Ignore empty SMS from empty number
[chromium-blink-merge.git] / crypto / p224.cc
blobd0e4baf3bba8f8c2b06cabce61cb9cc3867e14fc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This is an implementation of the P224 elliptic curve group. It's written to
6 // be short and simple rather than fast, although it's still constant-time.
7 //
8 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
10 #include "crypto/p224.h"
12 #include <string.h>
14 #include "base/sys_byteorder.h"
16 #if defined(OS_WIN)
17 // Allow htonl/ntohl to be called without requiring ws2_32.dll to be loaded,
18 // which isn't available in Chrome's sandbox. See crbug.com/116591.
19 // TODO(wez): Replace these calls with base::htonl() etc when available.
20 #define ntohl(x) _byteswap_ulong(x)
21 #define htonl(x) _byteswap_ulong(x)
22 #endif // OS_WIN
24 namespace {
26 // Field element functions.
28 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
30 // Field elements are represented by a FieldElement, which is a typedef to an
31 // array of 8 uint32's. The value of a FieldElement, a, is:
32 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
34 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
35 // than we would really like. But it has the useful feature that we hit 2**224
36 // exactly, making the reflections during a reduce much nicer.
38 using crypto::p224::FieldElement;
40 // Add computes *out = a+b
42 // a[i] + b[i] < 2**32
43 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) {
44 for (int i = 0; i < 8; i++) {
45 (*out)[i] = a[i] + b[i];
49 static const uint32 kTwo31p3 = (1u<<31) + (1u<<3);
50 static const uint32 kTwo31m3 = (1u<<31) - (1u<<3);
51 static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3);
52 // kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can
53 // subtract smaller amounts without underflow. See the section "Subtraction" in
54 // [1] for why.
55 static const FieldElement kZero31ModP = {
56 kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3,
57 kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3
60 // Subtract computes *out = a-b
62 // a[i], b[i] < 2**30
63 // out[i] < 2**32
64 void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) {
65 for (int i = 0; i < 8; i++) {
66 // See the section on "Subtraction" in [1] for details.
67 (*out)[i] = a[i] + kZero31ModP[i] - b[i];
71 static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35);
72 static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35);
73 static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19);
74 // kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section
75 // "Subtraction" in [1] for why.
76 static const uint64 kZero63ModP[8] = {
77 kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35,
78 kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35,
81 static const uint32 kBottom28Bits = 0xfffffff;
83 // LargeFieldElement also represents an element of the field. The limbs are
84 // still spaced 28-bits apart and in little-endian order. So the limbs are at
85 // 0, 28, 56, ..., 392 bits, each 64-bits wide.
86 typedef uint64 LargeFieldElement[15];
88 // ReduceLarge converts a LargeFieldElement to a FieldElement.
90 // in[i] < 2**62
91 void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) {
92 LargeFieldElement& in(*inptr);
94 for (int i = 0; i < 8; i++) {
95 in[i] += kZero63ModP[i];
98 // Eliminate the coefficients at 2**224 and greater while maintaining the
99 // same value mod p.
100 for (int i = 14; i >= 8; i--) {
101 in[i-8] -= in[i]; // reflection off the "+1" term of p.
102 in[i-5] += (in[i] & 0xffff) << 12; // part of the "-2**96" reflection.
103 in[i-4] += in[i] >> 16; // the rest of the "-2**96" reflection.
105 in[8] = 0;
106 // in[0..8] < 2**64
108 // As the values become small enough, we start to store them in |out| and use
109 // 32-bit operations.
110 for (int i = 1; i < 8; i++) {
111 in[i+1] += in[i] >> 28;
112 (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits);
114 // Eliminate the term at 2*224 that we introduced while keeping the same
115 // value mod p.
116 in[0] -= in[8]; // reflection off the "+1" term of p.
