Replace gfx::ClampToInt with base::saturated_cast.
[chromium-blink-merge.git] / ui / gfx / geometry / rect_unittest.cc
blob00a9677f0410f4fc42104f4ae70e6b2c89d365ac
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <limits>
7 #include "base/basictypes.h"
8 #include "testing/gtest/include/gtest/gtest.h"
9 #include "ui/gfx/geometry/rect.h"
10 #include "ui/gfx/geometry/rect_conversions.h"
11 #include "ui/gfx/test/gfx_util.h"
13 #if defined(OS_WIN)
14 #include <windows.h>
15 #endif
17 namespace gfx {
19 TEST(RectTest, Contains) {
20 static const struct ContainsCase {
21 int rect_x;
22 int rect_y;
23 int rect_width;
24 int rect_height;
25 int point_x;
26 int point_y;
27 bool contained;
28 } contains_cases[] = {
29 {0, 0, 10, 10, 0, 0, true},
30 {0, 0, 10, 10, 5, 5, true},
31 {0, 0, 10, 10, 9, 9, true},
32 {0, 0, 10, 10, 5, 10, false},
33 {0, 0, 10, 10, 10, 5, false},
34 {0, 0, 10, 10, -1, -1, false},
35 {0, 0, 10, 10, 50, 50, false},
36 #if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON)
37 {0, 0, -10, -10, 0, 0, false},
38 #endif
40 for (size_t i = 0; i < arraysize(contains_cases); ++i) {
41 const ContainsCase& value = contains_cases[i];
42 Rect rect(value.rect_x, value.rect_y, value.rect_width, value.rect_height);
43 EXPECT_EQ(value.contained, rect.Contains(value.point_x, value.point_y));
47 TEST(RectTest, Intersects) {
48 static const struct {
49 int x1; // rect 1
50 int y1;
51 int w1;
52 int h1;
53 int x2; // rect 2
54 int y2;
55 int w2;
56 int h2;
57 bool intersects;
58 } tests[] = {
59 { 0, 0, 0, 0, 0, 0, 0, 0, false },
60 { 0, 0, 0, 0, -10, -10, 20, 20, false },
61 { -10, 0, 0, 20, 0, -10, 20, 0, false },
62 { 0, 0, 10, 10, 0, 0, 10, 10, true },
63 { 0, 0, 10, 10, 10, 10, 10, 10, false },
64 { 10, 10, 10, 10, 0, 0, 10, 10, false },
65 { 10, 10, 10, 10, 5, 5, 10, 10, true },
66 { 10, 10, 10, 10, 15, 15, 10, 10, true },
67 { 10, 10, 10, 10, 20, 15, 10, 10, false },
68 { 10, 10, 10, 10, 21, 15, 10, 10, false }
70 for (size_t i = 0; i < arraysize(tests); ++i) {
71 Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
72 Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
73 EXPECT_EQ(tests[i].intersects, r1.Intersects(r2));
74 EXPECT_EQ(tests[i].intersects, r2.Intersects(r1));
78 TEST(RectTest, Intersect) {
79 static const struct {
80 int x1; // rect 1
81 int y1;
82 int w1;
83 int h1;
84 int x2; // rect 2
85 int y2;
86 int w2;
87 int h2;
88 int x3; // rect 3: the union of rects 1 and 2
89 int y3;
90 int w3;
91 int h3;
92 } tests[] = {
93 { 0, 0, 0, 0, // zeros
94 0, 0, 0, 0,
95 0, 0, 0, 0 },
96 { 0, 0, 4, 4, // equal
97 0, 0, 4, 4,
98 0, 0, 4, 4 },
99 { 0, 0, 4, 4, // neighboring
100 4, 4, 4, 4,
101 0, 0, 0, 0 },
102 { 0, 0, 4, 4, // overlapping corners
103 2, 2, 4, 4,
104 2, 2, 2, 2 },
105 { 0, 0, 4, 4, // T junction
106 3, 1, 4, 2,
107 3, 1, 1, 2 },
108 { 3, 0, 2, 2, // gap
109 0, 0, 2, 2,
110 0, 0, 0, 0 }
112 for (size_t i = 0; i < arraysize(tests); ++i) {
113 Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
114 Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
115 Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
116 Rect ir = IntersectRects(r1, r2);
117 EXPECT_EQ(r3.x(), ir.x());
118 EXPECT_EQ(r3.y(), ir.y());
119 EXPECT_EQ(r3.width(), ir.width());
120 EXPECT_EQ(r3.height(), ir.height());
124 TEST(RectTest, Union) {
125 static const struct Test {
126 int x1; // rect 1
127 int y1;
128 int w1;
129 int h1;
130 int x2; // rect 2
131 int y2;
132 int w2;
133 int h2;
134 int x3; // rect 3: the union of rects 1 and 2
135 int y3;
136 int w3;
137 int h3;
138 } tests[] = {
139 { 0, 0, 0, 0,
140 0, 0, 0, 0,
141 0, 0, 0, 0 },
142 { 0, 0, 4, 4,
143 0, 0, 4, 4,
144 0, 0, 4, 4 },
145 { 0, 0, 4, 4,
146 4, 4, 4, 4,
147 0, 0, 8, 8 },
148 { 0, 0, 4, 4,
149 0, 5, 4, 4,
