1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Detecting mime types is a tricky business because we need to balance
6 // compatibility concerns with security issues. Here is a survey of how other
7 // browsers behave and then a description of how we intend to behave.
9 // HTML payload, no Content-Type header:
10 // * IE 7: Render as HTML
11 // * Firefox 2: Render as HTML
12 // * Safari 3: Render as HTML
13 // * Opera 9: Render as HTML
15 // Here the choice seems clear:
16 // => Chrome: Render as HTML
18 // HTML payload, Content-Type: "text/plain":
19 // * IE 7: Render as HTML
20 // * Firefox 2: Render as text
21 // * Safari 3: Render as text (Note: Safari will Render as HTML if the URL
22 // has an HTML extension)
23 // * Opera 9: Render as text
25 // Here we choose to follow the majority (and break some compatibility with IE).
26 // Many folks dislike IE's behavior here.
27 // => Chrome: Render as text
28 // We generalize this as follows. If the Content-Type header is text/plain
29 // we won't detect dangerous mime types (those that can execute script).
31 // HTML payload, Content-Type: "application/octet-stream":
32 // * IE 7: Render as HTML
33 // * Firefox 2: Download as application/octet-stream
34 // * Safari 3: Render as HTML
35 // * Opera 9: Render as HTML
38 // => Chrome: Download as application/octet-stream
39 // One factor in this decision is that IIS 4 and 5 will send
40 // application/octet-stream for .xhtml files (because they don't recognize
41 // the extension). We did some experiments and it looks like this doesn't occur
42 // very often on the web. We choose the more secure option.
44 // GIF payload, no Content-Type header:
45 // * IE 7: Render as GIF
46 // * Firefox 2: Render as GIF
47 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
48 // URL has an GIF extension)
49 // * Opera 9: Render as GIF
51 // The choice is clear.
52 // => Chrome: Render as GIF
53 // Once we decide to render HTML without a Content-Type header, there isn't much
54 // reason not to render GIFs.
56 // GIF payload, Content-Type: "text/plain":
57 // * IE 7: Render as GIF
58 // * Firefox 2: Download as application/octet-stream (Note: Firefox will
59 // Download as GIF if the URL has an GIF extension)
60 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
61 // URL has an GIF extension)
62 // * Opera 9: Render as GIF
64 // Displaying as text/plain makes little sense as the content will look like
65 // gibberish. Here, we could change our minds and download.
66 // => Chrome: Render as GIF
68 // GIF payload, Content-Type: "application/octet-stream":
69 // * IE 7: Render as GIF
70 // * Firefox 2: Download as application/octet-stream (Note: Firefox will
71 // Download as GIF if the URL has an GIF extension)
72 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
73 // URL has an GIF extension)
74 // * Opera 9: Render as GIF
76 // We used to render as GIF here, but the problem is that some sites want to
77 // trigger downloads by sending application/octet-stream (even though they
78 // should be sending Content-Disposition: attachment). Although it is safe
79 // to render as GIF from a security perspective, we actually get better
80 // compatibility if we don't sniff from application/octet stream at all.
81 // => Chrome: Download as application/octet-stream
83 // XHTML payload, Content-Type: "text/xml":
84 // * IE 7: Render as XML
85 // * Firefox 2: Render as HTML
86 // * Safari 3: Render as HTML
87 // * Opera 9: Render as HTML
88 // The layout tests rely on us rendering this as HTML.
89 // But we're conservative in XHTML detection, as this runs afoul of the
90 // "don't detect dangerous mime types" rule.
92 // Note that our definition of HTML payload is much stricter than IE's
93 // definition and roughly the same as Firefox's definition.
97 #include "net/base/mime_sniffer.h"
99 #include "base/basictypes.h"
100 #include "base/logging.h"
101 #include "base/metrics/histogram.h"
102 #include "base/strings/string_util.h"
103 #include "net/base/mime_util.h"
104 #include "url/gurl.h"
108 // The number of content bytes we need to use all our magic numbers. Feel free
109 // to increase this number if you add a longer magic number.
