Compute can_use_lcd_text using property trees.
[chromium-blink-merge.git] / cc / raster / texture_compressor_etc1_sse.cc
blob229782238bef4f100dd29b2bf36b7f610a638315
1 // Copyright 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/raster/texture_compressor_etc1_sse.h"
7 #include <emmintrin.h>
9 #include "base/compiler_specific.h"
10 #include "base/logging.h"
11 // Using this header for common functions such as Color handling
12 // and codeword table.
13 #include "cc/raster/texture_compressor_etc1.h"
15 namespace cc {
17 namespace {
19 inline uint32_t SetETC1MaxError(uint32_t avg_error) {
20 // ETC1 codeword table is sorted in ascending order.
21 // Our algorithm will try to identify the index that generates the minimum
22 // error.
23 // The min error calculated during ComputeLuminance main loop will converge
24 // towards that value.
25 // We use this threshold to determine when it doesn't make sense to iterate
26 // further through the array.
27 return avg_error + avg_error / 2 + 384;
30 struct __sse_data {
31 // This is used to store raw data.
32 uint8_t* block;
33 // This is used to store 8 bit packed values.
34 __m128i* packed;
35 // This is used to store 32 bit zero extended values into 4x4 arrays.
36 __m128i* blue;
37 __m128i* green;
38 __m128i* red;
41 // Commonly used registers throughout the code.
42 static const __m128i __sse_zero = _mm_set1_epi32(0);
43 static const __m128i __sse_max_int = _mm_set1_epi32(0x7FFFFFFF);
45 inline __m128i AddAndClamp(const __m128i x, const __m128i y) {
46 static const __m128i color_max = _mm_set1_epi32(0xFF);
47 return _mm_max_epi16(__sse_zero,
48 _mm_min_epi16(_mm_add_epi16(x, y), color_max));
51 inline __m128i GetColorErrorSSE(const __m128i x, const __m128i y) {
52 // Changed from _mm_mullo_epi32 (SSE4) to _mm_mullo_epi16 (SSE2).
53 __m128i ret = _mm_sub_epi16(x, y);
54 return _mm_mullo_epi16(ret, ret);
57 inline __m128i AddChannelError(const __m128i x,
58 const __m128i y,
59 const __m128i z) {
60 return _mm_add_epi32(x, _mm_add_epi32(y, z));
63 inline uint32_t SumSSE(const __m128i x) {
64 __m128i sum = _mm_add_epi32(x, _mm_shuffle_epi32(x, 0x4E));
65 sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1));
67 return _mm_cvtsi128_si32(sum);
70 inline uint32_t GetVerticalError(const __sse_data* data,
71 const __m128i* blue_avg,
72 const __m128i* green_avg,
73 const __m128i* red_avg,
74 uint32_t* verror) {
75 __m128i error = __sse_zero;
77 for (int i = 0; i < 4; i++) {
78 error = _mm_add_epi32(error, GetColorErrorSSE(data->blue[i], blue_avg[0]));
79 error =
80 _mm_add_epi32(error, GetColorErrorSSE(data->green[i], green_avg[0]));
81 error = _mm_add_epi32(error, GetColorErrorSSE(data->red[i], red_avg[0]));
84 error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E));
86 verror[0] = _mm_cvtsi128_si32(error);
87 verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1));
89 return verror[0] + verror[1];
92 inline uint32_t GetHorizontalError(const __sse_data* data,
93 const __m128i* blue_avg,
94 const __m128i* green_avg,
95 const __m128i* red_avg,
96 uint32_t* verror) {
97 __m128i error = __sse_zero;
98 int first_index, second_index;
100 for (int i = 0; i < 2; i++) {
101 first_index = 2 * i;
102 second_index = first_index + 1;
104 error = _mm_add_epi32(
105 error, GetColorErrorSSE(data->blue[first_index], blue_avg[i]));
106 error = _mm_add_epi32(
107 error, GetColorErrorSSE(data->blue[second_index], blue_avg[i]));
108 error = _mm_add_epi32(
109 error, GetColorErrorSSE(data->green[first_index], green_avg[i]));
110 error = _mm_add_epi32(
111 error, GetColorErrorSSE(data->green[second_index], green_avg[i]));
112 error = _mm_add_epi32(error,
113 GetColorErrorSSE(data->red[first_index], red_avg[i]));
114 error = _mm_add_epi32(
115 error, GetColorErrorSSE(data->red[second_index], red_avg[i]));
118 error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E));
120 verror[0] = _mm_cvtsi128_si32(error);
121 verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1));
123 return verror[0] + verror[1];
126 inline void GetAvgColors(const __sse_data* data,
127 float* output,
128 bool* __sse_use_diff) {
129 __m128i sum[2], tmp;
131 // TODO(radu.velea): _mm_avg_epu8 on packed data maybe.
