Roll src/third_party/skia b502ee3:6e8cd96
[chromium-blink-merge.git] / base / memory / scoped_ptr.h
blob987ccfa804eadde2f89b1ac904ee77bd47b16d36
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Scopers help you manage ownership of a pointer, helping you easily manage a
6 // pointer within a scope, and automatically destroying the pointer at the end
7 // of a scope. There are two main classes you will use, which correspond to the
8 // operators new/delete and new[]/delete[].
9 //
10 // Example usage (scoped_ptr<T>):
11 // {
12 // scoped_ptr<Foo> foo(new Foo("wee"));
13 // } // foo goes out of scope, releasing the pointer with it.
15 // {
16 // scoped_ptr<Foo> foo; // No pointer managed.
17 // foo.reset(new Foo("wee")); // Now a pointer is managed.
18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
20 // foo->Method(); // Foo::Method() called.
21 // foo.get()->Method(); // Foo::Method() called.
22 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
23 // // manages a pointer.
24 // foo.reset(new Foo("wee4")); // foo manages a pointer again.
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
26 // // manages a pointer.
27 // } // foo wasn't managing a pointer, so nothing was destroyed.
29 // Example usage (scoped_ptr<T[]>):
30 // {
31 // scoped_ptr<Foo[]> foo(new Foo[100]);
32 // foo.get()->Method(); // Foo::Method on the 0th element.
33 // foo[10].Method(); // Foo::Method on the 10th element.
34 // }
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable." You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function. When calling a function that has a scoper
40 // as the argument type, it must be called with the result of an analogous
41 // scoper's Pass() function or another function that generates a temporary;
42 // passing by copy will NOT work. Here is an example using scoped_ptr:
44 // void TakesOwnership(scoped_ptr<Foo> arg) {
45 // // Do something with arg
46 // }
47 // scoped_ptr<Foo> CreateFoo() {
48 // // No need for calling Pass() because we are constructing a temporary
49 // // for the return value.
50 // return scoped_ptr<Foo>(new Foo("new"));
51 // }
52 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
53 // return arg.Pass();
54 // }
56 // {
57 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
58 // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
59 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
60 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
61 // PassThru(ptr2.Pass()); // ptr2 is correspondingly nullptr.
62 // }
64 // Notice that if you do not call Pass() when returning from PassThru(), or
65 // when invoking TakesOwnership(), the code will not compile because scopers
66 // are not copyable; they only implement move semantics which require calling
67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
68 // is different though because we are constructing a temporary on the return
69 // line and thus can avoid needing to call Pass().
71 // Pass() properly handles upcast in initialization, i.e. you can use a
72 // scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
74 // scoped_ptr<Foo> foo(new Foo());
75 // scoped_ptr<FooParent> parent(foo.Pass());
77 #ifndef BASE_MEMORY_SCOPED_PTR_H_
78 #define BASE_MEMORY_SCOPED_PTR_H_
80 // This is an implementation designed to match the anticipated future TR2
81 // implementation of the scoped_ptr class.
83 #include <assert.h>
84 #include <stddef.h>
85 #include <stdlib.h>
87 #include <algorithm> // For std::swap().
88 #include <iosfwd>
90 #include "base/basictypes.h"
91 #include "base/compiler_specific.h"
92 #include "base/move.h"
93 #include "base/template_util.h"
95 namespace base {
97 namespace subtle {
98 class RefCountedBase;
99 class RefCountedThreadSafeBase;
100 } // namespace subtle
102 // Function object which deletes its parameter, which must be a pointer.
103 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
104 // invokes 'delete'. The default deleter for scoped_ptr<T>.
105 template <class T>
106 struct DefaultDeleter {
107 DefaultDeleter() {}
108 template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
109 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
110 // if U* is implicitly convertible to T* and U is not an array type.
112 // Correct implementation should use SFINAE to disable this
113 // constructor. However, since there are no other 1-argument constructors,
114 // using a COMPILE_ASSERT() based on is_convertible<> and requiring
115 // complete types is simpler and will cause compile failures for equivalent
116 // misuses.
118 // Note, the is_convertible<U*, T*> check also ensures that U is not an
119 // array. T is guaranteed to be a non-array, so any U* where U is an array
120 // cannot convert to T*.
121 enum { T_must_be_complete = sizeof(T) };
122 enum { U_must_be_complete = sizeof(U) };
123 COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
124 U_ptr_must_implicitly_convert_to_T_ptr);
126 inline void operator()(T* ptr) const {
127 enum { type_must_be_complete = sizeof(T) };
128 delete ptr;
132 // Specialization of DefaultDeleter for array types.
