WebKit roll 109146:109201
[chromium-blink-merge.git] / base / message_loop.cc
blob13b0bb610bf21681610e69bd4a85336bf9476663
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_loop.h"
7 #include <algorithm>
9 #include "base/bind.h"
10 #include "base/compiler_specific.h"
11 #include "base/debug/alias.h"
12 #include "base/debug/trace_event.h"
13 #include "base/lazy_instance.h"
14 #include "base/logging.h"
15 #include "base/memory/scoped_ptr.h"
16 #include "base/message_loop_proxy_impl.h"
17 #include "base/message_pump_default.h"
18 #include "base/metrics/histogram.h"
19 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
20 #include "base/threading/thread_local.h"
21 #include "base/time.h"
22 #include "base/tracked_objects.h"
24 #if defined(OS_MACOSX)
25 #include "base/message_pump_mac.h"
26 #endif
27 #if defined(OS_POSIX)
28 #include "base/message_pump_libevent.h"
29 #endif
30 #if defined(OS_ANDROID)
31 #include "base/message_pump_android.h"
32 #endif
33 #if defined(TOOLKIT_USES_GTK)
34 #include <gdk/gdk.h>
35 #include <gdk/gdkx.h>
36 #endif // defined(OS_POSIX) && !defined(OS_MACOSX)
38 using base::PendingTask;
39 using base::TimeDelta;
40 using base::TimeTicks;
42 namespace {
44 // A lazily created thread local storage for quick access to a thread's message
45 // loop, if one exists. This should be safe and free of static constructors.
46 base::LazyInstance<base::ThreadLocalPointer<MessageLoop> > lazy_tls_ptr =
47 LAZY_INSTANCE_INITIALIZER;
49 // Logical events for Histogram profiling. Run with -message-loop-histogrammer
50 // to get an accounting of messages and actions taken on each thread.
51 const int kTaskRunEvent = 0x1;
52 const int kTimerEvent = 0x2;
54 // Provide range of message IDs for use in histogramming and debug display.
55 const int kLeastNonZeroMessageId = 1;
56 const int kMaxMessageId = 1099;
57 const int kNumberOfDistinctMessagesDisplayed = 1100;
59 // Provide a macro that takes an expression (such as a constant, or macro
60 // constant) and creates a pair to initalize an array of pairs. In this case,
61 // our pair consists of the expressions value, and the "stringized" version
62 // of the expression (i.e., the exrpression put in quotes). For example, if
63 // we have:
64 // #define FOO 2
65 // #define BAR 5
66 // then the following:
67 // VALUE_TO_NUMBER_AND_NAME(FOO + BAR)
68 // will expand to:
69 // {7, "FOO + BAR"}
70 // We use the resulting array as an argument to our histogram, which reads the
71 // number as a bucket identifier, and proceeds to use the corresponding name
72 // in the pair (i.e., the quoted string) when printing out a histogram.
73 #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
75 const base::LinearHistogram::DescriptionPair event_descriptions_[] = {
76 // Provide some pretty print capability in our histogram for our internal
77 // messages.
79 // A few events we handle (kindred to messages), and used to profile actions.
80 VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent)
81 VALUE_TO_NUMBER_AND_NAME(kTimerEvent)
83 {-1, NULL} // The list must be null terminated, per API to histogram.
86 bool enable_histogrammer_ = false;
88 MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = NULL;
90 } // namespace
92 //------------------------------------------------------------------------------
94 #if defined(OS_WIN)
96 // Upon a SEH exception in this thread, it restores the original unhandled
97 // exception filter.
98 static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) {
99 ::SetUnhandledExceptionFilter(old_filter);
100 return EXCEPTION_CONTINUE_SEARCH;
103 // Retrieves a pointer to the current unhandled exception filter. There
104 // is no standalone getter method.