133 // Compute avg red value.
134 // [S0 S0 S1 S1]
135 sum[0] = _mm_add_epi32(data->red[0], data->red[1]);
136 sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
138 // [S2 S2 S3 S3]
139 sum[1] = _mm_add_epi32(data->red[2], data->red[3]);
140 sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
142 float hred[2], vred[2];
143 hred[0] = (_mm_cvtsi128_si32(
144 _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
145 8.0f;
146 hred[1] = (_mm_cvtsi128_si32(
147 _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
148 8.0f;
150 tmp = _mm_add_epi32(sum[0], sum[1]);
151 vred[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
152 vred[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
154 // Compute avg green value.
155 // [S0 S0 S1 S1]
156 sum[0] = _mm_add_epi32(data->green[0], data->green[1]);
157 sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
159 // [S2 S2 S3 S3]
160 sum[1] = _mm_add_epi32(data->green[2], data->green[3]);
161 sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
163 float hgreen[2], vgreen[2];
164 hgreen[0] = (_mm_cvtsi128_si32(
165 _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
166 8.0f;
167 hgreen[1] = (_mm_cvtsi128_si32(
168 _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
169 8.0f;
171 tmp = _mm_add_epi32(sum[0], sum[1]);
172 vgreen[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
173 vgreen[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
175 // Compute avg blue value.
176 // [S0 S0 S1 S1]
177 sum[0] = _mm_add_epi32(data->blue[0], data->blue[1]);
178 sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
180 // [S2 S2 S3 S3]
181 sum[1] = _mm_add_epi32(data->blue[2], data->blue[3]);
182 sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
184 float hblue[2], vblue[2];
185 hblue[0] = (_mm_cvtsi128_si32(
186 _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
187 8.0f;
188 hblue[1] = (_mm_cvtsi128_si32(
189 _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
190 8.0f;
192 tmp = _mm_add_epi32(sum[0], sum[1]);
193 vblue[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
194 vblue[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
196 // TODO(radu.velea): Return int's instead of floats, based on Quality.
197 output[0] = vblue[0];
198 output[1] = vgreen[0];
199 output[2] = vred[0];
201 output[3] = vblue[1];
202 output[4] = vgreen[1];
203 output[5] = vred[1];
205 output[6] = hblue[0];
206 output[7] = hgreen[0];
207 output[8] = hred[0];
209 output[9] = hblue[1];
210 output[10] = hgreen[1];
211 output[11] = hred[1];
213 __m128i threshold_upper = _mm_set1_epi32(3);
214 __m128i threshold_lower = _mm_set1_epi32(-4);
216 __m128 factor_v = _mm_set1_ps(31.0f / 255.0f);
217 __m128 rounding_v = _mm_set1_ps(0.5f);
218 __m128 h_avg_0 = _mm_set_ps(hblue[0], hgreen[0], hred[0], 0);