150 0, 0, 4, 9 },
151 { 0, 0, 2, 2,
152 3, 3, 2, 2,
153 0, 0, 5, 5 },
154 { 3, 3, 2, 2, // reverse r1 and r2 from previous test
155 0, 0, 2, 2,
156 0, 0, 5, 5 },
157 { 0, 0, 0, 0, // union with empty rect
158 2, 2, 2, 2,
159 2, 2, 2, 2 }
161 for (size_t i = 0; i < arraysize(tests); ++i) {
162 Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
163 Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
164 Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
165 Rect u = UnionRects(r1, r2);
166 EXPECT_EQ(r3.x(), u.x());
167 EXPECT_EQ(r3.y(), u.y());
168 EXPECT_EQ(r3.width(), u.width());
169 EXPECT_EQ(r3.height(), u.height());
173 TEST(RectTest, Equals) {
174 ASSERT_TRUE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 0));
175 ASSERT_TRUE(Rect(1, 2, 3, 4) == Rect(1, 2, 3, 4));
176 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 1));
177 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 1, 0));
178 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 1, 0, 0));
179 ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(1, 0, 0, 0));
182 TEST(RectTest, AdjustToFit) {
183 static const struct Test {
184 int x1; // source
185 int y1;
186 int w1;
187 int h1;
188 int x2; // target
189 int y2;
190 int w2;
191 int h2;
192 int x3; // rect 3: results of invoking AdjustToFit
193 int y3;
194 int w3;
195 int h3;
196 } tests[] = {
197 { 0, 0, 2, 2,
198 0, 0, 2, 2,
199 0, 0, 2, 2 },
200 { 2, 2, 3, 3,
201 0, 0, 4, 4,
202 1, 1, 3, 3 },
203 { -1, -1, 5, 5,
204 0, 0, 4, 4,
205 0, 0, 4, 4 },
206 { 2, 2, 4, 4,
207 0, 0, 3, 3,
208 0, 0, 3, 3 },
209 { 2, 2, 1, 1,
210 0, 0, 3, 3,
211 2, 2, 1, 1 }
213 for (size_t i = 0; i < arraysize(tests); ++i) {
214 Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
215 Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
216 Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
217 Rect u = r1;
218 u.AdjustToFit(r2);
219 EXPECT_EQ(r3.x(), u.x());
220 EXPECT_EQ(r3.y(), u.y());
221 EXPECT_EQ(r3.width(), u.width());
222 EXPECT_EQ(r3.height(), u.height());
226 TEST(RectTest, Subtract) {
227 Rect result;
229 // Matching
230 result = Rect(10, 10, 20, 20);
231 result.Subtract(Rect(10, 10, 20, 20));
232 EXPECT_EQ(Rect(0, 0, 0, 0), result);
234 // Contains
235 result = Rect(10, 10, 20, 20);
236 result.Subtract(Rect(5, 5, 30, 30));
237 EXPECT_EQ(Rect(0, 0, 0, 0), result);
239 // No intersection
240 result = Rect(10, 10, 20, 20);
241 result.Subtract(Rect(30, 30, 30, 30));
242 EXPECT_EQ(Rect(10, 10, 20, 20), result);
244 // Not a complete intersection in either direction
245 result = Rect(10, 10, 20, 20);
246 result.Subtract(Rect(15, 15, 20, 20));
247 EXPECT_EQ(Rect(10, 10, 20, 20), result);
249 // Complete intersection in the x-direction, top edge is fully covered.
250 result = Rect(10, 10, 20, 20);
251 result.Subtract(Rect(10, 15, 20, 20));
252 EXPECT_EQ(Rect(10, 10, 20, 5), result);
254 // Complete intersection in the x-direction, top edge is fully covered.
255 result = Rect(10, 10, 20, 20);
256 result.Subtract(Rect(5, 15, 30, 20));
257 EXPECT_EQ(Rect(10, 10, 20, 5), result);
259 // Complete intersection in the x-direction, bottom edge is fully covered.
260 result = Rect(10, 10, 20, 20);
261 result.Subtract(Rect(5, 5, 30, 20));
262 EXPECT_EQ(Rect(10, 25, 20, 5), result);
264 // Complete intersection in the x-direction, none of the edges is fully
265 // covered.
266 result = Rect(10, 10, 20, 20);
267 result.Subtract(Rect(5, 15, 30, 1));
268 EXPECT_EQ(Rect(10, 10, 20, 20), result);
270 // Complete intersection in the y-direction, left edge is fully covered.
271 result = Rect(10, 10, 20, 20);
272 result.Subtract(Rect(10, 10, 10, 30));
273 EXPECT_EQ(Rect(20, 10, 10, 20), result);
275 // Complete intersection in the y-direction, left edge is fully covered.