105 static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() {
106 LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL;
107 top_filter = ::SetUnhandledExceptionFilter(0);
108 ::SetUnhandledExceptionFilter(top_filter);
109 return top_filter;
112 #endif // defined(OS_WIN)
114 //------------------------------------------------------------------------------
116 MessageLoop::TaskObserver::TaskObserver() {
119 MessageLoop::TaskObserver::~TaskObserver() {
122 MessageLoop::DestructionObserver::~DestructionObserver() {
125 //------------------------------------------------------------------------------
127 MessageLoop::MessageLoop(Type type)
128 : type_(type),
129 nestable_tasks_allowed_(true),
130 exception_restoration_(false),
131 message_histogram_(NULL),
132 state_(NULL),
133 should_leak_tasks_(true),
134 #ifdef OS_WIN
135 os_modal_loop_(false),
136 #endif // OS_WIN
137 next_sequence_num_(0) {
138 DCHECK(!current()) << "should only have one message loop per thread";
139 lazy_tls_ptr.Pointer()->Set(this);
141 message_loop_proxy_ = new base::MessageLoopProxyImpl();
143 // TODO(rvargas): Get rid of the OS guards.
144 #if defined(OS_WIN)
145 #define MESSAGE_PUMP_UI new base::MessagePumpForUI()
146 #define MESSAGE_PUMP_IO new base::MessagePumpForIO()
147 #elif defined(OS_MACOSX)
148 #define MESSAGE_PUMP_UI base::MessagePumpMac::Create()
149 #define MESSAGE_PUMP_IO new base::MessagePumpLibevent()
150 #elif defined(OS_NACL)
151 // Currently NaCl doesn't have a UI or an IO MessageLoop.
152 // TODO(abarth): Figure out if we need these.
153 #define MESSAGE_PUMP_UI NULL
154 #define MESSAGE_PUMP_IO NULL
155 #elif defined(OS_POSIX) // POSIX but not MACOSX.
156 #define MESSAGE_PUMP_UI new base::MessagePumpForUI()
157 #define MESSAGE_PUMP_IO new base::MessagePumpLibevent()
158 #else
159 #error Not implemented
160 #endif
162 if (type_ == TYPE_UI) {
163 if (message_pump_for_ui_factory_)
164 pump_ = message_pump_for_ui_factory_();
165 else
166 pump_ = MESSAGE_PUMP_UI;
167 } else if (type_ == TYPE_IO) {
168 pump_ = MESSAGE_PUMP_IO;
169 } else {
170 DCHECK_EQ(TYPE_DEFAULT, type_);
171 pump_ = new base::MessagePumpDefault();
175 MessageLoop::~MessageLoop() {
176 DCHECK_EQ(this, current());
178 DCHECK(!state_);
180 // Clean up any unprocessed tasks, but take care: deleting a task could
181 // result in the addition of more tasks (e.g., via DeleteSoon). We set a
182 // limit on the number of times we will allow a deleted task to generate more
183 // tasks. Normally, we should only pass through this loop once or twice. If
184 // we end up hitting the loop limit, then it is probably due to one task that
185 // is being stubborn. Inspect the queues to see who is left.
186 bool did_work;
187 for (int i = 0; i < 100; ++i) {
188 DeletePendingTasks();
189 ReloadWorkQueue();
190 // If we end up with empty queues, then break out of the loop.
191 did_work = DeletePendingTasks();
192 if (!did_work)
193 break;
195 DCHECK(!did_work);
197 // Let interested parties have one last shot at accessing this.
198 FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_,
199 WillDestroyCurrentMessageLoop());
201 // Tell the message_loop_proxy that we are dying.
202 static_cast<base::MessageLoopProxyImpl*>(message_loop_proxy_.get())->
203 WillDestroyCurrentMessageLoop();
204 message_loop_proxy_ = NULL;
206 // OK, now make it so that no one can find us.
207 lazy_tls_ptr.Pointer()->Set(NULL);
209 #if defined(OS_WIN)
210 // If we left the high-resolution timer activated, deactivate it now.
211 // Doing this is not-critical, it is mainly to make sure we track
212 // the high resolution timer activations properly in our unit tests.
213 if (!high_resolution_timer_expiration_.is_null()) {
214 base::Time::ActivateHighResolutionTimer(false);
215 high_resolution_timer_expiration_ = base::TimeTicks();
217 #endif
220 // static
221 MessageLoop* MessageLoop::current() {
222 // TODO(darin): sadly, we cannot enable this yet since people call us even
223 // when they have no intention of using us.
