1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/base/backoff_entry.h"
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13 #include "base/numerics/safe_math.h"
14 #include "base/rand_util.h"
15 #include "base/time/tick_clock.h"
19 BackoffEntry::BackoffEntry(const BackoffEntry::Policy
* policy
)
20 : BackoffEntry(policy
, nullptr) {}
22 BackoffEntry::BackoffEntry(const BackoffEntry::Policy
* policy
,
23 base::TickClock
* clock
)
24 : policy_(policy
), clock_(clock
) {
29 BackoffEntry::~BackoffEntry() {
30 // TODO(joi): Remove this once our clients (e.g. URLRequestThrottlerManager)
31 // always destroy from the I/O thread.
35 void BackoffEntry::InformOfRequest(bool succeeded
) {
38 exponential_backoff_release_time_
= CalculateReleaseTime();
40 // We slowly decay the number of times delayed instead of
41 // resetting it to 0 in order to stay stable if we receive
42 // successes interleaved between lots of failures. Note that in
43 // the normal case, the calculated release time (in the next
44 // statement) will be in the past once the method returns.
45 if (failure_count_
> 0)
48 // The reason why we are not just cutting the release time to
49 // GetTimeTicksNow() is on the one hand, it would unset a release
50 // time set by SetCustomReleaseTime and on the other we would like
51 // to push every request up to our "horizon" when dealing with
52 // multiple in-flight requests. Ex: If we send three requests and
53 // we receive 2 failures and 1 success. The success that follows
54 // those failures will not reset the release time, further
55 // requests will then need to wait the delay caused by the 2
57 base::TimeDelta delay
;
58 if (policy_
->always_use_initial_delay
)
59 delay
= base::TimeDelta::FromMilliseconds(policy_
->initial_delay_ms
);
60 exponential_backoff_release_time_
= std::max(
61 GetTimeTicksNow() + delay
, exponential_backoff_release_time_
);
65 bool BackoffEntry::ShouldRejectRequest() const {
66 return exponential_backoff_release_time_
> GetTimeTicksNow();
69 base::TimeDelta
BackoffEntry::GetTimeUntilRelease() const {
70 base::TimeTicks now
= GetTimeTicksNow();
71 if (exponential_backoff_release_time_
<= now
)
72 return base::TimeDelta();
73 return exponential_backoff_release_time_
- now
;
76 base::TimeTicks
BackoffEntry::GetReleaseTime() const {
77 return exponential_backoff_release_time_
;
80 void BackoffEntry::SetCustomReleaseTime(const base::TimeTicks
& release_time
) {
81 exponential_backoff_release_time_
= release_time
;
84 bool BackoffEntry::CanDiscard() const {
85 if (policy_
->entry_lifetime_ms
== -1)
88 base::TimeTicks now
= GetTimeTicksNow();
90 int64_t unused_since_ms
=
91 (now
- exponential_backoff_release_time_
).InMilliseconds();
93 // Release time is further than now, we are managing it.
94 if (unused_since_ms
< 0)
97 if (failure_count_
> 0) {
98 // Need to keep track of failures until maximum back-off period
99 // has passed (since further failures can add to back-off).
100 return unused_since_ms
>= std::max(policy_
->maximum_backoff_ms
,
101 policy_
->entry_lifetime_ms
);
104 // Otherwise, consider the entry is outdated if it hasn't been used for the
105 // specified lifetime period.
106 return unused_since_ms
>= policy_
->entry_lifetime_ms
;
109 void BackoffEntry::Reset() {
111 // For legacy reasons, we reset exponential_backoff_release_time_ to the
112 // uninitialized state. It would also be reasonable to reset it to
113 // GetTimeTicksNow(). The effects are the same, i.e. ShouldRejectRequest()
114 // will return false right after Reset().
115 exponential_backoff_release_time_
= base::TimeTicks();
118 base::TimeTicks
BackoffEntry::CalculateReleaseTime() const {
119 int effective_failure_count
=
120 std::max(0, failure_count_
- policy_
->num_errors_to_ignore
);
122 // If always_use_initial_delay is true, it's equivalent to
123 // the effective_failure_count always being one greater than when it's false.
124 if (policy_
->always_use_initial_delay
)
125 ++effective_failure_count
;
127 if (effective_failure_count
== 0) {
128 // Never reduce previously set release horizon, e.g. due to Retry-After
130 return std::max(GetTimeTicksNow(), exponential_backoff_release_time_
);
133 // The delay is calculated with this formula:
134 // delay = initial_backoff * multiply_factor^(
135 // effective_failure_count - 1) * Uniform(1 - jitter_factor, 1]
136 // Note: if the failure count is too high, |delay_ms| will become infinity
137 // after the exponential calculation, and then NaN after the jitter is
138 // accounted for. Both cases are handled by using CheckedNumeric<int64_t> to
139 // perform the conversion to integers.
140 double delay_ms
= policy_
->initial_delay_ms
;
141 delay_ms
*= pow(policy_
->multiply_factor
, effective_failure_count
- 1);
142 delay_ms
-= base::RandDouble() * policy_
->jitter_factor
* delay_ms
;
144 // Do overflow checking in microseconds, the internal unit of TimeTicks.
145 base::internal::CheckedNumeric
<int64_t> backoff_duration_us
= delay_ms
+ 0.5;
146 backoff_duration_us
*= base::Time::kMicrosecondsPerMillisecond
;
147 base::TimeDelta backoff_duration
= base::TimeDelta::FromMicroseconds(
148 backoff_duration_us
.ValueOrDefault(kint64max
));
149 base::TimeTicks release_time
= BackoffDurationToReleaseTime(backoff_duration
);
151 // Never reduce previously set release horizon, e.g. due to Retry-After
153 return std::max(release_time
, exponential_backoff_release_time_
);
156 base::TimeTicks
BackoffEntry::BackoffDurationToReleaseTime(
157 base::TimeDelta backoff_duration
) const {
158 const int64_t kTimeTicksNowUs
=
159 (GetTimeTicksNow() - base::TimeTicks()).InMicroseconds();
160 // Do overflow checking in microseconds, the internal unit of TimeTicks.
161 base::internal::CheckedNumeric
<int64_t> calculated_release_time_us
=
162 backoff_duration
.InMicroseconds();
163 calculated_release_time_us
+= kTimeTicksNowUs
;
165 base::internal::CheckedNumeric
<int64_t> maximum_release_time_us
= kint64max
;
166 if (policy_
->maximum_backoff_ms
>= 0) {
167 maximum_release_time_us
= policy_
->maximum_backoff_ms
;
168 maximum_release_time_us
*= base::Time::kMicrosecondsPerMillisecond
;
169 maximum_release_time_us
+= kTimeTicksNowUs
;
172 // Decide between maximum release time and calculated release time, accounting
173 // for overflow with both.
174 int64_t release_time_us
=
175 std::min(calculated_release_time_us
.ValueOrDefault(kint64max
),
176 maximum_release_time_us
.ValueOrDefault(kint64max
));
178 return base::TimeTicks() + base::TimeDelta::FromMicroseconds(release_time_us
);
181 base::TimeTicks
BackoffEntry::GetTimeTicksNow() const {
182 return clock_
? clock_
->NowTicks() : base::TimeTicks::Now();