276 result = Rect(10, 10, 20, 20);
277 result.Subtract(Rect(5, 5, 20, 30));
278 EXPECT_EQ(Rect(25, 10, 5, 20), result);
280 // Complete intersection in the y-direction, right edge is fully covered.
281 result = Rect(10, 10, 20, 20);
282 result.Subtract(Rect(20, 5, 20, 30));
283 EXPECT_EQ(Rect(10, 10, 10, 20), result);
285 // Complete intersection in the y-direction, none of the edges is fully
286 // covered.
287 result = Rect(10, 10, 20, 20);
288 result.Subtract(Rect(15, 5, 1, 30));
289 EXPECT_EQ(Rect(10, 10, 20, 20), result);
292 TEST(RectTest, IsEmpty) {
293 EXPECT_TRUE(Rect(0, 0, 0, 0).IsEmpty());
294 EXPECT_TRUE(Rect(0, 0, 0, 0).size().IsEmpty());
295 EXPECT_TRUE(Rect(0, 0, 10, 0).IsEmpty());
296 EXPECT_TRUE(Rect(0, 0, 10, 0).size().IsEmpty());
297 EXPECT_TRUE(Rect(0, 0, 0, 10).IsEmpty());
298 EXPECT_TRUE(Rect(0, 0, 0, 10).size().IsEmpty());
299 EXPECT_FALSE(Rect(0, 0, 10, 10).IsEmpty());
300 EXPECT_FALSE(Rect(0, 0, 10, 10).size().IsEmpty());
303 TEST(RectTest, SplitVertically) {
304 Rect left_half, right_half;
306 // Splitting when origin is (0, 0).
307 Rect(0, 0, 20, 20).SplitVertically(&left_half, &right_half);
308 EXPECT_TRUE(left_half == Rect(0, 0, 10, 20));
309 EXPECT_TRUE(right_half == Rect(10, 0, 10, 20));
311 // Splitting when origin is arbitrary.
312 Rect(10, 10, 20, 10).SplitVertically(&left_half, &right_half);
313 EXPECT_TRUE(left_half == Rect(10, 10, 10, 10));
314 EXPECT_TRUE(right_half == Rect(20, 10, 10, 10));
316 // Splitting a rectangle of zero width.
317 Rect(10, 10, 0, 10).SplitVertically(&left_half, &right_half);
318 EXPECT_TRUE(left_half == Rect(10, 10, 0, 10));
319 EXPECT_TRUE(right_half == Rect(10, 10, 0, 10));
321 // Splitting a rectangle of odd width.
322 Rect(10, 10, 5, 10).SplitVertically(&left_half, &right_half);
323 EXPECT_TRUE(left_half == Rect(10, 10, 2, 10));
324 EXPECT_TRUE(right_half == Rect(12, 10, 3, 10));
327 TEST(RectTest, CenterPoint) {
328 Point center;
330 // When origin is (0, 0).
331 center = Rect(0, 0, 20, 20).CenterPoint();
332 EXPECT_TRUE(center == Point(10, 10));
334 // When origin is even.
335 center = Rect(10, 10, 20, 20).CenterPoint();
336 EXPECT_TRUE(center == Point(20, 20));
338 // When origin is odd.
339 center = Rect(11, 11, 20, 20).CenterPoint();
340 EXPECT_TRUE(center == Point(21, 21));
342 // When 0 width or height.
343 center = Rect(10, 10, 0, 20).CenterPoint();
344 EXPECT_TRUE(center == Point(10, 20));
345 center = Rect(10, 10, 20, 0).CenterPoint();
346 EXPECT_TRUE(center == Point(20, 10));
348 // When an odd size.
349 center = Rect(10, 10, 21, 21).CenterPoint();
350 EXPECT_TRUE(center == Point(20, 20));
352 // When an odd size and position.
353 center = Rect(11, 11, 21, 21).CenterPoint();
354 EXPECT_TRUE(center == Point(21, 21));
357 TEST(RectTest, CenterPointF) {
358 PointF center;
360 // When origin is (0, 0).
361 center = RectF(0, 0, 20, 20).CenterPoint();
362 EXPECT_TRUE(center == PointF(10, 10));
364 // When origin is even.
365 center = RectF(10, 10, 20, 20).CenterPoint();
366 EXPECT_TRUE(center == PointF(20, 20));
368 // When origin is odd.
369 center = RectF(11, 11, 20, 20).CenterPoint();
370 EXPECT_TRUE(center == PointF(21, 21));
372 // When 0 width or height.
373 center = RectF(10, 10, 0, 20).CenterPoint();
374 EXPECT_TRUE(center == PointF(10, 20));
375 center = RectF(10, 10, 20, 0).CenterPoint();
376 EXPECT_TRUE(center == PointF(20, 10));
378 // When an odd size.
379 center = RectF(10, 10, 21, 21).CenterPoint();
380 EXPECT_TRUE(center == PointF(20.5f, 20.5f));
382 // When an odd size and position.