133 template <class T>
134 struct DefaultDeleter<T[]> {
135 inline void operator()(T* ptr) const {
136 enum { type_must_be_complete = sizeof(T) };
137 delete[] ptr;
140 private:
141 // Disable this operator for any U != T because it is undefined to execute
142 // an array delete when the static type of the array mismatches the dynamic
143 // type.
145 // References:
146 // C++98 [expr.delete]p3
147 // http://cplusplus.github.com/LWG/lwg-defects.html#938
148 template <typename U> void operator()(U* array) const;
151 template <class T, int n>
152 struct DefaultDeleter<T[n]> {
153 // Never allow someone to declare something like scoped_ptr<int[10]>.
154 COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
157 // Function object which invokes 'free' on its parameter, which must be
158 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
160 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
161 // static_cast<int*>(malloc(sizeof(int))));
162 struct FreeDeleter {
163 inline void operator()(void* ptr) const {
164 free(ptr);
168 namespace internal {
170 template <typename T> struct IsNotRefCounted {
171 enum {
172 value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
173 !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
174 value
178 template <typename T>
179 struct ShouldAbortOnSelfReset {
180 template <typename U>
181 static NoType Test(const typename U::AllowSelfReset*);
183 template <typename U>
184 static YesType Test(...);
186 static const bool value = sizeof(Test<T>(0)) == sizeof(YesType);
189 // Minimal implementation of the core logic of scoped_ptr, suitable for
190 // reuse in both scoped_ptr and its specializations.
191 template <class T, class D>
192 class scoped_ptr_impl {
193 public:
194 explicit scoped_ptr_impl(T* p) : data_(p) {}
196 // Initializer for deleters that have data parameters.
197 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
199 // Templated constructor that destructively takes the value from another
200 // scoped_ptr_impl.
201 template <typename U, typename V>
202 scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
203 : data_(other->release(), other->get_deleter()) {
204 // We do not support move-only deleters. We could modify our move
205 // emulation to have base::subtle::move() and base::subtle::forward()
206 // functions that are imperfect emulations of their C++11 equivalents,
207 // but until there's a requirement, just assume deleters are copyable.
210 template <typename U, typename V>
211 void TakeState(scoped_ptr_impl<U, V>* other) {
212 // See comment in templated constructor above regarding lack of support
213 // for move-only deleters.
214 reset(other->release());
215 get_deleter() = other->get_deleter();
218 ~scoped_ptr_impl() {
219 if (data_.ptr != nullptr) {
220 // Not using get_deleter() saves one function call in non-optimized
221 // builds.
222 static_cast<D&>(data_)(data_.ptr);
226 void reset(T* p) {
227 // This is a self-reset, which is no longer allowed for default deleters:
228 // https://crbug.com/162971
229 assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr);
231 // Note that running data_.ptr = p can lead to undefined behavior if
232 // get_deleter()(get()) deletes this. In order to prevent this, reset()
233 // should update the stored pointer before deleting its old value.
235 // However, changing reset() to use that behavior may cause current code to
236 // break in unexpected ways. If the destruction of the owned object
237 // dereferences the scoped_ptr when it is destroyed by a call to reset(),
238 // then it will incorrectly dispatch calls to |p| rather than the original
239 // value of |data_.ptr|.
241 // During the transition period, set the stored pointer to nullptr while
242 // deleting the object. Eventually, this safety check will be removed to
243 // prevent the scenario initially described from occuring and
244 // http://crbug.com/176091 can be closed.
245 T* old = data_.ptr;
246 data_.ptr = nullptr;
247 if (old != nullptr)
248 static_cast<D&>(data_)(old);
249 data_.ptr = p;
252 T* get() const { return data_.ptr; }
254 D& get_deleter() { return data_; }
255 const D& get_deleter() const { return data_; }
257 void swap(scoped_ptr_impl& p2) {
258 // Standard swap idiom: 'using std::swap' ensures that std::swap is
259 // present in the overload set, but we call swap unqualified so that
260 // any more-specific overloads can be used, if available.
261 using std::swap;
262 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
263 swap(data_.ptr, p2.data_.ptr);
266 T* release() {
267 T* old_ptr = data_.ptr;
268 data_.ptr = nullptr;
269 return old_ptr;
272 private:
273 // Needed to allow type-converting constructor.
274 template <typename U, typename V> friend class scoped_ptr_impl;
276 // Use the empty base class optimization to allow us to have a D
277 // member, while avoiding any space overhead for it when D is an
278 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
279 // discussion of this technique.
280 struct Data : public D {
281 explicit Data(T* ptr_in) : ptr(ptr_in) {}
282 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
283 T* ptr;
286 Data data_;
288 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
291 } // namespace internal
293 } // namespace base
295 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
296 // automatically deletes the pointer it holds (if any).