219 __m128 h_avg_1 = _mm_set_ps(hblue[1], hgreen[1], hred[1], 0);
221 __m128 v_avg_0 = _mm_set_ps(vblue[0], vgreen[0], vred[0], 0);
222 __m128 v_avg_1 = _mm_set_ps(vblue[1], vgreen[1], vred[1], 0);
224 h_avg_0 = _mm_mul_ps(h_avg_0, factor_v);
225 h_avg_1 = _mm_mul_ps(h_avg_1, factor_v);
226 v_avg_0 = _mm_mul_ps(v_avg_0, factor_v);
227 v_avg_1 = _mm_mul_ps(v_avg_1, factor_v);
229 h_avg_0 = _mm_add_ps(h_avg_0, rounding_v);
230 h_avg_1 = _mm_add_ps(h_avg_1, rounding_v);
231 v_avg_0 = _mm_add_ps(v_avg_0, rounding_v);
232 v_avg_1 = _mm_add_ps(v_avg_1, rounding_v);
234 __m128i h_avg_0i = _mm_cvttps_epi32(h_avg_0);
235 __m128i h_avg_1i = _mm_cvttps_epi32(h_avg_1);
237 __m128i v_avg_0i = _mm_cvttps_epi32(v_avg_0);
238 __m128i v_avg_1i = _mm_cvttps_epi32(v_avg_1);
240 h_avg_0i = _mm_sub_epi32(h_avg_1i, h_avg_0i);
241 v_avg_0i = _mm_sub_epi32(v_avg_1i, v_avg_0i);
243 __sse_use_diff[0] =
244 (0 == _mm_movemask_epi8(_mm_cmplt_epi32(v_avg_0i, threshold_lower)));
245 __sse_use_diff[0] &=
246 (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(v_avg_0i, threshold_upper)));
248 __sse_use_diff[1] =
249 (0 == _mm_movemask_epi8(_mm_cmplt_epi32(h_avg_0i, threshold_lower)));
250 __sse_use_diff[1] &=
251 (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(h_avg_0i, threshold_upper)));
254 void ComputeLuminance(uint8_t* block,
255 const Color& base,
256 const int sub_block_id,
257 const uint8_t* idx_to_num_tab,
258 const __sse_data* data,
259 const uint32_t expected_error) {
260 uint8_t best_tbl_idx = 0;
261 uint32_t best_error = 0x7FFFFFFF;
262 uint8_t best_mod_idx[8][8]; // [table][texel]
264 const __m128i base_blue = _mm_set1_epi32(base.channels.b);
265 const __m128i base_green = _mm_set1_epi32(base.channels.g);
266 const __m128i base_red = _mm_set1_epi32(base.channels.r);
268 __m128i test_red, test_blue, test_green, tmp, tmp_blue, tmp_green, tmp_red;
269 __m128i block_error, mask;
271 // This will have the minimum errors for each 4 pixels.
272 __m128i first_half_min;
273 __m128i second_half_min;
275 // This will have the matching table index combo for each 4 pixels.
276 __m128i first_half_pattern;
277 __m128i second_half_pattern;
279 const __m128i first_blue_data_block = data->blue[2 * sub_block_id];
280 const __m128i first_green_data_block = data->green[2 * sub_block_id];
281 const __m128i first_red_data_block = data->red[2 * sub_block_id];
283 const __m128i second_blue_data_block = data->blue[2 * sub_block_id + 1];
284 const __m128i second_green_data_block = data->green[2 * sub_block_id + 1];
285 const __m128i second_red_data_block = data->red[2 * sub_block_id + 1];
287 uint32_t min;
288 // Fail early to increase speed.
289 long delta = INT32_MAX;
290 uint32_t last_min = INT32_MAX;
292 const uint8_t shuffle_mask[] = {
293 0x1B, 0x4E, 0xB1, 0xE4}; // Important they are sorted ascending.