383 center = RectF(11, 11, 21, 21).CenterPoint();
384 EXPECT_TRUE(center == PointF(21.5f, 21.5f));
387 TEST(RectTest, SharesEdgeWith) {
388 Rect r(2, 3, 4, 5);
390 // Must be non-overlapping
391 EXPECT_FALSE(r.SharesEdgeWith(r));
393 Rect just_above(2, 1, 4, 2);
394 Rect just_below(2, 8, 4, 2);
395 Rect just_left(0, 3, 2, 5);
396 Rect just_right(6, 3, 2, 5);
398 EXPECT_TRUE(r.SharesEdgeWith(just_above));
399 EXPECT_TRUE(r.SharesEdgeWith(just_below));
400 EXPECT_TRUE(r.SharesEdgeWith(just_left));
401 EXPECT_TRUE(r.SharesEdgeWith(just_right));
403 // Wrong placement
404 Rect same_height_no_edge(0, 0, 1, 5);
405 Rect same_width_no_edge(0, 0, 4, 1);
407 EXPECT_FALSE(r.SharesEdgeWith(same_height_no_edge));
408 EXPECT_FALSE(r.SharesEdgeWith(same_width_no_edge));
410 Rect just_above_no_edge(2, 1, 5, 2); // too wide
411 Rect just_below_no_edge(2, 8, 3, 2); // too narrow
412 Rect just_left_no_edge(0, 3, 2, 6); // too tall
413 Rect just_right_no_edge(6, 3, 2, 4); // too short
415 EXPECT_FALSE(r.SharesEdgeWith(just_above_no_edge));
416 EXPECT_FALSE(r.SharesEdgeWith(just_below_no_edge));
417 EXPECT_FALSE(r.SharesEdgeWith(just_left_no_edge));
418 EXPECT_FALSE(r.SharesEdgeWith(just_right_no_edge));
421 // Similar to EXPECT_FLOAT_EQ, but lets NaN equal NaN
422 #define EXPECT_FLOAT_AND_NAN_EQ(a, b) \
423 { if (a == a || b == b) { EXPECT_FLOAT_EQ(a, b); } }
425 TEST(RectTest, ScaleRect) {
426 static const struct Test {
427 int x1; // source
428 int y1;
429 int w1;
430 int h1;
431 float scale;
432 float x2; // target
433 float y2;
434 float w2;
435 float h2;
436 } tests[] = {
437 { 3, 3, 3, 3,
438 1.5f,
439 4.5f, 4.5f, 4.5f, 4.5f },
440 { 3, 3, 3, 3,
441 0.0f,
442 0.0f, 0.0f, 0.0f, 0.0f },
443 { 3, 3, 3, 3,
444 std::numeric_limits<float>::quiet_NaN(),
445 std::numeric_limits<float>::quiet_NaN(),
446 std::numeric_limits<float>::quiet_NaN(),
447 std::numeric_limits<float>::quiet_NaN(),
448 std::numeric_limits<float>::quiet_NaN() },
449 { 3, 3, 3, 3,
450 std::numeric_limits<float>::max(),
451 std::numeric_limits<float>::max(),
452 std::numeric_limits<float>::max(),
453 std::numeric_limits<float>::max(),
454 std::numeric_limits<float>::max() }
457 for (size_t i = 0; i < arraysize(tests); ++i) {
458 Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
459 RectF r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
461 RectF scaled = ScaleRect(r1, tests[i].scale);
462 EXPECT_FLOAT_AND_NAN_EQ(r2.x(), scaled.x());
463 EXPECT_FLOAT_AND_NAN_EQ(r2.y(), scaled.y());
464 EXPECT_FLOAT_AND_NAN_EQ(r2.width(), scaled.width());
465 EXPECT_FLOAT_AND_NAN_EQ(r2.height(), scaled.height());
469 TEST(RectTest, ToEnclosedRect) {
470 static const struct Test {
471 float x1; // source
472 float y1;
473 float w1;
474 float h1;
475 int x2; // target
476 int y2;
477 int w2;
478 int h2;
479 } tests [] = {
480 { 0.0f, 0.0f, 0.0f, 0.0f,
481 0, 0, 0, 0 },
482 { -1.5f, -1.5f, 3.0f, 3.0f,
483 -1, -1, 2, 2 },
484 { -1.5f, -1.5f, 3.5f, 3.5f,
485 -1, -1, 3, 3 },
486 { std::numeric_limits<float>::max(),
487 std::numeric_limits<float>::max(),
488 2.0f, 2.0f,
489 std::numeric_limits<int>::max(),
490 std::numeric_limits<int>::max(),
491 0, 0 },
492 { 0.0f, 0.0f,
493 std::numeric_limits<float>::max(),
494 std::numeric_limits<float>::max(),
495 0, 0,
496 std::numeric_limits<int>::max(),
497 std::numeric_limits<int>::max() },
498 { 20000.5f, 20000.5f, 0.5f, 0.5f,
499 20001, 20001, 0, 0 },