110 static const size_t kBytesRequiredForMagic
= 42;
113 const char* mime_type
;
117 const char* mask
; // if set, must have same length as |magic|
120 #define MAGIC_NUMBER(mime_type, magic) \
121 { (mime_type), (magic), sizeof(magic)-1, false, NULL },
123 template <int MagicSize
, int MaskSize
>
125 COMPILE_ASSERT(MagicSize
== MaskSize
, sizes_must_be_equal
);
127 enum { SIZES
= MagicSize
};
130 #define verified_sizeof(magic, mask) \
131 VerifySizes<sizeof(magic), sizeof(mask)>::SIZES
133 #define MAGIC_MASK(mime_type, magic, mask) \
134 { (mime_type), (magic), verified_sizeof(magic, mask)-1, false, (mask) },
136 // Magic strings are case insensitive and must not include '\0' characters
137 #define MAGIC_STRING(mime_type, magic) \
138 { (mime_type), (magic), sizeof(magic)-1, true, NULL },
140 static const MagicNumber kMagicNumbers
[] = {
141 // Source: HTML 5 specification
142 MAGIC_NUMBER("application/pdf", "%PDF-")
143 MAGIC_NUMBER("application/postscript", "%!PS-Adobe-")
144 MAGIC_NUMBER("image/gif", "GIF87a")
145 MAGIC_NUMBER("image/gif", "GIF89a")
146 MAGIC_NUMBER("image/png", "\x89" "PNG\x0D\x0A\x1A\x0A")
147 MAGIC_NUMBER("image/jpeg", "\xFF\xD8\xFF")
148 MAGIC_NUMBER("image/bmp", "BM")
150 MAGIC_NUMBER("text/plain", "#!") // Script
151 MAGIC_NUMBER("text/plain", "%!") // Script, similar to PS
152 MAGIC_NUMBER("text/plain", "From")
153 MAGIC_NUMBER("text/plain", ">From")
155 MAGIC_NUMBER("application/x-gzip", "\x1F\x8B\x08")
156 MAGIC_NUMBER("audio/x-pn-realaudio", "\x2E\x52\x4D\x46")
157 MAGIC_NUMBER("video/x-ms-asf",
158 "\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C")
159 MAGIC_NUMBER("image/tiff", "I I")
160 MAGIC_NUMBER("image/tiff", "II*")
161 MAGIC_NUMBER("image/tiff", "MM\x00*")
162 MAGIC_NUMBER("audio/mpeg", "ID3")
163 MAGIC_NUMBER("image/webp", "RIFF....WEBPVP8 ")
164 MAGIC_NUMBER("video/webm", "\x1A\x45\xDF\xA3")
165 // TODO(abarth): we don't handle partial byte matches yet
166 // MAGIC_NUMBER("video/mpeg", "\x00\x00\x01\xB")
167 // MAGIC_NUMBER("audio/mpeg", "\xFF\xE")
168 // MAGIC_NUMBER("audio/mpeg", "\xFF\xF")
169 MAGIC_NUMBER("application/zip", "PK\x03\x04")
170 MAGIC_NUMBER("application/x-rar-compressed", "Rar!\x1A\x07\x00")
171 MAGIC_NUMBER("application/x-msmetafile", "\xD7\xCD\xC6\x9A")
172 MAGIC_NUMBER("application/octet-stream", "MZ") // EXE
173 // Sniffing for Flash:
175 // MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
176 // MAGIC_NUMBER("application/x-shockwave-flash", "FLV")
177 // MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
179 // Including these magic number for Flash is a trade off.
182 // * Flash is an important and popular file format
185 // * These patterns are fairly weak
186 // * If we mistakenly decide something is Flash, we will execute it
187 // in the origin of an unsuspecting site. This could be a security
188 // vulnerability if the site allows users to upload content.
190 // On balance, we do not include these patterns.
193 // The number of content bytes we need to use all our Microsoft Office magic
195 static const size_t kBytesRequiredForOfficeMagic
= 8;
197 static const MagicNumber kOfficeMagicNumbers
[] = {
198 MAGIC_NUMBER("CFB", "\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1")
199 MAGIC_NUMBER("OOXML", "PK\x03\x04")
209 struct OfficeExtensionType
{
210 OfficeDocType doc_type
;
211 const char* extension
;
212 size_t extension_len
;
215 #define OFFICE_EXTENSION(type, extension) \
216 { (type), (extension), sizeof(extension) - 1 },
218 static const OfficeExtensionType kOfficeExtensionTypes
[] = {