295 for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
296 tmp = _mm_set_epi32(
297 g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2],
298 g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]);
300 test_blue = AddAndClamp(tmp, base_blue);
301 test_green = AddAndClamp(tmp, base_green);
302 test_red = AddAndClamp(tmp, base_red);
304 first_half_min = __sse_max_int;
305 second_half_min = __sse_max_int;
307 first_half_pattern = __sse_zero;
308 second_half_pattern = __sse_zero;
310 for (uint8_t imm8 : shuffle_mask) {
311 switch (imm8) {
312 case 0x1B:
313 tmp_blue = _mm_shuffle_epi32(test_blue, 0x1B);
314 tmp_green = _mm_shuffle_epi32(test_green, 0x1B);
315 tmp_red = _mm_shuffle_epi32(test_red, 0x1B);
316 break;
317 case 0x4E:
318 tmp_blue = _mm_shuffle_epi32(test_blue, 0x4E);
319 tmp_green = _mm_shuffle_epi32(test_green, 0x4E);
320 tmp_red = _mm_shuffle_epi32(test_red, 0x4E);
321 break;
322 case 0xB1:
323 tmp_blue = _mm_shuffle_epi32(test_blue, 0xB1);
324 tmp_green = _mm_shuffle_epi32(test_green, 0xB1);
325 tmp_red = _mm_shuffle_epi32(test_red, 0xB1);
326 break;
327 case 0xE4:
328 tmp_blue = _mm_shuffle_epi32(test_blue, 0xE4);
329 tmp_green = _mm_shuffle_epi32(test_green, 0xE4);
330 tmp_red = _mm_shuffle_epi32(test_red, 0xE4);
331 break;
332 default:
333 tmp_blue = test_blue;
334 tmp_green = test_green;
335 tmp_red = test_red;
338 tmp = _mm_set1_epi32(imm8);
340 block_error =
341 AddChannelError(GetColorErrorSSE(tmp_blue, first_blue_data_block),
342 GetColorErrorSSE(tmp_green, first_green_data_block),
343 GetColorErrorSSE(tmp_red, first_red_data_block));
345 // Save winning pattern.
346 first_half_pattern = _mm_max_epi16(
347 first_half_pattern,
348 _mm_and_si128(tmp, _mm_cmpgt_epi32(first_half_min, block_error)));
349 // Should use _mm_min_epi32(first_half_min, block_error); from SSE4
350 // otherwise we have a small performance penalty.
351 mask = _mm_cmplt_epi32(block_error, first_half_min);
352 first_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error),
353 _mm_andnot_si128(mask, first_half_min));
355 // Compute second part of the block.
356 block_error =
357 AddChannelError(GetColorErrorSSE(tmp_blue, second_blue_data_block),
358 GetColorErrorSSE(tmp_green, second_green_data_block),
359 GetColorErrorSSE(tmp_red, second_red_data_block));
361 // Save winning pattern.
362 second_half_pattern = _mm_max_epi16(
363 second_half_pattern,
364 _mm_and_si128(tmp, _mm_cmpgt_epi32(second_half_min, block_error)));
365 // Should use _mm_min_epi32(second_half_min, block_error); from SSE4
366 // otherwise we have a small performance penalty.
367 mask = _mm_cmplt_epi32(block_error, second_half_min);
368 second_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error),
369 _mm_andnot_si128(mask, second_half_min));
372 first_half_min = _mm_add_epi32(first_half_min, second_half_min);
373 first_half_min =
374 _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0x4E));
375 first_half_min =
376 _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0xB1));
378 min = _mm_cvtsi128_si32(first_half_min);
380 delta = min - last_min;
381 last_min = min;
383 if (min < best_error) {
384 best_tbl_idx = tbl_idx;
385 best_error = min;
387 best_mod_idx[tbl_idx][0] =
388 (_mm_cvtsi128_si32(first_half_pattern) >> (0)) & 3;
389 best_mod_idx[tbl_idx][4] =
390 (_mm_cvtsi128_si32(second_half_pattern) >> (0)) & 3;
392 best_mod_idx[tbl_idx][1] =
393 (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x1)) >>
394 (2)) &
396 best_mod_idx[tbl_idx][5] =
397 (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x1)) >>
398 (2)) &
401 best_mod_idx[tbl_idx][2] =
402 (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x2)) >>
403 (4)) &
405 best_mod_idx[tbl_idx][6] =
406 (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x2)) >>
407 (4)) &
410 best_mod_idx[tbl_idx][3] =
411 (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x3)) >>
412 (6)) &
414 best_mod_idx[tbl_idx][7] =
415 (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x3)) >>
416 (6)) &
419 if (best_error == 0) {
420 break;
422 } else if (delta > 0 && expected_error < min) {
423 // The error is growing and is well beyond expected threshold.