224 // DCHECK(loop) << "Ouch, did you forget to initialize me?";
225 return lazy_tls_ptr.Pointer()->Get();
228 // static
229 void MessageLoop::EnableHistogrammer(bool enable) {
230 enable_histogrammer_ = enable;
233 // static
234 void MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) {
235 DCHECK(!message_pump_for_ui_factory_);
236 message_pump_for_ui_factory_ = factory;
239 void MessageLoop::AddDestructionObserver(
240 DestructionObserver* destruction_observer) {
241 DCHECK_EQ(this, current());
242 destruction_observers_.AddObserver(destruction_observer);
245 void MessageLoop::RemoveDestructionObserver(
246 DestructionObserver* destruction_observer) {
247 DCHECK_EQ(this, current());
248 destruction_observers_.RemoveObserver(destruction_observer);
251 void MessageLoop::PostTask(
252 const tracked_objects::Location& from_here, const base::Closure& task) {
253 DCHECK(!task.is_null()) << from_here.ToString();
254 PendingTask pending_task(from_here, task, CalculateDelayedRuntime(0), true);
255 AddToIncomingQueue(&pending_task);
258 void MessageLoop::PostDelayedTask(
259 const tracked_objects::Location& from_here,
260 const base::Closure& task,
261 int64 delay_ms) {
262 DCHECK(!task.is_null()) << from_here.ToString();
263 PendingTask pending_task(from_here, task,
264 CalculateDelayedRuntime(delay_ms), true);
265 AddToIncomingQueue(&pending_task);
268 void MessageLoop::PostDelayedTask(
269 const tracked_objects::Location& from_here,
270 const base::Closure& task,
271 base::TimeDelta delay) {
272 PostDelayedTask(from_here, task, delay.InMillisecondsRoundedUp());
275 void MessageLoop::PostNonNestableTask(
276 const tracked_objects::Location& from_here, const base::Closure& task) {
277 DCHECK(!task.is_null()) << from_here.ToString();
278 PendingTask pending_task(from_here, task, CalculateDelayedRuntime(0), false);
279 AddToIncomingQueue(&pending_task);
282 void MessageLoop::PostNonNestableDelayedTask(
283 const tracked_objects::Location& from_here, const base::Closure& task,
284 int64 delay_ms) {
285 DCHECK(!task.is_null()) << from_here.ToString();
286 PendingTask pending_task(from_here, task,
287 CalculateDelayedRuntime(delay_ms), false);
288 AddToIncomingQueue(&pending_task);
291 void MessageLoop::PostNonNestableDelayedTask(
292 const tracked_objects::Location& from_here,
293 const base::Closure& task,
294 base::TimeDelta delay) {
295 PostNonNestableDelayedTask(from_here, task, delay.InMillisecondsRoundedUp());
298 void MessageLoop::Run() {
299 AutoRunState save_state(this);
300 RunHandler();
303 void MessageLoop::RunAllPending() {
304 AutoRunState save_state(this);
305 state_->quit_received = true; // Means run until we would otherwise block.
306 RunHandler();
309 void MessageLoop::Quit() {
310 DCHECK_EQ(this, current());
311 if (state_) {
312 state_->quit_received = true;
313 } else {
314 NOTREACHED() << "Must be inside Run to call Quit";
318 void MessageLoop::QuitNow() {
319 DCHECK_EQ(this, current());
320 if (state_) {
321 pump_->Quit();
322 } else {
323 NOTREACHED() << "Must be inside Run to call Quit";
327 static void QuitCurrent() {
328 MessageLoop::current()->Quit();
331 // static
332 base::Closure MessageLoop::QuitClosure() {
333 return base::Bind(&QuitCurrent);
336 void MessageLoop::SetNestableTasksAllowed(bool allowed) {
337 if (nestable_tasks_allowed_ != allowed) {
338 nestable_tasks_allowed_ = allowed;
339 if (!nestable_tasks_allowed_)
340 return;
341 // Start the native pump if we are not already pumping.