219 OFFICE_EXTENSION(DOC_TYPE_WORD
, ".doc")
220 OFFICE_EXTENSION(DOC_TYPE_EXCEL
, ".xls")
221 OFFICE_EXTENSION(DOC_TYPE_POWERPOINT
, ".ppt")
222 OFFICE_EXTENSION(DOC_TYPE_WORD
, ".docx")
223 OFFICE_EXTENSION(DOC_TYPE_EXCEL
, ".xlsx")
224 OFFICE_EXTENSION(DOC_TYPE_POWERPOINT
, ".pptx")
227 static const MagicNumber kExtraMagicNumbers
[] = {
228 MAGIC_NUMBER("image/x-xbitmap", "#define")
229 MAGIC_NUMBER("image/x-icon", "\x00\x00\x01\x00")
230 MAGIC_NUMBER("image/svg+xml", "<?xml_version=")
231 MAGIC_NUMBER("audio/wav", "RIFF....WAVEfmt ")
232 MAGIC_NUMBER("video/avi", "RIFF....AVI LIST")
233 MAGIC_NUMBER("audio/ogg", "OggS")
234 MAGIC_MASK("video/mpeg", "\x00\x00\x01\xB0", "\xFF\xFF\xFF\xF0")
235 MAGIC_MASK("audio/mpeg", "\xFF\xE0", "\xFF\xE0")
236 MAGIC_NUMBER("video/3gpp", "....ftyp3g")
237 MAGIC_NUMBER("video/3gpp", "....ftypavcl")
238 MAGIC_NUMBER("video/mp4", "....ftyp")
239 MAGIC_NUMBER("video/quicktime", "....moov")
240 MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
241 MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
242 MAGIC_NUMBER("video/x-flv", "FLV")
243 MAGIC_NUMBER("audio/x-flac", "fLaC")
246 MAGIC_NUMBER("image/x-canon-cr2", "II\x2a\x00\x10\x00\x00\x00CR")
247 MAGIC_NUMBER("image/x-canon-crw", "II\x1a\x00\x00\x00HEAPCCDR")
248 MAGIC_NUMBER("image/x-minolta-mrw", "\x00MRM")
249 MAGIC_NUMBER("image/x-olympus-orf", "MMOR") // big-endian
250 MAGIC_NUMBER("image/x-olympus-orf", "IIRO") // little-endian
251 MAGIC_NUMBER("image/x-olympus-orf", "IIRS") // little-endian
252 MAGIC_NUMBER("image/x-fuji-raf", "FUJIFILMCCD-RAW ")
253 MAGIC_NUMBER("image/x-panasonic-raw",
254 "IIU\x00\x08\x00\x00\x00") // Panasonic .raw
255 MAGIC_NUMBER("image/x-panasonic-raw",
256 "IIU\x00\x18\x00\x00\x00") // Panasonic .rw2
257 MAGIC_NUMBER("image/x-phaseone-raw", "MMMMRaw")
258 MAGIC_NUMBER("image/x-x3f", "FOVb")
261 // Our HTML sniffer differs slightly from Mozilla. For example, Mozilla will
262 // decide that a document that begins "<!DOCTYPE SOAP-ENV:Envelope PUBLIC " is
263 // HTML, but we will not.
265 #define MAGIC_HTML_TAG(tag) \
266 MAGIC_STRING("text/html", "<" tag)
268 static const MagicNumber kSniffableTags
[] = {
269 // XML processing directive. Although this is not an HTML mime type, we sniff
270 // for this in the HTML phase because text/xml is just as powerful as HTML and
271 // we want to leverage our white space skipping technology.
272 MAGIC_NUMBER("text/xml", "<?xml") // Mozilla
274 MAGIC_HTML_TAG("!DOCTYPE html") // HTML5 spec
275 // Sniffable tags, ordered by how often they occur in sniffable documents.
276 MAGIC_HTML_TAG("script") // HTML5 spec, Mozilla
277 MAGIC_HTML_TAG("html") // HTML5 spec, Mozilla
278 MAGIC_HTML_TAG("!--")
279 MAGIC_HTML_TAG("head") // HTML5 spec, Mozilla
280 MAGIC_HTML_TAG("iframe") // Mozilla
281 MAGIC_HTML_TAG("h1") // Mozilla
282 MAGIC_HTML_TAG("div") // Mozilla
283 MAGIC_HTML_TAG("font") // Mozilla
284 MAGIC_HTML_TAG("table") // Mozilla
285 MAGIC_HTML_TAG("a") // Mozilla
286 MAGIC_HTML_TAG("style") // Mozilla
287 MAGIC_HTML_TAG("title") // Mozilla
288 MAGIC_HTML_TAG("b") // Mozilla
289 MAGIC_HTML_TAG("body") // Mozilla
291 MAGIC_HTML_TAG("p") // Mozilla
294 static base::HistogramBase
* UMASnifferHistogramGet(const char* name
,
296 base::HistogramBase
* counter
=
297 base::LinearHistogram::FactoryGet(name
, 1, array_size
- 1, array_size
,
298 base::HistogramBase::kUmaTargetedHistogramFlag
);
302 // Compare content header to a magic number where magic_entry can contain '.'
303 // for single character of anything, allowing some bytes to be skipped.