424 break;
428 WriteCodewordTable(block, sub_block_id, best_tbl_idx);
430 uint32_t pix_data = 0;
431 uint8_t mod_idx;
432 uint8_t pix_idx;
433 uint32_t lsb;
434 uint32_t msb;
435 int texel_num;
437 for (unsigned int i = 0; i < 8; ++i) {
438 mod_idx = best_mod_idx[best_tbl_idx][i];
439 pix_idx = g_mod_to_pix[mod_idx];
441 lsb = pix_idx & 0x1;
442 msb = pix_idx >> 1;
444 // Obtain the texel number as specified in the standard.
445 texel_num = idx_to_num_tab[i];
446 pix_data |= msb << (texel_num + 16);
447 pix_data |= lsb << (texel_num);
450 WritePixelData(block, pix_data);
453 void CompressBlock(uint8_t* dst, __sse_data* data) {
454 // First 3 values are for vertical 1, second 3 vertical 2, third 3 horizontal
455 // 1, last 3
456 // horizontal 2.
457 float __sse_avg_colors[12] = {
460 bool use_differential[2] = {true, true};
461 GetAvgColors(data, __sse_avg_colors, use_differential);
462 Color sub_block_avg[4];
464 // TODO(radu.velea): Remove floating point operations and use only int's +
465 // normal rounding and shifts for reduced Quality.
466 for (int i = 0, j = 1; i < 4; i += 2, j += 2) {
467 if (use_differential[i / 2] == false) {
468 sub_block_avg[i] = MakeColor444(&__sse_avg_colors[i * 3]);
469 sub_block_avg[j] = MakeColor444(&__sse_avg_colors[j * 3]);
470 } else {
471 sub_block_avg[i] = MakeColor555(&__sse_avg_colors[i * 3]);
472 sub_block_avg[j] = MakeColor555(&__sse_avg_colors[j * 3]);
476 __m128i red_avg[2], green_avg[2], blue_avg[2];
478 // TODO(radu.velea): Perfect accuracy, maybe skip floating variables.
479 blue_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[3]),
480 static_cast<int>(__sse_avg_colors[3]),
481 static_cast<int>(__sse_avg_colors[0]),
482 static_cast<int>(__sse_avg_colors[0]));
484 green_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[4]),
485 static_cast<int>(__sse_avg_colors[4]),
486 static_cast<int>(__sse_avg_colors[1]),
487 static_cast<int>(__sse_avg_colors[1]));
489 red_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[5]),
490 static_cast<int>(__sse_avg_colors[5]),
491 static_cast<int>(__sse_avg_colors[2]),
492 static_cast<int>(__sse_avg_colors[2]));
494 uint32_t vertical_error[2];
495 GetVerticalError(data, blue_avg, green_avg, red_avg, vertical_error);
497 // TODO(radu.velea): Perfect accuracy, maybe skip floating variables.
498 blue_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[6]));
499 blue_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[9]));
501 green_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[7]));
502 green_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[10]));
504 red_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[8]));
505 red_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[11]));
507 uint32_t horizontal_error[2];
508 GetHorizontalError(data, blue_avg, green_avg, red_avg, horizontal_error);
510 bool flip = (horizontal_error[0] + horizontal_error[1]) <
511 (vertical_error[0] + vertical_error[1]);
512 uint32_t* expected_errors = flip ? horizontal_error : vertical_error;
514 // Clear destination buffer so that we can "or" in the results.
515 memset(dst, 0, 8);
517 WriteDiff(dst, use_differential[!!flip]);
518 WriteFlip(dst, flip);
520 uint8_t sub_block_off_0 = flip ? 2 : 0;
521 uint8_t sub_block_off_1 = sub_block_off_0 + 1;
523 if (use_differential[!!flip]) {
524 WriteColors555(dst, sub_block_avg[sub_block_off_0],
525 sub_block_avg[sub_block_off_1]);
526 } else {
527 WriteColors444(dst, sub_block_avg[sub_block_off_0],
528 sub_block_avg[sub_block_off_1]);
531 if (!flip) {
532 // Transpose vertical data into horizontal lines.