342 pump_->ScheduleWork();
346 bool MessageLoop::NestableTasksAllowed() const {
347 return nestable_tasks_allowed_;
350 bool MessageLoop::IsNested() {
351 return state_->run_depth > 1;
354 void MessageLoop::AddTaskObserver(TaskObserver* task_observer) {
355 DCHECK_EQ(this, current());
356 task_observers_.AddObserver(task_observer);
359 void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) {
360 DCHECK_EQ(this, current());
361 task_observers_.RemoveObserver(task_observer);
364 void MessageLoop::AssertIdle() const {
365 // We only check |incoming_queue_|, since we don't want to lock |work_queue_|.
366 base::AutoLock lock(incoming_queue_lock_);
367 DCHECK(incoming_queue_.empty());
370 bool MessageLoop::is_running() const {
371 DCHECK_EQ(this, current());
372 return state_ != NULL;
375 //------------------------------------------------------------------------------
377 // Runs the loop in two different SEH modes:
378 // enable_SEH_restoration_ = false : any unhandled exception goes to the last
379 // one that calls SetUnhandledExceptionFilter().
380 // enable_SEH_restoration_ = true : any unhandled exception goes to the filter
381 // that was existed before the loop was run.
382 void MessageLoop::RunHandler() {
383 #if defined(OS_WIN)
384 if (exception_restoration_) {
385 RunInternalInSEHFrame();
386 return;
388 #endif
390 RunInternal();
393 #if defined(OS_WIN)
394 __declspec(noinline) void MessageLoop::RunInternalInSEHFrame() {
395 LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter();
396 __try {
397 RunInternal();
398 } __except(SEHFilter(current_filter)) {
400 return;
402 #endif
404 void MessageLoop::RunInternal() {
405 DCHECK_EQ(this, current());
407 StartHistogrammer();
409 #if !defined(OS_MACOSX) && !defined(OS_ANDROID)
410 if (state_->dispatcher && type() == TYPE_UI) {
411 static_cast<base::MessagePumpForUI*>(pump_.get())->
412 RunWithDispatcher(this, state_->dispatcher);
413 return;
415 #endif
417 pump_->Run(this);
420 bool MessageLoop::ProcessNextDelayedNonNestableTask() {
421 if (state_->run_depth != 1)
422 return false;
424 if (deferred_non_nestable_work_queue_.empty())
425 return false;
427 PendingTask pending_task = deferred_non_nestable_work_queue_.front();
428 deferred_non_nestable_work_queue_.pop();
430 RunTask(pending_task);
431 return true;
434 void MessageLoop::RunTask(const PendingTask& pending_task) {
435 TRACE_EVENT2("task", "MessageLoop::RunTask",
436 "src_file", pending_task.posted_from.file_name(),
437 "src_func", pending_task.posted_from.function_name());
438 DCHECK(nestable_tasks_allowed_);
439 // Execute the task and assume the worst: It is probably not reentrant.
440 nestable_tasks_allowed_ = false;
442 // Before running the task, store the program counter where it was posted
443 // and deliberately alias it to ensure it is on the stack if the task
444 // crashes. Be careful not to assume that the variable itself will have the
445 // expected value when displayed by the optimizer in an optimized build.
446 // Look at a memory dump of the stack.
447 const void* program_counter =
448 pending_task.posted_from.program_counter();
449 base::debug::Alias(&program_counter);
451 HistogramEvent(kTaskRunEvent);
453 tracked_objects::TrackedTime start_time =
454 tracked_objects::ThreadData::NowForStartOfRun(pending_task.birth_tally);
456 FOR_EACH_OBSERVER(TaskObserver, task_observers_,
457 WillProcessTask(pending_task.time_posted));
458 pending_task.task.Run();
459 FOR_EACH_OBSERVER(TaskObserver, task_observers_,
460 DidProcessTask(pending_task.time_posted));
462 tracked_objects::ThreadData::TallyRunOnNamedThreadIfTracking(pending_task,
463 start_time, tracked_objects::ThreadData::NowForEndOfRun());
465 nestable_tasks_allowed_ = true;
468 bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) {
469 if (pending_task.nestable || state_->run_depth == 1) {
470 RunTask(pending_task);
471 // Show that we ran a task (Note: a new one might arrive as a
472 // consequence!).