117 (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term
118 (*out)[4] += static_cast<uint32>(in[8] >> 16); // rest of "-2**96" term
119 // in[0] < 2**64
120 // out[3] < 2**29
121 // out[4] < 2**29
122 // out[1,2,5..7] < 2**28
124 (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits);
125 (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits);
126 (*out)[2] += static_cast<uint32>(in[0] >> 56);
127 // out[0] < 2**28
128 // out[1..4] < 2**29
129 // out[5..7] < 2**28
132 // Mul computes *out = a*b
134 // a[i] < 2**29, b[i] < 2**30 (or vice versa)
135 // out[i] < 2**29
136 void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) {
137 LargeFieldElement tmp;
138 memset(&tmp, 0, sizeof(tmp));
140 for (int i = 0; i < 8; i++) {
141 for (int j = 0; j < 8; j++) {
142 tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]);
146 ReduceLarge(out, &tmp);
149 // Square computes *out = a*a
151 // a[i] < 2**29
152 // out[i] < 2**29
153 void Square(FieldElement* out, const FieldElement& a) {
154 LargeFieldElement tmp;
155 memset(&tmp, 0, sizeof(tmp));
157 for (int i = 0; i < 8; i++) {
158 for (int j = 0; j <= i; j++) {
159 uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]);
160 if (i == j) {
161 tmp[i+j] += r;
162 } else {
163 tmp[i+j] += r << 1;
168 ReduceLarge(out, &tmp);
171 // Reduce reduces the coefficients of in_out to smaller bounds.
173 // On entry: a[i] < 2**31 + 2**30
174 // On exit: a[i] < 2**29
175 void Reduce(FieldElement* in_out) {
176 FieldElement& a = *in_out;
178 for (int i = 0; i < 7; i++) {
179 a[i+1] += a[i] >> 28;
180 a[i] &= kBottom28Bits;
182 uint32 top = a[7] >> 28;
183 a[7] &= kBottom28Bits;
185 // top < 2**4
186 // Constant-time: mask = (top != 0) ? 0xffffffff : 0
187 uint32 mask = top;
188 mask |= mask >> 2;
189 mask |= mask >> 1;
190 mask <<= 31;
191 mask = static_cast<uint32>(static_cast<int32>(mask) >> 31);
193 // Eliminate top while maintaining the same value mod p.
194 a[0] -= top;
195 a[3] += top << 12;
197 // We may have just made a[0] negative but, if we did, then we must
198 // have added something to a[3], thus it's > 2**12. Therefore we can
199 // carry down to a[0].
200 a[3] -= 1 & mask;
201 a[2] += mask & ((1<<28) - 1);
202 a[1] += mask & ((1<<28) - 1);
203 a[0] += mask & (1<<28);
206 // Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e.
207 // Fermat's little theorem.
208 void Invert(FieldElement* out, const FieldElement& in) {
209 FieldElement f1, f2, f3, f4;
211 Square(&f1, in); // 2
212 Mul(&f1, f1, in); // 2**2 - 1
213 Square(&f1, f1); // 2**3 - 2
214 Mul(&f1, f1, in); // 2**3 - 1
215 Square(&f2, f1); // 2**4 - 2
216 Square(&f2, f2); // 2**5 - 4
217 Square(&f2, f2); // 2**6 - 8
218 Mul(&f1, f1, f2); // 2**6 - 1
219 Square(&f2, f1); // 2**7 - 2
220 for (int i = 0; i < 5; i++) { // 2**12 - 2**6
221 Square(&f2, f2);
223 Mul(&f2, f2, f1); // 2**12 - 1
224 Square(&f3, f2); // 2**13 - 2
225 for (int i = 0; i < 11; i++) { // 2**24 - 2**12
226 Square(&f3, f3);
228 Mul(&f2, f3, f2); // 2**24 - 1
229 Square(&f3, f2); // 2**25 - 2
230 for (int i = 0; i < 23; i++) { // 2**48 - 2**24
231 Square(&f3, f3);
233 Mul(&f3, f3, f2); // 2**48 - 1
234 Square(&f4, f3); // 2**49 - 2
235 for (int i = 0; i < 47; i++) { // 2**96 - 2**48
236 Square(&f4, f4);
238 Mul(&f3, f3, f4); // 2**96 - 1
239 Square(&f4, f3); // 2**97 - 2
240 for (int i = 0; i < 23; i++) { // 2**120 - 2**24
241 Square(&f4, f4);
243 Mul(&f2, f4, f2); // 2**120 - 1
244 for (int i = 0; i < 6; i++) { // 2**126 - 2**6
245 Square(&f2, f2);
247 Mul(&f1, f1, f2); // 2**126 - 1
248 Square(&f1, f1); // 2**127 - 2
249 Mul(&f1, f1, in); // 2**127 - 1
250 for (int i = 0; i < 97; i++) { // 2**224 - 2**97
251 Square(&f1, f1);
253 Mul(out, f1, f3); // 2**224 - 2**96 - 1
256 // Contract converts a FieldElement to its minimal, distinguished form.