502 for (size_t i = 0; i < arraysize(tests); ++i) {
503 RectF r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
504 Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
506 Rect enclosed = ToEnclosedRect(r1);
507 EXPECT_FLOAT_AND_NAN_EQ(r2.x(), enclosed.x());
508 EXPECT_FLOAT_AND_NAN_EQ(r2.y(), enclosed.y());
509 EXPECT_FLOAT_AND_NAN_EQ(r2.width(), enclosed.width());
510 EXPECT_FLOAT_AND_NAN_EQ(r2.height(), enclosed.height());
514 TEST(RectTest, ToEnclosingRect) {
515 static const struct Test {
516 float x1; // source
517 float y1;
518 float w1;
519 float h1;
520 int x2; // target
521 int y2;
522 int w2;
523 int h2;
524 } tests [] = {
525 { 0.0f, 0.0f, 0.0f, 0.0f,
526 0, 0, 0, 0 },
527 { 5.5f, 5.5f, 0.0f, 0.0f,
528 5, 5, 0, 0 },
529 { -1.5f, -1.5f, 3.0f, 3.0f,
530 -2, -2, 4, 4 },
531 { -1.5f, -1.5f, 3.5f, 3.5f,
532 -2, -2, 4, 4 },
533 { std::numeric_limits<float>::max(),
534 std::numeric_limits<float>::max(),
535 2.0f, 2.0f,
536 std::numeric_limits<int>::max(),
537 std::numeric_limits<int>::max(),
538 0, 0 },
539 { 0.0f, 0.0f,
540 std::numeric_limits<float>::max(),
541 std::numeric_limits<float>::max(),
542 0, 0,
543 std::numeric_limits<int>::max(),
544 std::numeric_limits<int>::max() },
545 { 20000.5f, 20000.5f, 0.5f, 0.5f,
546 20000, 20000, 1, 1 },
549 for (size_t i = 0; i < arraysize(tests); ++i) {
550 RectF r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
551 Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
553 Rect enclosed = ToEnclosingRect(r1);
554 EXPECT_FLOAT_AND_NAN_EQ(r2.x(), enclosed.x());
555 EXPECT_FLOAT_AND_NAN_EQ(r2.y(), enclosed.y());
556 EXPECT_FLOAT_AND_NAN_EQ(r2.width(), enclosed.width());
557 EXPECT_FLOAT_AND_NAN_EQ(r2.height(), enclosed.height());
561 TEST(RectTest, ToNearestRect) {
562 Rect rect;
563 EXPECT_EQ(rect, ToNearestRect(RectF(rect)));
565 rect = Rect(-1, -1, 3, 3);
566 EXPECT_EQ(rect, ToNearestRect(RectF(rect)));
568 RectF rectf(-1.00001f, -0.999999f, 3.0000001f, 2.999999f);
569 EXPECT_EQ(rect, ToNearestRect(rectf));
572 TEST(RectTest, ToFlooredRect) {
573 static const struct Test {
574 float x1; // source
575 float y1;
576 float w1;
577 float h1;
578 int x2; // target
579 int y2;
580 int w2;
581 int h2;
582 } tests [] = {
583 { 0.0f, 0.0f, 0.0f, 0.0f,
584 0, 0, 0, 0 },
585 { -1.5f, -1.5f, 3.0f, 3.0f,
586 -2, -2, 3, 3 },
587 { -1.5f, -1.5f, 3.5f, 3.5f,
588 -2, -2, 3, 3 },
589 { 20000.5f, 20000.5f, 0.5f, 0.5f,
590 20000, 20000, 0, 0 },
593 for (size_t i = 0; i < arraysize(tests); ++i) {
594 RectF r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
595 Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
597 Rect floored = ToFlooredRectDeprecated(r1);
598 EXPECT_FLOAT_EQ(r2.x(), floored.x());
599 EXPECT_FLOAT_EQ(r2.y(), floored.y());
600 EXPECT_FLOAT_EQ(r2.width(), floored.width());
601 EXPECT_FLOAT_EQ(r2.height(), floored.height());
605 TEST(RectTest, ScaleToEnclosedRect) {
606 static const struct Test {
607 Rect input_rect;
608 float input_scale;
609 Rect expected_rect;
610 } tests[] = {
612 Rect(),
613 5.f,
614 Rect(),
615 }, {
616 Rect(1, 1, 1, 1),
617 5.f,
618 Rect(5, 5, 5, 5),
619 }, {
620 Rect(-1, -1, 0, 0),
621 5.f,
622 Rect(-5, -5, 0, 0),
623 }, {
624 Rect(1, -1, 0, 1),
625 5.f,
626 Rect(5, -5, 0, 5),
627 }, {
628 Rect(-1, 1, 1, 0),
629 5.f,
630 Rect(-5, 5, 5, 0),
631 }, {
632 Rect(1, 2, 3, 4),
633 1.5f,
634 Rect(2, 3, 4, 6),
635 }, {
636 Rect(-1, -2, 0, 0),
637 1.5f,
638 Rect(-1, -3, 0, 0),
642 for (size_t i = 0; i < arraysize(tests); ++i) {