297 // That is, scoped_ptr<T> owns the T object that it points to.
298 // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
299 // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
300 // dereference it, you get the thread safety guarantees of T.
302 // The size of scoped_ptr is small. On most compilers, when using the
303 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
304 // increase the size proportional to whatever state they need to have. See
305 // comments inside scoped_ptr_impl<> for details.
307 // Current implementation targets having a strict subset of C++11's
308 // unique_ptr<> features. Known deficiencies include not supporting move-only
309 // deleteres, function pointers as deleters, and deleters with reference
310 // types.
311 template <class T, class D = base::DefaultDeleter<T> >
312 class scoped_ptr {
313 MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
315 COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value,
316 T_is_refcounted_type_and_needs_scoped_refptr);
318 public:
319 // The element and deleter types.
320 typedef T element_type;
321 typedef D deleter_type;
323 // Constructor. Defaults to initializing with nullptr.
324 scoped_ptr() : impl_(nullptr) {}
326 // Constructor. Takes ownership of p.
327 explicit scoped_ptr(element_type* p) : impl_(p) {}
329 // Constructor. Allows initialization of a stateful deleter.
330 scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
332 // Constructor. Allows construction from a nullptr.
333 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
335 // Constructor. Allows construction from a scoped_ptr rvalue for a
336 // convertible type and deleter.
338 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
339 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
340 // has different post-conditions if D is a reference type. Since this
341 // implementation does not support deleters with reference type,
342 // we do not need a separate move constructor allowing us to avoid one
343 // use of SFINAE. You only need to care about this if you modify the
344 // implementation of scoped_ptr.
345 template <typename U, typename V>
346 scoped_ptr(scoped_ptr<U, V>&& other)
347 : impl_(&other.impl_) {
348 COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
351 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
352 // type and deleter.
354 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
355 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
356 // form has different requirements on for move-only Deleters. Since this
357 // implementation does not support move-only Deleters, we do not need a
358 // separate move assignment operator allowing us to avoid one use of SFINAE.
359 // You only need to care about this if you modify the implementation of
360 // scoped_ptr.
361 template <typename U, typename V>
362 scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) {
363 COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
364 impl_.TakeState(&rhs.impl_);
365 return *this;
368 // operator=. Allows assignment from a nullptr. Deletes the currently owned
369 // object, if any.
370 scoped_ptr& operator=(decltype(nullptr)) {
371 reset();
372 return *this;
375 // Reset. Deletes the currently owned object, if any.
376 // Then takes ownership of a new object, if given.
377 void reset(element_type* p = nullptr) { impl_.reset(p); }
379 // Accessors to get the owned object.
380 // operator* and operator-> will assert() if there is no current object.
381 element_type& operator*() const {
382 assert(impl_.get() != nullptr);
383 return *impl_.get();
385 element_type* operator->() const {
386 assert(impl_.get() != nullptr);
387 return impl_.get();
389 element_type* get() const { return impl_.get(); }
391 // Access to the deleter.
392 deleter_type& get_deleter() { return impl_.get_deleter(); }
393 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
395 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
396 // implicitly convertible to a real bool (which is dangerous).
398 // Note that this trick is only safe when the == and != operators
399 // are declared explicitly, as otherwise "scoped_ptr1 ==
400 // scoped_ptr2" will compile but do the wrong thing (i.e., convert
401 // to Testable and then do the comparison).
402 private:
403 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
404 scoped_ptr::*Testable;
406 public:
407 operator Testable() const {
408 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
411 // Comparison operators.
412 // These return whether two scoped_ptr refer to the same object, not just to
413 // two different but equal objects.
414 bool operator==(const element_type* p) const { return impl_.get() == p; }
415 bool operator!=(const element_type* p) const { return impl_.get() != p; }
417 // Swap two scoped pointers.
418 void swap(scoped_ptr& p2) {
419 impl_.swap(p2.impl_);
422 // Release a pointer.
423 // The return value is the current pointer held by this object. If this object
424 // holds a nullptr, the return value is nullptr. After this operation, this
425 // object will hold a nullptr, and will not own the object any more.
426 element_type* release() WARN_UNUSED_RESULT {
427 return impl_.release();
430 private:
431 // Needed to reach into |impl_| in the constructor.
432 template <typename U, typename V> friend class scoped_ptr;
433 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
435 // Forbidden for API compatibility with std::unique_ptr.
436 explicit scoped_ptr(int disallow_construction_from_null);
438 // Forbid comparison of scoped_ptr types. If U != T, it totally
439 // doesn't make sense, and if U == T, it still doesn't make sense
440 // because you should never have the same object owned by two different
441 // scoped_ptrs.