258 // On entry, in[i] < 2**29
259 // On exit, in[i] < 2**28
260 void Contract(FieldElement* inout) {
261 FieldElement& out = *inout;
263 // Reduce the coefficients to < 2**28.
264 for (int i = 0; i < 7; i++) {
265 out[i+1] += out[i] >> 28;
266 out[i] &= kBottom28Bits;
268 uint32 top = out[7] >> 28;
269 out[7] &= kBottom28Bits;
271 // Eliminate top while maintaining the same value mod p.
272 out[0] -= top;
273 out[3] += top << 12;
275 // We may just have made out[0] negative. So we carry down. If we made
276 // out[0] negative then we know that out[3] is sufficiently positive
277 // because we just added to it.
278 for (int i = 0; i < 3; i++) {
279 uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
280 out[i] += (1 << 28) & mask;
281 out[i+1] -= 1 & mask;
284 // We might have pushed out[3] over 2**28 so we perform another, partial
285 // carry chain.
286 for (int i = 3; i < 7; i++) {
287 out[i+1] += out[i] >> 28;
288 out[i] &= kBottom28Bits;
290 top = out[7] >> 28;
291 out[7] &= kBottom28Bits;
293 // Eliminate top while maintaining the same value mod p.
294 out[0] -= top;
295 out[3] += top << 12;
297 // There are two cases to consider for out[3]:
298 // 1) The first time that we eliminated top, we didn't push out[3] over
299 // 2**28. In this case, the partial carry chain didn't change any values
300 // and top is zero.
301 // 2) We did push out[3] over 2**28 the first time that we eliminated top.
302 // The first value of top was in [0..16), therefore, prior to eliminating
303 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
304 // overflowing and being reduced by the second carry chain, out[3] <=
305 // 0xf000. Thus it cannot have overflowed when we eliminated top for the
306 // second time.
308 // Again, we may just have made out[0] negative, so do the same carry down.
309 // As before, if we made out[0] negative then we know that out[3] is
310 // sufficiently positive.
311 for (int i = 0; i < 3; i++) {
312 uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
313 out[i] += (1 << 28) & mask;
314 out[i+1] -= 1 & mask;
317 // The value is < 2**224, but maybe greater than p. In order to reduce to a
318 // unique, minimal value we see if the value is >= p and, if so, subtract p.
320 // First we build a mask from the top four limbs, which must all be
321 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
322 // ends up with any zero bits in the bottom 28 bits, then this wasn't
323 // true.
324 uint32 top4AllOnes = 0xffffffffu;
325 for (int i = 4; i < 8; i++) {
326 top4AllOnes &= (out[i] & kBottom28Bits) - 1;
328 top4AllOnes |= 0xf0000000;
329 // Now we replicate any zero bits to all the bits in top4AllOnes.
330 top4AllOnes &= top4AllOnes >> 16;
331 top4AllOnes &= top4AllOnes >> 8;
332 top4AllOnes &= top4AllOnes >> 4;
333 top4AllOnes &= top4AllOnes >> 2;
334 top4AllOnes &= top4AllOnes >> 1;
335 top4AllOnes =
336 static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31);
338 // Now we test whether the bottom three limbs are non-zero.