533 __m128i tmp;
534 for (int i = 0; i < 4; i += 2) {
535 tmp = data->blue[i];
536 data->blue[i] = _mm_add_epi32(
537 _mm_move_epi64(data->blue[i]),
538 _mm_shuffle_epi32(_mm_move_epi64(data->blue[i + 1]), 0x4E));
539 data->blue[i + 1] = _mm_add_epi32(
540 _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
541 _mm_shuffle_epi32(
542 _mm_move_epi64(_mm_shuffle_epi32(data->blue[i + 1], 0x4E)),
543 0x4E));
545 tmp = data->green[i];
546 data->green[i] = _mm_add_epi32(
547 _mm_move_epi64(data->green[i]),
548 _mm_shuffle_epi32(_mm_move_epi64(data->green[i + 1]), 0x4E));
549 data->green[i + 1] = _mm_add_epi32(
550 _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
551 _mm_shuffle_epi32(
552 _mm_move_epi64(_mm_shuffle_epi32(data->green[i + 1], 0x4E)),
553 0x4E));
555 tmp = data->red[i];
556 data->red[i] = _mm_add_epi32(
557 _mm_move_epi64(data->red[i]),
558 _mm_shuffle_epi32(_mm_move_epi64(data->red[i + 1]), 0x4E));
559 data->red[i + 1] = _mm_add_epi32(
560 _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
561 _mm_shuffle_epi32(
562 _mm_move_epi64(_mm_shuffle_epi32(data->red[i + 1], 0x4E)), 0x4E));
565 tmp = data->blue[1];
566 data->blue[1] = data->blue[2];
567 data->blue[2] = tmp;
569 tmp = data->green[1];
570 data->green[1] = data->green[2];
571 data->green[2] = tmp;
573 tmp = data->red[1];
574 data->red[1] = data->red[2];
575 data->red[2] = tmp;
578 // Compute luminance for the first sub block.
579 ComputeLuminance(dst, sub_block_avg[sub_block_off_0], 0,
580 g_idx_to_num[sub_block_off_0], data,
581 SetETC1MaxError(expected_errors[0]));
582 // Compute luminance for the second sub block.
583 ComputeLuminance(dst, sub_block_avg[sub_block_off_1], 1,
584 g_idx_to_num[sub_block_off_1], data,
585 SetETC1MaxError(expected_errors[1]));
588 static void ExtractBlock(uint8_t* dst, const uint8_t* src, int width) {
589 for (int j = 0; j < 4; ++j) {
590 memcpy(&dst[j * 4 * 4], src, 4 * 4);
591 src += width * 4;
595 inline bool TransposeBlock(uint8_t* block, __m128i* transposed) {
596 // This function transforms an incommig block of RGBA or GBRA pixels into 4
597 // registers, each containing the data corresponding for a single channel.
598 // Ex: transposed[0] will have all the R values for a RGBA block,
599 // transposed[1] will have G, etc.
600 // The values are packed as 8 bit unsigned values in the SSE registers.
602 // Before doing any work we check if the block is solid.
603 __m128i tmp3, tmp2, tmp1, tmp0;
604 __m128i test_solid = _mm_set1_epi32(*((uint32_t*)block));
605 uint16_t mask = 0xFFFF;
607 // a0,a1,a2,...a7, ...a15
608 transposed[0] = _mm_loadu_si128((__m128i*)(block));
609 // b0, b1,b2,...b7.... b15
610 transposed[1] = _mm_loadu_si128((__m128i*)(block + 16));
611 // c0, c1,c2,...c7....c15
612 transposed[2] = _mm_loadu_si128((__m128i*)(block + 32));
613 // d0,d1,d2,...d7....d15
614 transposed[3] = _mm_loadu_si128((__m128i*)(block + 48));
616 for (int i = 0; i < 4; i++) {
617 mask &= _mm_movemask_epi8(_mm_cmpeq_epi8(transposed[i], test_solid));
620 if (mask == 0xFFFF) {
621 // Block is solid, no need to do any more work.