304 static bool MagicCmp(const char* magic_entry
, const char* content
, size_t len
) {
306 if ((*magic_entry
!= '.') && (*magic_entry
!= *content
))
315 // Like MagicCmp() except that it ANDs each byte with a mask before
316 // the comparison, because there are some bits we don't care about.
317 static bool MagicMaskCmp(const char* magic_entry
,
322 if ((*magic_entry
!= '.') && (*magic_entry
!= (*mask
& *content
)))
332 static bool MatchMagicNumber(const char* content
,
334 const MagicNumber
& magic_entry
,
335 std::string
* result
) {
336 const size_t len
= magic_entry
.magic_len
;
338 // Keep kBytesRequiredForMagic honest.
339 DCHECK_LE(len
, kBytesRequiredForMagic
);
341 // To compare with magic strings, we need to compute strlen(content), but
342 // content might not actually have a null terminator. In that case, we
343 // pretend the length is content_size.
344 const char* end
= static_cast<const char*>(memchr(content
, '\0', size
));
345 const size_t content_strlen
=
346 (end
!= NULL
) ? static_cast<size_t>(end
- content
) : size
;
349 if (magic_entry
.is_string
) {
350 if (content_strlen
>= len
) {
351 // String comparisons are case-insensitive
352 match
= (base::strncasecmp(magic_entry
.magic
, content
, len
) == 0);
356 if (!magic_entry
.mask
) {
357 match
= MagicCmp(magic_entry
.magic
, content
, len
);
359 match
= MagicMaskCmp(magic_entry
.magic
, content
, len
, magic_entry
.mask
);
365 result
->assign(magic_entry
.mime_type
);
371 static bool CheckForMagicNumbers(const char* content
, size_t size
,
372 const MagicNumber
* magic
, size_t magic_len
,
373 base::HistogramBase
* counter
,
374 std::string
* result
) {
375 for (size_t i
= 0; i
< magic_len
; ++i
) {
376 if (MatchMagicNumber(content
, size
, magic
[i
], result
)) {
377 if (counter
) counter
->Add(static_cast<int>(i
));
384 // Truncates |size| to |max_size| and returns true if |size| is at least
386 static bool TruncateSize(const size_t max_size
, size_t* size
) {
387 // Keep kMaxBytesToSniff honest.
388 DCHECK_LE(static_cast<int>(max_size
), kMaxBytesToSniff
);
390 if (*size
>= max_size
) {
397 // Returns true and sets result if the content appears to be HTML.
398 // Clears have_enough_content if more data could possibly change the result.
399 static bool SniffForHTML(const char* content
,
401 bool* have_enough_content
,
402 std::string
* result
) {
403 // For HTML, we are willing to consider up to 512 bytes. This may be overly
404 // conservative as IE only considers 256.
405 *have_enough_content
&= TruncateSize(512, &size
);
407 // We adopt a strategy similar to that used by Mozilla to sniff HTML tags,
408 // but with some modifications to better match the HTML5 spec.
409 const char* const end
= content
+ size
;
411 for (pos
= content
; pos
< end
; ++pos
) {
412 if (!IsAsciiWhitespace(*pos
))
415 static base::HistogramBase
* counter(NULL
);
417 counter
= UMASnifferHistogramGet("mime_sniffer.kSniffableTags2",
418 arraysize(kSniffableTags
));
420 // |pos| now points to first non-whitespace character (or at end).
421 return CheckForMagicNumbers(pos
, end
- pos
,
422 kSniffableTags
, arraysize(kSniffableTags
),
426 // Returns true and sets result if the content matches any of kMagicNumbers.
427 // Clears have_enough_content if more data could possibly change the result.
428 static bool SniffForMagicNumbers(const char* content
,
430 bool* have_enough_content
,
431 std::string
* result
) {
432 *have_enough_content
&= TruncateSize(kBytesRequiredForMagic
, &size
);
434 // Check our big table of Magic Numbers
435 static base::HistogramBase
* counter(NULL
);
437 counter
= UMASnifferHistogramGet("mime_sniffer.kMagicNumbers2",
438 arraysize(kMagicNumbers
));
440 return CheckForMagicNumbers(content
, size
,
441 kMagicNumbers
, arraysize(kMagicNumbers
),
445 // Returns true and sets result if the content matches any of
446 // kOfficeMagicNumbers, and the URL has the proper extension.
447 // Clears |have_enough_content| if more data could possibly change the result.
448 static bool SniffForOfficeDocs(const char* content
,
451 bool* have_enough_content
,
452 std::string
* result
) {
453 *have_enough_content
&= TruncateSize(kBytesRequiredForOfficeMagic
, &size
);
455 // Check our table of magic numbers for Office file types.