339 uint32 bottom3NonZero = out[0] | out[1] | out[2];
340 bottom3NonZero |= bottom3NonZero >> 16;
341 bottom3NonZero |= bottom3NonZero >> 8;
342 bottom3NonZero |= bottom3NonZero >> 4;
343 bottom3NonZero |= bottom3NonZero >> 2;
344 bottom3NonZero |= bottom3NonZero >> 1;
345 bottom3NonZero =
346 static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31);
348 // Everything depends on the value of out[3].
349 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
350 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
351 // then the whole value is >= p
352 // If it's < 0xffff000, then the whole value is < p
353 uint32 n = out[3] - 0xffff000;
354 uint32 out3Equal = n;
355 out3Equal |= out3Equal >> 16;
356 out3Equal |= out3Equal >> 8;
357 out3Equal |= out3Equal >> 4;
358 out3Equal |= out3Equal >> 2;
359 out3Equal |= out3Equal >> 1;
360 out3Equal =
361 ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31);
363 // If out[3] > 0xffff000 then n's MSB will be zero.
364 uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31);
366 uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT);
367 out[0] -= 1 & mask;
368 out[3] -= 0xffff000 & mask;
369 out[4] -= 0xfffffff & mask;
370 out[5] -= 0xfffffff & mask;
371 out[6] -= 0xfffffff & mask;
372 out[7] -= 0xfffffff & mask;
376 // Group element functions.
378 // These functions deal with group elements. The group is an elliptic curve
379 // group with a = -3 defined in FIPS 186-3, section D.2.2.
381 using crypto::p224::Point;
383 // kP is the P224 prime.
384 const FieldElement kP = {
385 1, 0, 0, 268431360,
386 268435455, 268435455, 268435455, 268435455,
389 // kB is parameter of the elliptic curve.
390 const FieldElement kB = {
391 55967668, 11768882, 265861671, 185302395,
392 39211076, 180311059, 84673715, 188764328,
395 // AddJacobian computes *out = a+b where a != b.
396 void AddJacobian(Point *out,
397 const Point& a,
398 const Point& b) {
399 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
400 FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v;
402 // Z1Z1 = Z1²
403 Square(&z1z1, a.z);
405 // Z2Z2 = Z2²
406 Square(&z2z2, b.z);
408 // U1 = X1*Z2Z2
409 Mul(&u1, a.x, z2z2);
411 // U2 = X2*Z1Z1
412 Mul(&u2, b.x, z1z1);
414 // S1 = Y1*Z2*Z2Z2
415 Mul(&s1, b.z, z2z2);
416 Mul(&s1, a.y, s1);
418 // S2 = Y2*Z1*Z1Z1
419 Mul(&s2, a.z, z1z1);
420 Mul(&s2, b.y, s2);
422 // H = U2-U1
423 Subtract(&h, u2, u1);
424 Reduce(&h);
426 // I = (2*H)²
427 for (int j = 0; j < 8; j++) {
428 i[j] = h[j] << 1;
430 Reduce(&i);
431 Square(&i, i);
433 // J = H*I
434 Mul(&j, h, i);
435 // r = 2*(S2-S1)
436 Subtract(&r, s2, s1);
437 Reduce(&r);
438 for (int i = 0; i < 8; i++) {
439 r[i] <<= 1;
441 Reduce(&r);
443 // V = U1*I
444 Mul(&v, u1, i);
446 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
447 Add(&z1z1, z1z1, z2z2);
448 Add(&z2z2, a.z, b.z);
449 Reduce(&z2z2);
450 Square(&z2z2, z2z2);
451 Subtract(&out->z, z2z2, z1z1);
452 Reduce(&out->z);
453 Mul(&out->z, out->z, h);
455 // X3 = r²-J-2*V
456 for (int i = 0; i < 8; i++) {
457 z1z1[i] = v[i] << 1;
459 Add(&z1z1, j, z1z1);
460 Reduce(&z1z1);
461 Square(&out->x, r);
462 Subtract(&out->x, out->x, z1z1);
463 Reduce(&out->x);
465 // Y3 = r*(V-X3)-2*S1*J
466 for (int i = 0; i < 8; i++) {
467 s1[i] <<= 1;
469 Mul(&s1, s1, j);
470 Subtract(&z1z1, v, out->x);
471 Reduce(&z1z1);
472 Mul(&z1z1, z1z1, r);
473 Subtract(&out->y, z1z1, s1);
474 Reduce(&out->y);
477 // DoubleJacobian computes *out = a+a.