643 Rect result = ScaleToEnclosedRect(tests[i].input_rect,
644 tests[i].input_scale);
645 EXPECT_EQ(tests[i].expected_rect, result);
649 TEST(RectTest, ScaleToEnclosingRect) {
650 static const struct Test {
651 Rect input_rect;
652 float input_scale;
653 Rect expected_rect;
654 } tests[] = {
656 Rect(),
657 5.f,
658 Rect(),
659 }, {
660 Rect(1, 1, 1, 1),
661 5.f,
662 Rect(5, 5, 5, 5),
663 }, {
664 Rect(-1, -1, 0, 0),
665 5.f,
666 Rect(-5, -5, 0, 0),
667 }, {
668 Rect(1, -1, 0, 1),
669 5.f,
670 Rect(5, -5, 0, 5),
671 }, {
672 Rect(-1, 1, 1, 0),
673 5.f,
674 Rect(-5, 5, 5, 0),
675 }, {
676 Rect(1, 2, 3, 4),
677 1.5f,
678 Rect(1, 3, 5, 6),
679 }, {
680 Rect(-1, -2, 0, 0),
681 1.5f,
682 Rect(-2, -3, 0, 0),
686 for (size_t i = 0; i < arraysize(tests); ++i) {
687 Rect result = ScaleToEnclosingRect(tests[i].input_rect,
688 tests[i].input_scale);
689 EXPECT_EQ(tests[i].expected_rect, result);
693 #if defined(OS_WIN)
694 TEST(RectTest, ConstructAndAssign) {
695 const RECT rect_1 = { 0, 0, 10, 10 };
696 const RECT rect_2 = { 0, 0, -10, -10 };
697 Rect test1(rect_1);
698 Rect test2(rect_2);
700 #endif
702 TEST(RectTest, ToRectF) {
703 // Check that implicit conversion from integer to float compiles.
704 Rect a(10, 20, 30, 40);
705 RectF b(10, 20, 30, 40);
707 RectF intersect = IntersectRects(a, b);
708 EXPECT_EQ(b, intersect);
710 EXPECT_EQ(a, b);
711 EXPECT_EQ(b, a);
714 TEST(RectTest, BoundingRect) {
715 struct {
716 Point a;
717 Point b;
718 Rect expected;
719 } int_tests[] = {
720 // If point B dominates A, then A should be the origin.
721 { Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) },
722 { Point(4, 6), Point(8, 6), Rect(4, 6, 4, 0) },
723 { Point(4, 6), Point(4, 9), Rect(4, 6, 0, 3) },
724 { Point(4, 6), Point(8, 9), Rect(4, 6, 4, 3) },
725 // If point A dominates B, then B should be the origin.
726 { Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) },
727 { Point(8, 6), Point(4, 6), Rect(4, 6, 4, 0) },
728 { Point(4, 9), Point(4, 6), Rect(4, 6, 0, 3) },
729 { Point(8, 9), Point(4, 6), Rect(4, 6, 4, 3) },
730 // If neither point dominates, then the origin is a combination of the two.
731 { Point(4, 6), Point(6, 4), Rect(4, 4, 2, 2) },
732 { Point(-4, -6), Point(-6, -4), Rect(-6, -6, 2, 2) },
733 { Point(-4, 6), Point(6, -4), Rect(-4, -4, 10, 10) },
736 for (size_t i = 0; i < arraysize(int_tests); ++i) {
737 Rect actual = BoundingRect(int_tests[i].a, int_tests[i].b);
738 EXPECT_EQ(int_tests[i].expected, actual);
741 struct {
742 PointF a;
743 PointF b;
744 RectF expected;
745 } float_tests[] = {
746 // If point B dominates A, then A should be the origin.
747 { PointF(4.2f, 6.8f), PointF(4.2f, 6.8f),
748 RectF(4.2f, 6.8f, 0, 0) },
749 { PointF(4.2f, 6.8f), PointF(8.5f, 6.8f),
750 RectF(4.2f, 6.8f, 4.3f, 0) },
751 { PointF(4.2f, 6.8f), PointF(4.2f, 9.3f),
752 RectF(4.2f, 6.8f, 0, 2.5f) },
753 { PointF(4.2f, 6.8f), PointF(8.5f, 9.3f),
754 RectF(4.2f, 6.8f, 4.3f, 2.5f) },
755 // If point A dominates B, then B should be the origin.
756 { PointF(4.2f, 6.8f), PointF(4.2f, 6.8f),
757 RectF(4.2f, 6.8f, 0, 0) },
758 { PointF(8.5f, 6.8f), PointF(4.2f, 6.8f),
759 RectF(4.2f, 6.8f, 4.3f, 0) },
760 { PointF(4.2f, 9.3f), PointF(4.2f, 6.8f),
761 RectF(4.2f, 6.8f, 0, 2.5f) },
762 { PointF(8.5f, 9.3f), PointF(4.2f, 6.8f),
763 RectF(4.2f, 6.8f, 4.3f, 2.5f) },
764 // If neither point dominates, then the origin is a combination of the two.
