1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "crypto/ghash.h"
7 #include "base/logging.h"
8 #include "base/sys_byteorder.h"
12 // GaloisHash is a polynomial authenticator that works in GF(2^128).
14 // Elements of the field are represented in `little-endian' order (which
15 // matches the description in the paper[1]), thus the most significant bit is
16 // the right-most bit. (This is backwards from the way that everybody else does
19 // We store field elements in a pair of such `little-endian' uint64s. So the
20 // value one is represented by {low = 2**63, high = 0} and doubling a value
21 // involves a *right* shift.
23 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
27 // Get64 reads a 64-bit, big-endian number from |bytes|.
28 uint64
Get64(const uint8 bytes
[8]) {
30 memcpy(&t
, bytes
, sizeof(t
));
31 return base::NetToHost64(t
);
34 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
35 void Put64(uint8 bytes
[8], uint64 x
) {
36 x
= base::HostToNet64(x
);
37 memcpy(bytes
, &x
, sizeof(x
));
40 // Reverse reverses the order of the bits of 4-bit number in |i|.
42 i
= ((i
<< 2) & 0xc) | ((i
>> 2) & 0x3);
43 i
= ((i
<< 1) & 0xa) | ((i
>> 1) & 0x5);
49 GaloisHash::GaloisHash(const uint8 key
[16]) {
52 // We precompute 16 multiples of |key|. However, when we do lookups into this
53 // table we'll be using bits from a field element and therefore the bits will
54 // be in the reverse order. So normally one would expect, say, 4*key to be in
55 // index 4 of the table but due to this bit ordering it will actually be in
56 // index 0010 (base 2) = 2.
57 FieldElement x
= {Get64(key
), Get64(key
+8)};
58 product_table_
[0].low
= 0;
59 product_table_
[0].hi
= 0;
60 product_table_
[Reverse(1)] = x
;
62 for (int i
= 0; i
< 16; i
+= 2) {
63 product_table_
[Reverse(i
)] = Double(product_table_
[Reverse(i
/2)]);
64 product_table_
[Reverse(i
+1)] = Add(product_table_
[Reverse(i
)], x
);
68 void GaloisHash::Reset() {
69 state_
= kHashingAdditionalData
;
70 additional_bytes_
= 0;
71 ciphertext_bytes_
= 0;
77 void GaloisHash::UpdateAdditional(const uint8
* data
, size_t length
) {
78 DCHECK_EQ(state_
, kHashingAdditionalData
);
79 additional_bytes_
+= length
;
83 void GaloisHash::UpdateCiphertext(const uint8
* data
, size_t length
) {
84 if (state_
== kHashingAdditionalData
) {
85 // If there's any remaining additional data it's zero padded to the next
88 memset(&buf_
[buf_used_
], 0, sizeof(buf_
)-buf_used_
);
89 UpdateBlocks(buf_
, 1);
92 state_
= kHashingCiphertext
;
95 DCHECK_EQ(state_
, kHashingCiphertext
);
96 ciphertext_bytes_
+= length
;
100 void GaloisHash::Finish(void* output
, size_t len
) {
101 DCHECK(state_
!= kComplete
);
104 // If there's any remaining data (additional data or ciphertext), it's zero
105 // padded to the next full block.
106 memset(&buf_
[buf_used_
], 0, sizeof(buf_
)-buf_used_
);
107 UpdateBlocks(buf_
, 1);
113 // The lengths of the additional data and ciphertext are included as the last
114 // block. The lengths are the number of bits.
115 y_
.low
^= additional_bytes_
*8;
116 y_
.hi
^= ciphertext_bytes_
*8;
117 MulAfterPrecomputation(product_table_
, &y_
);
119 uint8
*result
, result_tmp
[16];
121 result
= reinterpret_cast<uint8
*>(output
);
126 Put64(result
, y_
.low
);
127 Put64(result
+ 8, y_
.hi
);
130 memcpy(output
, result_tmp
, len
);
134 GaloisHash::FieldElement
GaloisHash::Add(
135 const FieldElement
& x
,
136 const FieldElement
& y
) {
137 // Addition in a characteristic 2 field is just XOR.
138 FieldElement z
= {x
.low
^y
.low
, x
.hi
^y
.hi
};
143 GaloisHash::FieldElement
GaloisHash::Double(const FieldElement
& x
) {
144 const bool msb_set
= x
.hi
& 1;
147 // Because of the bit-ordering, doubling is actually a right shift.
149 xx
.hi
|= x
.low
<< 63;
152 // If the most-significant bit was set before shifting then it, conceptually,
153 // becomes a term of x^128. This is greater than the irreducible polynomial
154 // so the result has to be reduced. The irreducible polynomial is
155 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
156 // which also means subtracting the other four terms. In characteristic 2
157 // fields, subtraction == addition == XOR.
159 xx
.low
^= 0xe100000000000000ULL
;
164 void GaloisHash::MulAfterPrecomputation(const FieldElement
* table
,
166 FieldElement z
= {0, 0};
168 // In order to efficiently multiply, we use the precomputed table of i*key,
169 // for i in 0..15, to handle four bits at a time. We could obviously use
170 // larger tables for greater speedups but the next convenient table size is
171 // 4K, which is a little large.
173 // In other fields one would use bit positions spread out across the field in
174 // order to reduce the number of doublings required. However, in
175 // characteristic 2 fields, repeated doublings are exceptionally cheap and
176 // it's not worth spending more precomputation time to eliminate them.
177 for (unsigned i
= 0; i
< 2; i
++) {
185 for (unsigned j
= 0; j
< 64; j
+= 4) {
187 // the values in |table| are ordered for little-endian bit positions. See
188 // the comment in the constructor.
189 const FieldElement
& t
= table
[word
& 0xf];
199 // kReductionTable allows for rapid multiplications by 16. A multiplication by
200 // 16 is a right shift by four bits, which results in four bits at 2**128.
201 // These terms have to be eliminated by dividing by the irreducible polynomial.
202 // In GHASH, the polynomial is such that all the terms occur in the
203 // least-significant 8 bits, save for the term at x^128. Therefore we can
204 // precompute the value to be added to the field element for each of the 16 bit
205 // patterns at 2**128 and the values fit within 12 bits.
206 static const uint16 kReductionTable
[16] = {
207 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
208 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
212 void GaloisHash::Mul16(FieldElement
* x
) {
213 const unsigned msw
= x
->hi
& 0xf;
215 x
->hi
|= x
->low
<< 60;
217 x
->low
^= static_cast<uint64
>(kReductionTable
[msw
]) << 48;
220 void GaloisHash::UpdateBlocks(const uint8
* bytes
, size_t num_blocks
) {
221 for (size_t i
= 0; i
< num_blocks
; i
++) {
222 y_
.low
^= Get64(bytes
);
224 y_
.hi
^= Get64(bytes
);
226 MulAfterPrecomputation(product_table_
, &y_
);
230 void GaloisHash::Update(const uint8
* data
, size_t length
) {
232 const size_t n
= std::min(length
, sizeof(buf_
) - buf_used_
);
233 memcpy(&buf_
[buf_used_
], data
, n
);
238 if (buf_used_
== sizeof(buf_
)) {
239 UpdateBlocks(buf_
, 1);
245 const size_t n
= length
/ 16;
246 UpdateBlocks(data
, n
);
252 memcpy(buf_
, data
, length
);
257 } // namespace crypto