456 std::string office_version
;
457 if (!CheckForMagicNumbers(content
, size
,
458 kOfficeMagicNumbers
, arraysize(kOfficeMagicNumbers
),
459 NULL
, &office_version
))
462 OfficeDocType type
= DOC_TYPE_NONE
;
463 for (size_t i
= 0; i
< arraysize(kOfficeExtensionTypes
); ++i
) {
464 std::string url_path
= url
.path();
466 if (url_path
.length() < kOfficeExtensionTypes
[i
].extension_len
)
469 const char* extension
=
470 &url_path
[url_path
.length() - kOfficeExtensionTypes
[i
].extension_len
];
472 if (0 == base::strncasecmp(extension
, kOfficeExtensionTypes
[i
].extension
,
473 kOfficeExtensionTypes
[i
].extension_len
)) {
474 type
= kOfficeExtensionTypes
[i
].doc_type
;
479 if (type
== DOC_TYPE_NONE
)
482 if (office_version
== "CFB") {
485 *result
= "application/msword";
488 *result
= "application/vnd.ms-excel";
490 case DOC_TYPE_POWERPOINT
:
491 *result
= "application/vnd.ms-powerpoint";
497 } else if (office_version
== "OOXML") {
500 *result
= "application/vnd.openxmlformats-officedocument."
501 "wordprocessingml.document";
504 *result
= "application/vnd.openxmlformats-officedocument."
505 "spreadsheetml.sheet";
507 case DOC_TYPE_POWERPOINT
:
508 *result
= "application/vnd.openxmlformats-officedocument."
509 "presentationml.presentation";
521 static bool IsOfficeType(const std::string
& type_hint
) {
522 return (type_hint
== "application/msword" ||
523 type_hint
== "application/vnd.ms-excel" ||
524 type_hint
== "application/vnd.ms-powerpoint" ||
525 type_hint
== "application/vnd.openxmlformats-officedocument."
526 "wordprocessingml.document" ||
527 type_hint
== "application/vnd.openxmlformats-officedocument."
528 "spreadsheetml.sheet" ||
529 type_hint
== "application/vnd.openxmlformats-officedocument."
530 "presentationml.presentation" ||
531 type_hint
== "application/vnd.ms-excel.sheet.macroenabled.12" ||
532 type_hint
== "application/vnd.ms-word.document.macroenabled.12" ||
533 type_hint
== "application/vnd.ms-powerpoint.presentation."
535 type_hint
== "application/mspowerpoint" ||
536 type_hint
== "application/msexcel" ||
537 type_hint
== "application/vnd.ms-word" ||
538 type_hint
== "application/vnd.ms-word.document.12" ||
539 type_hint
== "application/vnd.msword");
542 // This function checks for files that have a Microsoft Office MIME type
543 // set, but are not actually Office files.
545 // If this is not actually an Office file, |*result| is set to
546 // "application/octet-stream", otherwise it is not modified.
548 // Returns false if additional data is required to determine the file type, or
549 // true if there is enough data to make a decision.
550 static bool SniffForInvalidOfficeDocs(const char* content
,
553 std::string
* result
) {
554 if (!TruncateSize(kBytesRequiredForOfficeMagic
, &size
))
557 // Check our table of magic numbers for Office file types. If it does not
558 // match one, the MIME type was invalid. Set it instead to a safe value.
559 std::string office_version
;
560 if (!CheckForMagicNumbers(content
, size
,
561 kOfficeMagicNumbers
, arraysize(kOfficeMagicNumbers
),
562 NULL
, &office_version
)) {
563 *result
= "application/octet-stream";
566 // We have enough information to determine if this was a Microsoft Office
567 // document or not, so sniffing is completed.
572 static const MagicNumber kMagicXML
[] = {
573 // We want to be very conservative in interpreting text/xml content as
574 // XHTML -- we just want to sniff enough to make unit tests pass.
575 // So we match explicitly on this, and don't match other ways of writing
576 // it in semantically-equivalent ways.
577 MAGIC_STRING("application/xhtml+xml",
578 "<html xmlns=\"http://www.w3.org/1999/xhtml\"")
579 MAGIC_STRING("application/atom+xml", "<feed")
580 MAGIC_STRING("application/rss+xml", "<rss") // UTF-8
583 // Returns true and sets result if the content appears to contain XHTML or a
585 // Clears have_enough_content if more data could possibly change the result.
587 // TODO(evanm): this is similar but more conservative than what Safari does,
588 // while HTML5 has a different recommendation -- what should we do?
589 // TODO(evanm): this is incorrect for documents whose encoding isn't a superset
590 // of ASCII -- do we care?