765 { PointF(4.2f, 6.8f), PointF(6.8f, 4.2f),
766 RectF(4.2f, 4.2f, 2.6f, 2.6f) },
767 { PointF(-4.2f, -6.8f), PointF(-6.8f, -4.2f),
768 RectF(-6.8f, -6.8f, 2.6f, 2.6f) },
769 { PointF(-4.2f, 6.8f), PointF(6.8f, -4.2f),
770 RectF(-4.2f, -4.2f, 11.0f, 11.0f) }
773 for (size_t i = 0; i < arraysize(float_tests); ++i) {
774 RectF actual = BoundingRect(float_tests[i].a, float_tests[i].b);
775 EXPECT_RECTF_EQ(float_tests[i].expected, actual);
779 TEST(RectTest, IsExpressibleAsRect) {
780 EXPECT_TRUE(RectF().IsExpressibleAsRect());
782 float min = std::numeric_limits<int>::min();
783 float max = std::numeric_limits<int>::max();
784 float infinity = std::numeric_limits<float>::infinity();
786 EXPECT_TRUE(RectF(
787 min + 200, min + 200, max - 200, max - 200).IsExpressibleAsRect());
788 EXPECT_FALSE(RectF(
789 min - 200, min + 200, max + 200, max + 200).IsExpressibleAsRect());
790 EXPECT_FALSE(RectF(
791 min + 200 , min - 200, max + 200, max + 200).IsExpressibleAsRect());
792 EXPECT_FALSE(RectF(
793 min + 200, min + 200, max + 200, max - 200).IsExpressibleAsRect());
794 EXPECT_FALSE(RectF(
795 min + 200, min + 200, max - 200, max + 200).IsExpressibleAsRect());
797 EXPECT_TRUE(RectF(0, 0, max - 200, max - 200).IsExpressibleAsRect());
798 EXPECT_FALSE(RectF(200, 0, max + 200, max - 200).IsExpressibleAsRect());
799 EXPECT_FALSE(RectF(0, 200, max - 200, max + 200).IsExpressibleAsRect());
800 EXPECT_FALSE(RectF(0, 0, max + 200, max - 200).IsExpressibleAsRect());
801 EXPECT_FALSE(RectF(0, 0, max - 200, max + 200).IsExpressibleAsRect());
803 EXPECT_FALSE(RectF(infinity, 0, 1, 1).IsExpressibleAsRect());
804 EXPECT_FALSE(RectF(0, infinity, 1, 1).IsExpressibleAsRect());
805 EXPECT_FALSE(RectF(0, 0, infinity, 1).IsExpressibleAsRect());
806 EXPECT_FALSE(RectF(0, 0, 1, infinity).IsExpressibleAsRect());
809 TEST(RectTest, Offset) {
810 Rect i(1, 2, 3, 4);
812 EXPECT_EQ(Rect(2, 1, 3, 4), (i + Vector2d(1, -1)));
813 EXPECT_EQ(Rect(2, 1, 3, 4), (Vector2d(1, -1) + i));
814 i += Vector2d(1, -1);
815 EXPECT_EQ(Rect(2, 1, 3, 4), i);
816 EXPECT_EQ(Rect(1, 2, 3, 4), (i - Vector2d(1, -1)));
817 i -= Vector2d(1, -1);
818 EXPECT_EQ(Rect(1, 2, 3, 4), i);
820 RectF f(1.1f, 2.2f, 3.3f, 4.4f);
821 EXPECT_EQ(RectF(2.2f, 1.1f, 3.3f, 4.4f), (f + Vector2dF(1.1f, -1.1f)));
822 EXPECT_EQ(RectF(2.2f, 1.1f, 3.3f, 4.4f), (Vector2dF(1.1f, -1.1f) + f));
823 f += Vector2dF(1.1f, -1.1f);
824 EXPECT_EQ(RectF(2.2f, 1.1f, 3.3f, 4.4f), f);
825 EXPECT_EQ(RectF(1.1f, 2.2f, 3.3f, 4.4f), (f - Vector2dF(1.1f, -1.1f)));
826 f -= Vector2dF(1.1f, -1.1f);
827 EXPECT_EQ(RectF(1.1f, 2.2f, 3.3f, 4.4f), f);
830 TEST(RectTest, Corners) {
831 Rect i(1, 2, 3, 4);
832 RectF f(1.1f, 2.1f, 3.1f, 4.1f);
834 EXPECT_EQ(Point(1, 2), i.origin());
835 EXPECT_EQ(Point(4, 2), i.top_right());
836 EXPECT_EQ(Point(1, 6), i.bottom_left());
837 EXPECT_EQ(Point(4, 6), i.bottom_right());
839 EXPECT_EQ(PointF(1.1f, 2.1f), f.origin());
840 EXPECT_EQ(PointF(4.2f, 2.1f), f.top_right());
841 EXPECT_EQ(PointF(1.1f, 6.2f), f.bottom_left());
842 EXPECT_EQ(PointF(4.2f, 6.2f), f.bottom_right());
845 TEST(RectTest, ManhattanDistanceToPoint) {
846 Rect i(1, 2, 3, 4);
847 EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(1, 2)));
