c1
281 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
282 accum = _mm_add_epi32(accum, t);
284 // Duplicate 3rd and 4th coefficients for all channels =>
285 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
286 // => accumulate the convolution results.
287 // [16] xx xx xx xx c3 c3 c2 c2
288 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
289 // [16] c3 c3 c3 c3 c2 c2 c2 c2
290 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
291 // [16] a3 g3 b3 r3 a2 g2 b2 r2
292 src16 = _mm_unpackhi_epi8(src8, zero);
293 mul_hi = _mm_mulhi_epi16(src16, coeff16);
294 mul_lo = _mm_mullo_epi16(src16, coeff16);
295 // [32] a2*c2 b2*c2 g2*c2 r2*c2
296 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
297 accum = _mm_add_epi32(accum, t);
298 // [32] a3*c3 b3*c3 g3*c3 r3*c3
299 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
300 accum = _mm_add_epi32(accum, t);
302 // Advance the pixel and coefficients pointers.
303 row_to_filter += 1;
304 filter_values += 4;
307 // When |filter_length| is not divisible by 4, we need to decimate some of
308 // the filter coefficient that was loaded incorrectly to zero; Other than
309 // that the algorithm is same with above, exceot that the 4th pixel will be
310 // always absent.
311 int r = filter_length&3;
312 if (r) {
313 // Note: filter_values must be padded to align_up(filter_offset, 8).
314 __m128i coeff, coeff16;
315 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
316 // Mask out extra filter taps.
317 coeff = _mm_and_si128(coeff, mask[r]);
318 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
319 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
321 // Note: line buffer must be padded to align_up(filter_offset, 16).
322 // We resolve this by use C-version for the last horizontal line.
323 __m128i src8 = _mm_loadu_si128(row_to_filter);
324 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
325 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
326 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
327 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
328 accum = _mm_add_epi32(accum, t);
329 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
330 accum = _mm_add_epi32(accum, t);
332 src16 = _mm_unpackhi_epi8(src8, zero);
333 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
334 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
335 mul_hi = _mm_mulhi_epi16(src16, coeff16);
336 mul_lo = _mm_mullo_epi16(src16, coeff16);
337 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
338 accum = _mm_add_epi32(accum, t);
341 // Shift right for fixed point implementation.
342 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
344 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
345 accum = _mm_packs_epi32(accum, zero);
346 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
347 accum = _mm_packus_epi16(accum, zero);
349 // Store the pixel value of 32 bits.
350 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
351 out_row += 4;
353 #endif
356 // Convolves horizontally along four rows. The row data is given in
357 // |src_data| and continues for the num_values() of the filter.
358 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
359 // refer to that function for detailed comments.
360 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
361 const ConvolutionFilter1D& filter,
362 unsigned char* out_row[4]) {
363 #if defined(SIMD_SSE2)
364 int num_values = filter.num_values();
366 int filter_offset, filter_length;
367 __m128i zero = _mm_setzero_si128();
368 __m128i mask[4];
369 // |mask| will be used to decimate all extra filter coefficients that are
370 // loaded by SIMD when |filter_length| is not divisible by 4.
371 // mask[0] is not used in following algorithm.
372 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
373 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
374 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
376 // Output one pixel each iteration, calculating all channels (RGBA) together.
377 for (int out_x = 0; out_x < num_values; out_x++) {
378 const ConvolutionFilter1D::Fixed* filter_values =
379 filter.FilterForValue(out_x, &filter_offset, &filter_length);
381 // four pixels in a column per iteration.
382 __m128i accum0 = _mm_setzero_si128();
383 __m128i accum1 = _mm_setzero_si128();
384 __m128i accum2 = _mm_setzero_si128();
385 __m128i accum3 = _mm_setzero_si128();
386 int start = (filter_offset<<2);
387 // We will load and accumulate with four coefficients per iteration.