591 static bool SniffXML(const char* content
,
593 bool* have_enough_content
,
594 std::string
* result
) {
595 // We allow at most 300 bytes of content before we expect the opening tag.
596 *have_enough_content
&= TruncateSize(300, &size
);
597 const char* pos
= content
;
598 const char* const end
= content
+ size
;
600 // This loop iterates through tag-looking offsets in the file.
601 // We want to skip XML processing instructions (of the form "<?xml ...")
602 // and stop at the first "plain" tag, then make a decision on the mime-type
603 // based on the name (or possibly attributes) of that tag.
604 static base::HistogramBase
* counter(NULL
);
606 counter
= UMASnifferHistogramGet("mime_sniffer.kMagicXML2",
607 arraysize(kMagicXML
));
609 const int kMaxTagIterations
= 5;
610 for (int i
= 0; i
< kMaxTagIterations
&& pos
< end
; ++i
) {
611 pos
= reinterpret_cast<const char*>(memchr(pos
, '<', end
- pos
));
615 if (base::strncasecmp(pos
, "<?xml", sizeof("<?xml") - 1) == 0) {
616 // Skip XML declarations.
619 } else if (base::strncasecmp(pos
, "<!DOCTYPE",
620 sizeof("<!DOCTYPE") - 1) == 0) {
621 // Skip DOCTYPE declarations.
626 if (CheckForMagicNumbers(pos
, end
- pos
,
627 kMagicXML
, arraysize(kMagicXML
),
631 // TODO(evanm): handle RSS 1.0, which is an RDF format and more difficult
634 // If we get here, we've hit an initial tag that hasn't matched one of the
635 // above tests. Abort.
639 // We iterated too far without finding a start tag.
640 // If we have more content to look at, we aren't going to change our mind by
641 // seeing more bytes from the network.
646 static const MagicNumber kByteOrderMark
[] = {
647 MAGIC_NUMBER("text/plain", "\xFE\xFF") // UTF-16BE
648 MAGIC_NUMBER("text/plain", "\xFF\xFE") // UTF-16LE
649 MAGIC_NUMBER("text/plain", "\xEF\xBB\xBF") // UTF-8
652 // Whether a given byte looks like it might be part of binary content.
653 // Source: HTML5 spec
654 static char kByteLooksBinary
[] = {
655 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, // 0x00 - 0x0F
656 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, // 0x10 - 0x1F
657 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x20 - 0x2F
658 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x30 - 0x3F
659 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x40 - 0x4F
660 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x50 - 0x5F
661 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x60 - 0x6F
662 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x70 - 0x7F
663 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x80 - 0x8F
664 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x90 - 0x9F
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xA0 - 0xAF
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xB0 - 0xBF
667 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xC0 - 0xCF
668 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xD0 - 0xDF
669 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xE0 - 0xEF
670 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xF0 - 0xFF
673 // Returns true and sets result to "application/octet-stream" if the content
674 // appears to be binary data. Otherwise, returns false and sets "text/plain".
675 // Clears have_enough_content if more data could possibly change the result.
676 static bool SniffBinary(const char* content
,
678 bool* have_enough_content
,
679 std::string
* result
) {
680 // There is no concensus about exactly how to sniff for binary content.
681 // * IE 7: Don't sniff for binary looking bytes, but trust the file extension.
682 // * Firefox 3.5: Sniff first 4096 bytes for a binary looking byte.
683 // Here, we side with FF, but with a smaller buffer. This size was chosen
684 // because it is small enough to comfortably fit into a single packet (after
685 // allowing for headers) and yet large enough to account for binary formats
686 // that have a significant amount of ASCII at the beginning (crbug.com/15314).
687 const bool is_truncated
= TruncateSize(kMaxBytesToSniff
, &size
);
689 // First, we look for a BOM.
690 static base::HistogramBase
* counter(NULL
);
692 counter
= UMASnifferHistogramGet("mime_sniffer.kByteOrderMark2",
693 arraysize(kByteOrderMark
));
696 if (CheckForMagicNumbers(content
, size
,
697 kByteOrderMark
, arraysize(kByteOrderMark
),
699 // If there is BOM, we think the buffer is not binary.
700 result
->assign("text/plain");
704 // Next we look to see if any of the bytes "look binary."
705 for (size_t i
= 0; i
< size
; ++i
) {
706 // If we a see a binary-looking byte, we think the content is binary.
707 if (kByteLooksBinary
[static_cast<unsigned char>(content
[i
])]) {
708 result
->assign("application/octet-stream");
713 // No evidence either way. Default to non-binary and, if truncated, clear
714 // have_enough_content because there could be a binary looking byte in the
716 *have_enough_content
&= is_truncated
;
717 result
->assign("text/plain");
721 static bool IsUnknownMimeType(const std::string
& mime_type
) {
722 // TODO(tc): Maybe reuse some code in net/http/http_response_headers.* here.