848 EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(4, 6)));
849 EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(2, 4)));
850 EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(0, 0)));
851 EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(2, 0)));
852 EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 0)));
853 EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(5, 4)));
854 EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 8)));
855 EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(3, 8)));
856 EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(0, 7)));
857 EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(0, 3)));
859 RectF f(1.1f, 2.1f, 3.1f, 4.1f);
860 EXPECT_FLOAT_EQ(0.f, f.ManhattanDistanceToPoint(PointF(1.1f, 2.1f)));
861 EXPECT_FLOAT_EQ(0.f, f.ManhattanDistanceToPoint(PointF(4.2f, 6.f)));
862 EXPECT_FLOAT_EQ(0.f, f.ManhattanDistanceToPoint(PointF(2.f, 4.f)));
863 EXPECT_FLOAT_EQ(3.2f, f.ManhattanDistanceToPoint(PointF(0.f, 0.f)));
864 EXPECT_FLOAT_EQ(2.1f, f.ManhattanDistanceToPoint(PointF(2.f, 0.f)));
865 EXPECT_FLOAT_EQ(2.9f, f.ManhattanDistanceToPoint(PointF(5.f, 0.f)));
866 EXPECT_FLOAT_EQ(.8f, f.ManhattanDistanceToPoint(PointF(5.f, 4.f)));
867 EXPECT_FLOAT_EQ(2.6f, f.ManhattanDistanceToPoint(PointF(5.f, 8.f)));
868 EXPECT_FLOAT_EQ(1.8f, f.ManhattanDistanceToPoint(PointF(3.f, 8.f)));
869 EXPECT_FLOAT_EQ(1.9f, f.ManhattanDistanceToPoint(PointF(0.f, 7.f)));
870 EXPECT_FLOAT_EQ(1.1f, f.ManhattanDistanceToPoint(PointF(0.f, 3.f)));
873 TEST(RectTest, ManhattanInternalDistance) {
874 Rect i(0, 0, 400, 400);
875 EXPECT_EQ(0, i.ManhattanInternalDistance(gfx::Rect(-1, 0, 2, 1)));
876 EXPECT_EQ(1, i.ManhattanInternalDistance(gfx::Rect(400, 0, 1, 400)));
877 EXPECT_EQ(2, i.ManhattanInternalDistance(gfx::Rect(-100, -100, 100, 100)));
878 EXPECT_EQ(2, i.ManhattanInternalDistance(gfx::Rect(-101, 100, 100, 100)));
879 EXPECT_EQ(4, i.ManhattanInternalDistance(gfx::Rect(-101, -101, 100, 100)));
880 EXPECT_EQ(435, i.ManhattanInternalDistance(gfx::Rect(630, 603, 100, 100)));
882 RectF f(0.0f, 0.0f, 400.0f, 400.0f);
883 static const float kEpsilon = std::numeric_limits<float>::epsilon();
885 EXPECT_FLOAT_EQ(
886 0.0f, f.ManhattanInternalDistance(gfx::RectF(-1.0f, 0.0f, 2.0f, 1.0f)));
887 EXPECT_FLOAT_EQ(
888 kEpsilon,
889 f.ManhattanInternalDistance(gfx::RectF(400.0f, 0.0f, 1.0f, 400.0f)));
890 EXPECT_FLOAT_EQ(2.0f * kEpsilon,
891 f.ManhattanInternalDistance(
892 gfx::RectF(-100.0f, -100.0f, 100.0f, 100.0f)));
893 EXPECT_FLOAT_EQ(
894 1.0f + kEpsilon,
895 f.ManhattanInternalDistance(gfx::RectF(-101.0f, 100.0f, 100.0f, 100.0f)));
896 EXPECT_FLOAT_EQ(2.0f + 2.0f * kEpsilon,
897 f.ManhattanInternalDistance(
898 gfx::RectF(-101.0f, -101.0f, 100.0f, 100.0f)));
899 EXPECT_FLOAT_EQ(
900 433.0f + 2.0f * kEpsilon,
901 f.ManhattanInternalDistance(gfx::RectF(630.0f, 603.0f, 100.0f, 100.0f)));
903 EXPECT_FLOAT_EQ(
904 0.0f, f.ManhattanInternalDistance(gfx::RectF(-1.0f, 0.0f, 1.1f, 1.0f)));
905 EXPECT_FLOAT_EQ(
906 0.1f + kEpsilon,
907 f.ManhattanInternalDistance(gfx::RectF(-1.5f, 0.0f, 1.4f, 1.0f)));
908 EXPECT_FLOAT_EQ(
909 kEpsilon,
910 f.ManhattanInternalDistance(gfx::RectF(-1.5f, 0.0f, 1.5f, 1.0f)));
913 } // namespace gfx