388 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
389 __m128i coeff, coeff16lo, coeff16hi;
390 // [16] xx xx xx xx c3 c2 c1 c0
391 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
392 // [16] xx xx xx xx c1 c1 c0 c0
393 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
394 // [16] c1 c1 c1 c1 c0 c0 c0 c0
395 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
396 // [16] xx xx xx xx c3 c3 c2 c2
397 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
398 // [16] c3 c3 c3 c3 c2 c2 c2 c2
399 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
401 __m128i src8, src16, mul_hi, mul_lo, t;
403 #define ITERATION(src, accum) \
404 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
405 src16 = _mm_unpacklo_epi8(src8, zero); \
406 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
407 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
408 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
409 accum = _mm_add_epi32(accum, t); \
410 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
411 accum = _mm_add_epi32(accum, t); \
412 src16 = _mm_unpackhi_epi8(src8, zero); \
413 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
414 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
415 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
416 accum = _mm_add_epi32(accum, t); \
417 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
418 accum = _mm_add_epi32(accum, t)
420 ITERATION(src_data[0] + start, accum0);
421 ITERATION(src_data[1] + start, accum1);
422 ITERATION(src_data[2] + start, accum2);
423 ITERATION(src_data[3] + start, accum3);
425 start += 16;
426 filter_values += 4;
429 int r = filter_length & 3;
430 if (r) {
431 // Note: filter_values must be padded to align_up(filter_offset, 8);
432 __m128i coeff;
433 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
434 // Mask out extra filter taps.
435 coeff = _mm_and_si128(coeff, mask[r]);
437 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
438 /* c1 c1 c1 c1 c0 c0 c0 c0 */
439 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
440 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
441 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
443 __m128i src8, src16, mul_hi, mul_lo, t;
445 ITERATION(src_data[0] + start, accum0);
446 ITERATION(src_data[1] + start, accum1);
447 ITERATION(src_data[2] + start, accum2);
448 ITERATION(src_data[3] + start, accum3);
451 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
452 accum0 = _mm_packs_epi32(accum0, zero);
453 accum0 = _mm_packus_epi16(accum0, zero);
454 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
455 accum1 = _mm_packs_epi32(accum1, zero);
456 accum1 = _mm_packus_epi16(accum1, zero);
457 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
458 accum2 = _mm_packs_epi32(accum2, zero);
459 accum2 = _mm_packus_epi16(accum2, zero);
460 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
461 accum3 = _mm_packs_epi32(accum3, zero);
462 accum3 = _mm_packus_epi16(accum3, zero);
464 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
465 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
466 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
467 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
469 out_row[0] += 4;
470 out_row[1] += 4;
471 out_row[2] += 4;
472 out_row[3] += 4;
474 #endif
477 // Does vertical convolution to produce one output row. The filter values and
478 // length are given in the first two parameters. These are applied to each
479 // of the rows pointed to in the |source_data_rows| array, with each row
480 // being |pixel_width| wide.
482 // The output must have room for |pixel_width * 4| bytes.
483 template<bool has_alpha>
484 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
485 int filter_length,
486 unsigned char* const* source_data_rows,
487 int pixel_width,
488 unsigned char* out_row) {
489 #if defined(SIMD_SSE2)
490 int width = pixel_width & ~3;
492 __m128i zero = _mm_setzero_si128();
493 __m128i accum0, accum1, accum2, accum3, coeff16;
494 const __m128i* src;
495 // Output four pixels per iteration (16 bytes).
496 for (int out_x = 0; out_x < width; out_x += 4) {
498 // Accumulated result for each pixel. 32 bits per RGBA channel.
499 accum0 = _mm_setzero_si128();
500 accum1 = _mm_setzero_si128();
501 accum2 = _mm_setzero_si128();
502 accum3 = _mm_setzero_si128();
504 // Convolve with one filter coefficient per iteration.
505 for (int filter_y = 0; filter_y < filter_length; filter_y++) {
507 // Duplicate the filter coefficient 8 times.
508 // [16] cj cj cj cj cj cj cj cj
509 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
511 // Load four pixels (16 bytes) together.
512 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
513 src = reinterpret_cast<const __m128i*>(
514 &source_data_rows[filter_y][out_x << 2]);
515 __m128i src8 = _mm_loadu_si128(src);
517 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
518 // multiply with current coefficient => accumulate the result.