478 void DoubleJacobian(Point* out, const Point& a) {
479 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
480 FieldElement delta, gamma, beta, alpha, t;
482 Square(&delta, a.z);
483 Square(&gamma, a.y);
484 Mul(&beta, a.x, gamma);
486 // alpha = 3*(X1-delta)*(X1+delta)
487 Add(&t, a.x, delta);
488 for (int i = 0; i < 8; i++) {
489 t[i] += t[i] << 1;
491 Reduce(&t);
492 Subtract(&alpha, a.x, delta);
493 Reduce(&alpha);
494 Mul(&alpha, alpha, t);
496 // Z3 = (Y1+Z1)²-gamma-delta
497 Add(&out->z, a.y, a.z);
498 Reduce(&out->z);
499 Square(&out->z, out->z);
500 Subtract(&out->z, out->z, gamma);
501 Reduce(&out->z);
502 Subtract(&out->z, out->z, delta);
503 Reduce(&out->z);
505 // X3 = alpha²-8*beta
506 for (int i = 0; i < 8; i++) {
507 delta[i] = beta[i] << 3;
509 Reduce(&delta);
510 Square(&out->x, alpha);
511 Subtract(&out->x, out->x, delta);
512 Reduce(&out->x);
514 // Y3 = alpha*(4*beta-X3)-8*gamma²
515 for (int i = 0; i < 8; i++) {
516 beta[i] <<= 2;
518 Reduce(&beta);
519 Subtract(&beta, beta, out->x);
520 Reduce(&beta);
521 Square(&gamma, gamma);
522 for (int i = 0; i < 8; i++) {
523 gamma[i] <<= 3;
525 Reduce(&gamma);
526 Mul(&out->y, alpha, beta);
527 Subtract(&out->y, out->y, gamma);
528 Reduce(&out->y);
531 // CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of
532 // 0xffffffff.
533 void CopyConditional(Point* out,
534 const Point& a,
535 uint32 mask) {
536 for (int i = 0; i < 8; i++) {
537 out->x[i] ^= mask & (a.x[i] ^ out->x[i]);
538 out->y[i] ^= mask & (a.y[i] ^ out->y[i]);
539 out->z[i] ^= mask & (a.z[i] ^ out->z[i]);
543 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of
544 // length scalar_len and != 0.
545 void ScalarMult(Point* out, const Point& a,
546 const uint8* scalar, size_t scalar_len) {
547 memset(out, 0, sizeof(*out));
548 Point tmp;
550 uint32 first_bit = 0xffffffff;
551 for (size_t i = 0; i < scalar_len; i++) {
552 for (unsigned int bit_num = 0; bit_num < 8; bit_num++) {
553 DoubleJacobian(out, *out);
554 uint32 bit = static_cast<uint32>(static_cast<int32>(
555 (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31));
556 AddJacobian(&tmp, a, *out);
557 CopyConditional(out, a, first_bit & bit);
558 CopyConditional(out, tmp, ~first_bit & bit);
559 first_bit = first_bit & ~bit;
564 // Get224Bits reads 7 words from in and scatters their contents in
565 // little-endian form into 8 words at out, 28 bits per output word.
566 void Get224Bits(uint32* out, const uint32* in) {
567 out[0] = ntohl(in[6]) & kBottom28Bits;
568 out[1] = ((ntohl(in[5]) << 4) | (ntohl(in[6]) >> 28)) & kBottom28Bits;
569 out[2] = ((ntohl(in[4]) << 8) | (ntohl(in[5]) >> 24)) & kBottom28Bits;
570 out[3] = ((ntohl(in[3]) << 12) | (ntohl(in[4]) >> 20)) & kBottom28Bits;
571 out[4] = ((ntohl(in[2]) << 16) | (ntohl(in[3]) >> 16)) & kBottom28Bits;
572 out[5] = ((ntohl(in[1]) << 20) | (ntohl(in[2]) >> 12)) & kBottom28Bits;
573 out[6] = ((ntohl(in[0]) << 24) | (ntohl(in[1]) >> 8)) & kBottom28Bits;
574 out[7] = (ntohl(in[0]) >> 4) & kBottom28Bits;
577 // Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from
578 // each of 8 input words and writing them in big-endian order to 7 words at
579 // out.