622 return false;
625 // a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7
626 tmp0 = _mm_unpacklo_epi8(transposed[0], transposed[1]);
627 // c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7
628 tmp1 = _mm_unpacklo_epi8(transposed[2], transposed[3]);
629 // a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15
630 tmp2 = _mm_unpackhi_epi8(transposed[0], transposed[1]);
631 // c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15
632 tmp3 = _mm_unpackhi_epi8(transposed[2], transposed[3]);
634 // a0,a8, b0,b8, a1,a9, b1,b9, ....a3,a11, b3,b11
635 transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2);
636 // a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15
637 transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2);
638 // c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11
639 transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3);
640 // c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15
641 transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3);
643 // a0,a8, b0,b8, c0,c8, d0,d8, a1,a9, b1,b9, c1,c9, d1,d9
644 tmp0 = _mm_unpacklo_epi32(transposed[0], transposed[2]);
645 // a2,a10, b2,b10, c2,c10, d2,d10, a3,a11, b3,b11, c3,c11, d3,d11
646 tmp1 = _mm_unpackhi_epi32(transposed[0], transposed[2]);
647 // a4,a12, b4,b12, c4,c12, d4,d12, a5,a13, b5,b13, c5,c13, d5,d13
648 tmp2 = _mm_unpacklo_epi32(transposed[1], transposed[3]);
649 // a6,a14, b6,b14, c6,c14, d6,d14, a7,a15, b7,b15, c7,c15, d7,d15
650 tmp3 = _mm_unpackhi_epi32(transposed[1], transposed[3]);
652 // a0,a4, a8,a12, b0,b4, b8,b12, c0,c4, c8,c12, d0,d4, d8,d12
653 transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2);
654 // a1,a5, a9,a13, b1,b5, b9,b13, c1,c5, c9,c13, d1,d5, d9,d13
655 transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2);
656 // a2,a6, a10,a14, b2,b6, b10,b14, c2,c6, c10,c14, d2,d6, d10,d14
657 transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3);
658 // a3,a7, a11,a15, b3,b7, b11,b15, c3,c7, c11,c15, d3,d7, d11,d15
659 transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3);
661 return true;
664 inline void UnpackBlock(__m128i* packed,
665 __m128i* red,
666 __m128i* green,
667 __m128i* blue,
668 __m128i* alpha) {
669 const __m128i zero = _mm_set1_epi8(0);
670 __m128i tmp_low, tmp_high;
672 // Unpack red.
673 tmp_low = _mm_unpacklo_epi8(packed[0], zero);
674 tmp_high = _mm_unpackhi_epi8(packed[0], zero);
676 red[0] = _mm_unpacklo_epi16(tmp_low, zero);
677 red[1] = _mm_unpackhi_epi16(tmp_low, zero);
679 red[2] = _mm_unpacklo_epi16(tmp_high, zero);
680 red[3] = _mm_unpackhi_epi16(tmp_high, zero);
682 // Unpack green.
683 tmp_low = _mm_unpacklo_epi8(packed[1], zero);
684 tmp_high = _mm_unpackhi_epi8(packed[1], zero);
686 green[0] = _mm_unpacklo_epi16(tmp_low, zero);
687 green[1] = _mm_unpackhi_epi16(tmp_low, zero);
689 green[2] = _mm_unpacklo_epi16(tmp_high, zero);
690 green[3] = _mm_unpackhi_epi16(tmp_high, zero);
692 // Unpack blue.
693 tmp_low = _mm_unpacklo_epi8(packed[2], zero);
694 tmp_high = _mm_unpackhi_epi8(packed[2], zero);
696 blue[0] = _mm_unpacklo_epi16(tmp_low, zero);
697 blue[1] = _mm_unpackhi_epi16(tmp_low, zero);
699 blue[2] = _mm_unpacklo_epi16(tmp_high, zero);
700 blue[3] = _mm_unpackhi_epi16(tmp_high, zero);
702 // Unpack alpha - unused for ETC1.