519 // [16] a1 b1 g1 r1 a0 b0 g0 r0
520 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
521 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
522 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
523 // [32] a0 b0 g0 r0
524 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
525 accum0 = _mm_add_epi32(accum0, t);
526 // [32] a1 b1 g1 r1
527 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
528 accum1 = _mm_add_epi32(accum1, t);
530 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
531 // multiply with current coefficient => accumulate the result.
532 // [16] a3 b3 g3 r3 a2 b2 g2 r2
533 src16 = _mm_unpackhi_epi8(src8, zero);
534 mul_hi = _mm_mulhi_epi16(src16, coeff16);
535 mul_lo = _mm_mullo_epi16(src16, coeff16);
536 // [32] a2 b2 g2 r2
537 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
538 accum2 = _mm_add_epi32(accum2, t);
539 // [32] a3 b3 g3 r3
540 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
541 accum3 = _mm_add_epi32(accum3, t);
544 // Shift right for fixed point implementation.
545 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
546 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
547 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
548 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
550 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
551 // [16] a1 b1 g1 r1 a0 b0 g0 r0
552 accum0 = _mm_packs_epi32(accum0, accum1);
553 // [16] a3 b3 g3 r3 a2 b2 g2 r2
554 accum2 = _mm_packs_epi32(accum2, accum3);
556 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
557 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
558 accum0 = _mm_packus_epi16(accum0, accum2);
560 if (has_alpha) {
561 // Compute the max(ri, gi, bi) for each pixel.
562 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
563 __m128i a = _mm_srli_epi32(accum0, 8);
564 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
565 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
566 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
567 a = _mm_srli_epi32(accum0, 16);
568 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
569 b = _mm_max_epu8(a, b); // Max of r and g and b.
570 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
571 b = _mm_slli_epi32(b, 24);
573 // Make sure the value of alpha channel is always larger than maximum
574 // value of color channels.
575 accum0 = _mm_max_epu8(b, accum0);
576 } else {
577 // Set value of alpha channels to 0xFF.
578 __m128i mask = _mm_set1_epi32(0xff000000);
579 accum0 = _mm_or_si128(accum0, mask);
582 // Store the convolution result (16 bytes) and advance the pixel pointers.
583 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
584 out_row += 16;
587 // When the width of the output is not divisible by 4, We need to save one
588 // pixel (4 bytes) each time. And also the fourth pixel is always absent.
589 if (pixel_width & 3) {
590 accum0 = _mm_setzero_si128();
591 accum1 = _mm_setzero_si128();
592 accum2 = _mm_setzero_si128();
593 for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
594 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
595 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
596 src = reinterpret_cast<const __m128i*>(
597 &source_data_rows[filter_y][width<<2]);
598 __m128i src8 = _mm_loadu_si128(src);
599 // [16] a1 b1 g1 r1 a0 b0 g0 r0
600 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
601 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
602 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
603 // [32] a0 b0 g0 r0
604 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
605 accum0 = _mm_add_epi32(accum0, t);
606 // [32] a1 b1 g1 r1
607 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
608 accum1 = _mm_add_epi32(accum1, t);
609 // [16] a3 b3 g3 r3 a2 b2 g2 r2
610 src16 = _mm_unpackhi_epi8(src8, zero);
611 mul_hi = _mm_mulhi_epi16(src16, coeff16);
612 mul_lo = _mm_mullo_epi16(src16, coeff16);
613 // [32] a2 b2 g2 r2
614 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
615 accum2 = _mm_add_epi32(accum2, t);
618 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
619 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
620 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
621 // [16] a1 b1 g1 r1 a0 b0 g0 r0
622 accum0 = _mm_packs_epi32(accum0, accum1);
623 // [16] a3 b3 g3 r3 a2 b2 g2 r2
624 accum2 = _mm_packs_epi32(accum2, zero);
625 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
626 accum0 = _mm_packus_epi16(accum0, accum2);
627 if (has_alpha) {
628 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
629 __m128i a = _mm_srli_epi32(accum0, 8);
630 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
631 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
632 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
633 a = _mm_srli_epi32(accum0, 16);
634 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
635 b = _mm_max_epu8(a, b); // Max of r and g and b.