723 // If we do, please be careful not to alter the semantics at all.
724 static const char* kUnknownMimeTypes
[] = {
725 // Empty mime types are as unknown as they get.
727 // The unknown/unknown type is popular and uninformative
729 // The second most popular unknown mime type is application/unknown
730 "application/unknown",
731 // Firefox rejects a mime type if it is exactly */*
734 static base::HistogramBase
* counter(NULL
);
736 counter
= UMASnifferHistogramGet("mime_sniffer.kUnknownMimeTypes2",
737 arraysize(kUnknownMimeTypes
) + 1);
739 for (size_t i
= 0; i
< arraysize(kUnknownMimeTypes
); ++i
) {
740 if (mime_type
== kUnknownMimeTypes
[i
]) {
745 if (mime_type
.find('/') == std::string::npos
) {
746 // Firefox rejects a mime type if it does not contain a slash
747 counter
->Add(arraysize(kUnknownMimeTypes
));
753 // Returns true and sets result if the content appears to be a crx (Chrome
755 // Clears have_enough_content if more data could possibly change the result.
756 static bool SniffCRX(const char* content
,
759 const std::string
& type_hint
,
760 bool* have_enough_content
,
761 std::string
* result
) {
762 static base::HistogramBase
* counter(NULL
);
764 counter
= UMASnifferHistogramGet("mime_sniffer.kSniffCRX", 3);
766 // Technically, the crx magic number is just Cr24, but the bytes after that
767 // are a version number which changes infrequently. Including it in the
768 // sniffing gives us less room for error. If the version number ever changes,
769 // we can just add an entry to this list.
771 // TODO(aa): If we ever have another magic number, we'll want to pass a
772 // histogram into CheckForMagicNumbers(), below, to see which one matched.
773 static const struct MagicNumber kCRXMagicNumbers
[] = {
774 MAGIC_NUMBER("application/x-chrome-extension", "Cr24\x02\x00\x00\x00")
777 // Only consider files that have the extension ".crx".
778 static const char kCRXExtension
[] = ".crx";
779 // Ignore null by subtracting 1.
780 static const int kExtensionLength
= arraysize(kCRXExtension
) - 1;
781 if (url
.path().rfind(kCRXExtension
, std::string::npos
, kExtensionLength
) ==
782 url
.path().size() - kExtensionLength
) {
788 *have_enough_content
&= TruncateSize(kBytesRequiredForMagic
, &size
);
789 if (CheckForMagicNumbers(content
, size
,
790 kCRXMagicNumbers
, arraysize(kCRXMagicNumbers
),
800 bool ShouldSniffMimeType(const GURL
& url
, const std::string
& mime_type
) {
801 static base::HistogramBase
* should_sniff_counter(NULL
);
802 if (!should_sniff_counter
) {
803 should_sniff_counter
=
804 UMASnifferHistogramGet("mime_sniffer.ShouldSniffMimeType2", 3);
806 bool sniffable_scheme
= url
.is_empty() ||
807 url
.SchemeIsHTTPOrHTTPS() ||
808 url
.SchemeIs("ftp") ||
809 #if defined(OS_ANDROID)
810 url
.SchemeIs("content") ||
812 url
.SchemeIsFile() ||
813 url
.SchemeIsFileSystem();
814 if (!sniffable_scheme
) {
815 should_sniff_counter
->Add(1);
819 static const char* kSniffableTypes
[] = {
820 // Many web servers are misconfigured to send text/plain for many
821 // different types of content.
823 // We want to sniff application/octet-stream for
824 // application/x-chrome-extension, but nothing else.
825 "application/octet-stream",
826 // XHTML and Atom/RSS feeds are often served as plain xml instead of
827 // their more specific mime types.
830 // Check for false Microsoft Office MIME types.
831 "application/msword",
832 "application/vnd.ms-excel",
833 "application/vnd.ms-powerpoint",
834 "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
835 "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
836 "application/vnd.openxmlformats-officedocument.presentationml.presentation",
837 "application/vnd.ms-excel.sheet.macroenabled.12",
838 "application/vnd.ms-word.document.macroenabled.12",
839 "application/vnd.ms-powerpoint.presentation.macroenabled.12",
840 "application/mspowerpoint",
841 "application/msexcel",
842 "application/vnd.ms-word",
843 "application/vnd.ms-word.document.12",
844 "application/vnd.msword",
846 static base::HistogramBase
* counter(NULL
);
848 counter
= UMASnifferHistogramGet("mime_sniffer.kSniffableTypes2",
849 arraysize(kSniffableTypes
) + 1);
851 for (size_t i
= 0; i
< arraysize(kSniffableTypes
); ++i
) {
852 if (mime_type
== kSniffableTypes
[i
]) {
854 should_sniff_counter
->Add(2);
858 if (IsUnknownMimeType(mime_type
)) {
859 // The web server didn't specify a content type or specified a mime
860 // type that we ignore.