703 tmp_low = _mm_unpacklo_epi8(packed[3], zero);
704 tmp_high = _mm_unpackhi_epi8(packed[3], zero);
706 alpha[0] = _mm_unpacklo_epi16(tmp_low, zero);
707 alpha[1] = _mm_unpackhi_epi16(tmp_low, zero);
709 alpha[2] = _mm_unpacklo_epi16(tmp_high, zero);
710 alpha[3] = _mm_unpackhi_epi16(tmp_high, zero);
713 inline void CompressSolid(uint8_t* dst, uint8_t* block) {
714 // Clear destination buffer so that we can "or" in the results.
715 memset(dst, 0, 8);
717 const float src_color_float[3] = {static_cast<float>(block[0]),
718 static_cast<float>(block[1]),
719 static_cast<float>(block[2])};
720 const Color base = MakeColor555(src_color_float);
721 const __m128i base_v =
722 _mm_set_epi32(0, base.channels.r, base.channels.g, base.channels.b);
724 const __m128i constant = _mm_set_epi32(0, block[2], block[1], block[0]);
725 __m128i lum;
726 __m128i colors[4];
727 static const __m128i rgb =
728 _mm_set_epi32(0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
730 WriteDiff(dst, true);
731 WriteFlip(dst, false);
733 WriteColors555(dst, base, base);
735 uint8_t best_tbl_idx = 0;
736 uint8_t best_mod_idx = 0;
737 uint32_t best_mod_err = INT32_MAX;
739 for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
740 lum = _mm_set_epi32(
741 g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2],
742 g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]);
743 colors[0] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x0));
744 colors[1] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x55));
745 colors[2] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xAA));
746 colors[3] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xFF));
748 for (int i = 0; i < 4; i++) {
749 uint32_t mod_err =
750 SumSSE(GetColorErrorSSE(constant, _mm_and_si128(colors[i], rgb)));
751 colors[i] = _mm_and_si128(colors[i], rgb);
752 if (mod_err < best_mod_err) {
753 best_tbl_idx = tbl_idx;
754 best_mod_idx = i;
755 best_mod_err = mod_err;
757 if (mod_err == 0) {
758 break; // We cannot do any better than this.
764 WriteCodewordTable(dst, 0, best_tbl_idx);
765 WriteCodewordTable(dst, 1, best_tbl_idx);
767 uint8_t pix_idx = g_mod_to_pix[best_mod_idx];
768 uint32_t lsb = pix_idx & 0x1;
769 uint32_t msb = pix_idx >> 1;
771 uint32_t pix_data = 0;
772 for (unsigned int i = 0; i < 2; ++i) {
773 for (unsigned int j = 0; j < 8; ++j) {
774 // Obtain the texel number as specified in the standard.
775 int texel_num = g_idx_to_num[i][j];
776 pix_data |= msb << (texel_num + 16);
777 pix_data |= lsb << (texel_num);
781 WritePixelData(dst, pix_data);
784 } // namespace
786 void TextureCompressorETC1SSE::Compress(const uint8_t* src,
787 uint8_t* dst,
788 int width,
789 int height,
790 Quality quality) {
791 DCHECK_GE(width, 4);
792 DCHECK_EQ((width & 3), 0);
793 DCHECK_GE(height, 4);
794 DCHECK_EQ((height & 3), 0);
796 ALIGNAS(16) uint8_t block[64];
797 __m128i packed[4];
798 __m128i red[4], green[4], blue[4], alpha[4];
799 __sse_data data;
801 for (int y = 0; y < height; y += 4, src += width * 4 * 4) {
802 for (int x = 0; x < width; x += 4, dst += 8) {
803 ExtractBlock(block, src + x * 4, width);
804 if (TransposeBlock(block, packed) == false) {
805 CompressSolid(dst, block);
806 } else {
807 UnpackBlock(packed, blue, green, red, alpha);
809 data.block = block;
810 data.packed = packed;
811 data.red = red;
812 data.blue = blue;
813 data.green = green;
815 CompressBlock(dst, &data);
821 } // namespace cc