580 void Put224Bits(uint32* out, const uint32* in) {
581 out[6] = htonl((in[0] >> 0) | (in[1] << 28));
582 out[5] = htonl((in[1] >> 4) | (in[2] << 24));
583 out[4] = htonl((in[2] >> 8) | (in[3] << 20));
584 out[3] = htonl((in[3] >> 12) | (in[4] << 16));
585 out[2] = htonl((in[4] >> 16) | (in[5] << 12));
586 out[1] = htonl((in[5] >> 20) | (in[6] << 8));
587 out[0] = htonl((in[6] >> 24) | (in[7] << 4));
590 } // anonymous namespace
592 namespace crypto {
594 namespace p224 {
596 bool Point::SetFromString(const base::StringPiece& in) {
597 if (in.size() != 2*28)
598 return false;
599 const uint32* inwords = reinterpret_cast<const uint32*>(in.data());
600 Get224Bits(x, inwords);
601 Get224Bits(y, inwords + 7);
602 memset(&z, 0, sizeof(z));
603 z[0] = 1;
605 // Check that the point is on the curve, i.e. that y² = x³ - 3x + b.
606 FieldElement lhs;
607 Square(&lhs, y);
608 Contract(&lhs);
610 FieldElement rhs;
611 Square(&rhs, x);
612 Mul(&rhs, x, rhs);
614 FieldElement three_x;
615 for (int i = 0; i < 8; i++) {
616 three_x[i] = x[i] * 3;
618 Reduce(&three_x);
619 Subtract(&rhs, rhs, three_x);
620 Reduce(&rhs);
622 ::Add(&rhs, rhs, kB);
623 Contract(&rhs);
624 return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
627 std::string Point::ToString() const {
628 FieldElement zinv, zinv_sq, x, y;
630 Invert(&zinv, this->z);
631 Square(&zinv_sq, zinv);
632 Mul(&x, this->x, zinv_sq);
633 Mul(&zinv_sq, zinv_sq, zinv);
634 Mul(&y, this->y, zinv_sq);
636 Contract(&x);
637 Contract(&y);
639 uint32 outwords[14];
640 Put224Bits(outwords, x);
641 Put224Bits(outwords + 7, y);
642 return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords));
645 void ScalarMult(const Point& in, const uint8* scalar, Point* out) {
646 ::ScalarMult(out, in, scalar, 28);
649 // kBasePoint is the base point (generator) of the elliptic curve group.
650 static const Point kBasePoint = {
651 {22813985, 52956513, 34677300, 203240812,
652 12143107, 133374265, 225162431, 191946955},
653 {83918388, 223877528, 122119236, 123340192,
654 266784067, 263504429, 146143011, 198407736},
655 {1, 0, 0, 0, 0, 0, 0, 0},
658 void ScalarBaseMult(const uint8* scalar, Point* out) {
659 ::ScalarMult(out, kBasePoint, scalar, 28);
662 void Add(const Point& a, const Point& b, Point* out) {
663 AddJacobian(out, a, b);
666 void Negate(const Point& in, Point* out) {
667 // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z)
668 // is the negative in Jacobian coordinates, but it doesn't actually appear to
669 // be true in testing so this performs the negation in affine coordinates.
670 FieldElement zinv, zinv_sq, y;
671 Invert(&zinv, in.z);
672 Square(&zinv_sq, zinv);
673 Mul(&out->x, in.x, zinv_sq);
674 Mul(&zinv_sq, zinv_sq, zinv);
675 Mul(&y, in.y, zinv_sq);
677 Subtract(&out->y, kP, y);
678 Reduce(&out->y);
680 memset(&out->z, 0, sizeof(out->z));
681 out->z[0] = 1;
684 } // namespace p224
686 } // namespace crypto