636 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
637 b = _mm_slli_epi32(b, 24);
638 accum0 = _mm_max_epu8(b, accum0);
639 } else {
640 __m128i mask = _mm_set1_epi32(0xff000000);
641 accum0 = _mm_or_si128(accum0, mask);
644 for (int out_x = width; out_x < pixel_width; out_x++) {
645 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
646 accum0 = _mm_srli_si128(accum0, 4);
647 out_row += 4;
650 #endif
653 } // namespace
655 // ConvolutionFilter1D ---------------------------------------------------------
657 ConvolutionFilter1D::ConvolutionFilter1D()
658 : max_filter_(0) {
661 ConvolutionFilter1D::~ConvolutionFilter1D() {
664 void ConvolutionFilter1D::AddFilter(int filter_offset,
665 const float* filter_values,
666 int filter_length) {
667 SkASSERT(filter_length > 0);
669 std::vector<Fixed> fixed_values;
670 fixed_values.reserve(filter_length);
672 for (int i = 0; i < filter_length; ++i)
673 fixed_values.push_back(FloatToFixed(filter_values[i]));
675 AddFilter(filter_offset, &fixed_values[0], filter_length);
678 void ConvolutionFilter1D::AddFilter(int filter_offset,
679 const Fixed* filter_values,
680 int filter_length) {
681 // It is common for leading/trailing filter values to be zeros. In such
682 // cases it is beneficial to only store the central factors.
683 // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
684 // a 1080p image this optimization gives a ~10% speed improvement.
685 int first_non_zero = 0;
686 while (first_non_zero < filter_length && filter_values[first_non_zero] == 0)
687 first_non_zero++;
689 if (first_non_zero < filter_length) {
690 // Here we have at least one non-zero factor.
691 int last_non_zero = filter_length - 1;
692 while (last_non_zero >= 0 && filter_values[last_non_zero] == 0)
693 last_non_zero--;
695 filter_offset += first_non_zero;
696 filter_length = last_non_zero + 1 - first_non_zero;
697 SkASSERT(filter_length > 0);
699 for (int i = first_non_zero; i <= last_non_zero; i++)
700 filter_values_.push_back(filter_values[i]);
701 } else {
702 // Here all the factors were zeroes.
703 filter_length = 0;
706 FilterInstance instance;
708 // We pushed filter_length elements onto filter_values_
709 instance.data_location = (static_cast<int>(filter_values_.size()) -
710 filter_length);
711 instance.offset = filter_offset;
712 instance.length = filter_length;
713 filters_.push_back(instance);
715 max_filter_ = std::max(max_filter_, filter_length);
718 void BGRAConvolve2D(const unsigned char* source_data,
719 int source_byte_row_stride,
720 bool source_has_alpha,
721 const ConvolutionFilter1D& filter_x,
722 const ConvolutionFilter1D& filter_y,
723 int output_byte_row_stride,
724 unsigned char* output,
725 bool use_sse2) {
726 #if !defined(SIMD_SSE2)
727 // Even we have runtime support for SSE2 instructions, since the binary
728 // was not built with SSE2 support, we had to fallback to C version.
729 use_sse2 = false;
730 #endif
732 int max_y_filter_size = filter_y.max_filter();
734 // The next row in the input that we will generate a horizontally
735 // convolved row for. If the filter doesn't start at the beginning of the
736 // image (this is the case when we are only resizing a subset), then we
737 // don't want to generate any output rows before that. Compute the starting
738 // row for convolution as the first pixel for the first vertical filter.
739 int filter_offset, filter_length;
740 const ConvolutionFilter1D::Fixed* filter_values =
741 filter_y.FilterForValue(0, &filter_offset, &filter_length);
742 int next_x_row = filter_offset;
744 // We loop over each row in the input doing a horizontal convolution. This
745 // will result in a horizontally convolved image. We write the results into
746 // a circular buffer of convolved rows and do vertical convolution as rows
747 // are available. This prevents us from having to store the entire
748 // intermediate image and helps cache coherency.