861 counter
->Add(arraysize(kSniffableTypes
));
862 should_sniff_counter
->Add(2);
865 should_sniff_counter
->Add(1);
869 bool SniffMimeType(const char* content
,
872 const std::string
& type_hint
,
873 std::string
* result
) {
874 DCHECK_LT(content_size
, 1000000U); // sanity check
878 // By default, we assume we have enough content.
879 // Each sniff routine may unset this if it wasn't provided enough content.
880 bool have_enough_content
= true;
882 // By default, we'll return the type hint.
883 // Each sniff routine may modify this if it has a better guess..
884 result
->assign(type_hint
);
886 // If the file has a Microsoft Office MIME type, we should only check that it
887 // is a valid Office file. Because this is the only reason we sniff files
888 // with a Microsoft Office MIME type, we can return early.
889 if (IsOfficeType(type_hint
))
890 return SniffForInvalidOfficeDocs(content
, content_size
, url
, result
);
892 // Cache information about the type_hint
893 const bool hint_is_unknown_mime_type
= IsUnknownMimeType(type_hint
);
895 // First check for HTML
896 if (hint_is_unknown_mime_type
) {
897 // We're only willing to sniff HTML if the server has not supplied a mime
898 // type, or if the type it did supply indicates that it doesn't know what
899 // the type should be.
900 if (SniffForHTML(content
, content_size
, &have_enough_content
, result
))
901 return true; // We succeeded in sniffing HTML. No more content needed.
904 // We're only willing to sniff for binary in 3 cases:
905 // 1. The server has not supplied a mime type.
906 // 2. The type it did supply indicates that it doesn't know what the type
908 // 3. The type is "text/plain" which is the default on some web servers and
909 // could be indicative of a mis-configuration that we shield the user from.
910 const bool hint_is_text_plain
= (type_hint
== "text/plain");
911 if (hint_is_unknown_mime_type
|| hint_is_text_plain
) {
912 if (!SniffBinary(content
, content_size
, &have_enough_content
, result
)) {
913 // If the server said the content was text/plain and it doesn't appear
914 // to be binary, then we trust it.
915 if (hint_is_text_plain
) {
916 return have_enough_content
;
921 // If we have plain XML, sniff XML subtypes.
922 if (type_hint
== "text/xml" || type_hint
== "application/xml") {
923 // We're not interested in sniffing these types for images and the like.
924 // Instead, we're looking explicitly for a feed. If we don't find one
925 // we're done and return early.
926 if (SniffXML(content
, content_size
, &have_enough_content
, result
))
928 return have_enough_content
;
931 // CRX files (Chrome extensions) have a special sniffing algorithm. It is
932 // tighter than the others because we don't have to match legacy behavior.
933 if (SniffCRX(content
, content_size
, url
, type_hint
,
934 &have_enough_content
, result
))
937 // Check the file extension and magic numbers to see if this is an Office
938 // document. This needs to be checked before the general magic numbers
939 // because zip files and Office documents (OOXML) have the same magic number.
940 if (SniffForOfficeDocs(content
, content_size
, url
,
941 &have_enough_content
, result
))
942 return true; // We've matched a magic number. No more content needed.
944 // We're not interested in sniffing for magic numbers when the type_hint
945 // is application/octet-stream. Time to bail out.
946 if (type_hint
== "application/octet-stream")
947 return have_enough_content
;
949 // Now we look in our large table of magic numbers to see if we can find
950 // anything that matches the content.
951 if (SniffForMagicNumbers(content
, content_size
,
952 &have_enough_content
, result
))
953 return true; // We've matched a magic number. No more content needed.
955 return have_enough_content
;
958 bool SniffMimeTypeFromLocalData(const char* content
,
960 std::string
* result
) {
961 // First check the extra table.
962 if (CheckForMagicNumbers(content
, size
, kExtraMagicNumbers
,
963 arraysize(kExtraMagicNumbers
), NULL
, result
))
965 // Finally check the original table.
966 return CheckForMagicNumbers(content
, size
, kMagicNumbers
,
967 arraysize(kMagicNumbers
), NULL
, result
);