442 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
443 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
446 template <class T, class D>
447 class scoped_ptr<T[], D> {
448 MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
450 public:
451 // The element and deleter types.
452 typedef T element_type;
453 typedef D deleter_type;
455 // Constructor. Defaults to initializing with nullptr.
456 scoped_ptr() : impl_(nullptr) {}
458 // Constructor. Stores the given array. Note that the argument's type
459 // must exactly match T*. In particular:
460 // - it cannot be a pointer to a type derived from T, because it is
461 // inherently unsafe in the general case to access an array through a
462 // pointer whose dynamic type does not match its static type (eg., if
463 // T and the derived types had different sizes access would be
464 // incorrectly calculated). Deletion is also always undefined
465 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
466 // - it cannot be const-qualified differently from T per unique_ptr spec
467 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
468 // to work around this may use implicit_cast<const T*>().
469 // However, because of the first bullet in this comment, users MUST
470 // NOT use implicit_cast<Base*>() to upcast the static type of the array.
471 explicit scoped_ptr(element_type* array) : impl_(array) {}
473 // Constructor. Allows construction from a nullptr.
474 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
476 // Constructor. Allows construction from a scoped_ptr rvalue.
477 scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
479 // operator=. Allows assignment from a scoped_ptr rvalue.
480 scoped_ptr& operator=(scoped_ptr&& rhs) {
481 impl_.TakeState(&rhs.impl_);
482 return *this;
485 // operator=. Allows assignment from a nullptr. Deletes the currently owned
486 // array, if any.
487 scoped_ptr& operator=(decltype(nullptr)) {
488 reset();
489 return *this;
492 // Reset. Deletes the currently owned array, if any.
493 // Then takes ownership of a new object, if given.
494 void reset(element_type* array = nullptr) { impl_.reset(array); }
496 // Accessors to get the owned array.
497 element_type& operator[](size_t i) const {
498 assert(impl_.get() != nullptr);
499 return impl_.get()[i];
501 element_type* get() const { return impl_.get(); }
503 // Access to the deleter.
504 deleter_type& get_deleter() { return impl_.get_deleter(); }
505 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
507 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
508 // implicitly convertible to a real bool (which is dangerous).
509 private:
510 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
511 scoped_ptr::*Testable;
513 public:
514 operator Testable() const {
515 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
518 // Comparison operators.
519 // These return whether two scoped_ptr refer to the same object, not just to
520 // two different but equal objects.
521 bool operator==(element_type* array) const { return impl_.get() == array; }
522 bool operator!=(element_type* array) const { return impl_.get() != array; }
524 // Swap two scoped pointers.
525 void swap(scoped_ptr& p2) {
526 impl_.swap(p2.impl_);
529 // Release a pointer.
530 // The return value is the current pointer held by this object. If this object
531 // holds a nullptr, the return value is nullptr. After this operation, this
532 // object will hold a nullptr, and will not own the object any more.
533 element_type* release() WARN_UNUSED_RESULT {
534 return impl_.release();
537 private:
538 // Force element_type to be a complete type.
539 enum { type_must_be_complete = sizeof(element_type) };
541 // Actually hold the data.
542 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
544 // Disable initialization from any type other than element_type*, by
545 // providing a constructor that matches such an initialization, but is
546 // private and has no definition. This is disabled because it is not safe to
547 // call delete[] on an array whose static type does not match its dynamic
548 // type.
549 template <typename U> explicit scoped_ptr(U* array);
550 explicit scoped_ptr(int disallow_construction_from_null);
552 // Disable reset() from any type other than element_type*, for the same
553 // reasons as the constructor above.
554 template <typename U> void reset(U* array);
555 void reset(int disallow_reset_from_null);
557 // Forbid comparison of scoped_ptr types. If U != T, it totally
558 // doesn't make sense, and if U == T, it still doesn't make sense
559 // because you should never have the same object owned by two different
560 // scoped_ptrs.
561 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
562 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
565 // Free functions
566 template <class T, class D>
567 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
568 p1.swap(p2);
571 template <class T, class D>
572 bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
573 return p1 == p2.get();
576 template <class T, class D>
577 bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
578 return p1 != p2.get();
581 // A function to convert T* into scoped_ptr<T>
582 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
583 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
584 template <typename T>
585 scoped_ptr<T> make_scoped_ptr(T* ptr) {
586 return scoped_ptr<T>(ptr);
589 template <typename T>
590 std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
591 return out << p.get();
594 #endif // BASE_MEMORY_SCOPED_PTR_H_