749 // We will need four extra rows to allow horizontal convolution could be done
750 // simultaneously. We also padding each row in row buffer to be aligned-up to
751 // 16 bytes.
752 // TODO(jiesun): We do not use aligned load from row buffer in vertical
753 // convolution pass yet. Somehow Windows does not like it.
754 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
755 int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0);
756 CircularRowBuffer row_buffer(row_buffer_width,
757 row_buffer_height,
758 filter_offset);
760 // Loop over every possible output row, processing just enough horizontal
761 // convolutions to run each subsequent vertical convolution.
762 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
763 int num_output_rows = filter_y.num_values();
765 // We need to check which is the last line to convolve before we advance 4
766 // lines in one iteration.
767 int last_filter_offset, last_filter_length;
768 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
769 &last_filter_length);
771 for (int out_y = 0; out_y < num_output_rows; out_y++) {
772 filter_values = filter_y.FilterForValue(out_y,
773 &filter_offset, &filter_length);
775 // Generate output rows until we have enough to run the current filter.
776 if (use_sse2) {
777 while (next_x_row < filter_offset + filter_length) {
778 if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) {
779 const unsigned char* src[4];
780 unsigned char* out_row[4];
781 for (int i = 0; i < 4; ++i) {
782 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
783 out_row[i] = row_buffer.AdvanceRow();
785 ConvolveHorizontally4_SSE2(src, filter_x, out_row);
786 next_x_row += 4;
787 } else {
788 // For the last row, SSE2 load possibly to access data beyond the
789 // image area. therefore we use C version here.
790 if (next_x_row == last_filter_offset + last_filter_length - 1) {
791 if (source_has_alpha) {
792 ConvolveHorizontally<true>(
793 &source_data[next_x_row * source_byte_row_stride],
794 filter_x, row_buffer.AdvanceRow());
795 } else {
796 ConvolveHorizontally<false>(
797 &source_data[next_x_row * source_byte_row_stride],
798 filter_x, row_buffer.AdvanceRow());
800 } else {
801 ConvolveHorizontally_SSE2(
802 &source_data[next_x_row * source_byte_row_stride],
803 filter_x, row_buffer.AdvanceRow());
805 next_x_row++;
808 } else {
809 while (next_x_row < filter_offset + filter_length) {
810 if (source_has_alpha) {
811 ConvolveHorizontally<true>(
812 &source_data[next_x_row * source_byte_row_stride],
813 filter_x, row_buffer.AdvanceRow());
814 } else {
815 ConvolveHorizontally<false>(
816 &source_data[next_x_row * source_byte_row_stride],
817 filter_x, row_buffer.AdvanceRow());
819 next_x_row++;
823 // Compute where in the output image this row of final data will go.
824 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
826 // Get the list of rows that the circular buffer has, in order.
827 int first_row_in_circular_buffer;
828 unsigned char* const* rows_to_convolve =
829 row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
831 // Now compute the start of the subset of those rows that the filter
832 // needs.
833 unsigned char* const* first_row_for_filter =
834 &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
836 if (source_has_alpha) {
837 if (use_sse2) {
838 ConvolveVertically_SSE2<true>(filter_values, filter_length,
839 first_row_for_filter,
840 filter_x.num_values(), cur_output_row);
841 } else {
842 ConvolveVertically<true>(filter_values, filter_length,
843 first_row_for_filter,
844 filter_x.num_values(), cur_output_row);
846 } else {
847 if (use_sse2) {
848 ConvolveVertically_SSE2<false>(filter_values, filter_length,
849 first_row_for_filter,
850 filter_x.num_values(), cur_output_row);
851 } else {
852 ConvolveVertically<false>(filter_values, filter_length,
853 first_row_for_filter,
854 filter_x.num_values(), cur_output_row);
860 } // namespace skia