473 return true;
476 // We couldn't run the task now because we're in a nested message loop
477 // and the task isn't nestable.
478 deferred_non_nestable_work_queue_.push(pending_task);
479 return false;
482 void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) {
483 // Move to the delayed work queue. Initialize the sequence number
484 // before inserting into the delayed_work_queue_. The sequence number
485 // is used to faciliate FIFO sorting when two tasks have the same
486 // delayed_run_time value.
487 PendingTask new_pending_task(pending_task);
488 new_pending_task.sequence_num = next_sequence_num_++;
489 delayed_work_queue_.push(new_pending_task);
492 void MessageLoop::ReloadWorkQueue() {
493 // We can improve performance of our loading tasks from incoming_queue_ to
494 // work_queue_ by waiting until the last minute (work_queue_ is empty) to
495 // load. That reduces the number of locks-per-task significantly when our
496 // queues get large.
497 if (!work_queue_.empty())
498 return; // Wait till we *really* need to lock and load.
500 // Acquire all we can from the inter-thread queue with one lock acquisition.
502 base::AutoLock lock(incoming_queue_lock_);
503 if (incoming_queue_.empty())
504 return;
505 incoming_queue_.Swap(&work_queue_); // Constant time
506 DCHECK(incoming_queue_.empty());
510 bool MessageLoop::DeletePendingTasks() {
511 bool did_work = !work_queue_.empty();
512 // TODO(darin): Delete all tasks once it is safe to do so.
513 // Until it is totally safe, just do it when running Valgrind.
515 // See http://crbug.com/61131
517 #if defined(USE_HEAPCHECKER)
518 should_leak_tasks_ = false;
519 #else
520 if (RunningOnValgrind())
521 should_leak_tasks_ = false;
522 #endif // defined(OS_POSIX)
523 while (!work_queue_.empty()) {
524 PendingTask pending_task = work_queue_.front();
525 work_queue_.pop();
526 if (!pending_task.delayed_run_time.is_null()) {
527 // We want to delete delayed tasks in the same order in which they would
528 // normally be deleted in case of any funny dependencies between delayed
529 // tasks.
530 AddToDelayedWorkQueue(pending_task);
533 did_work |= !deferred_non_nestable_work_queue_.empty();
534 while (!deferred_non_nestable_work_queue_.empty()) {
535 deferred_non_nestable_work_queue_.pop();
537 did_work |= !delayed_work_queue_.empty();
539 // Historically, we always delete the task regardless of valgrind status. It's
540 // not completely clear why we want to leak them in the loops above. This
541 // code is replicating legacy behavior, and should not be considered
542 // absolutely "correct" behavior. See TODO above about deleting all tasks
543 // when it's safe.
544 should_leak_tasks_ = false;
545 while (!delayed_work_queue_.empty()) {
546 delayed_work_queue_.pop();
548 should_leak_tasks_ = true;
549 return did_work;
552 TimeTicks MessageLoop::CalculateDelayedRuntime(int64 delay_ms) {
553 TimeTicks delayed_run_time;
554 if (delay_ms > 0) {
555 delayed_run_time =
556 TimeTicks::Now() + TimeDelta::FromMilliseconds(delay_ms);
558 #if defined(OS_WIN)
559 if (high_resolution_timer_expiration_.is_null()) {
560 // Windows timers are granular to 15.6ms. If we only set high-res
561 // timers for those under 15.6ms, then a 18ms timer ticks at ~32ms,
562 // which as a percentage is pretty inaccurate. So enable high
563 // res timers for any timer which is within 2x of the granularity.
564 // This is a tradeoff between accuracy and power management.
565 bool needs_high_res_timers =
566 delay_ms < (2 * base::Time::kMinLowResolutionThresholdMs);
567 if (needs_high_res_timers) {
568 if (base::Time::ActivateHighResolutionTimer(true)) {
569 high_resolution_timer_expiration_ = TimeTicks::Now() +
570 TimeDelta::FromMilliseconds(kHighResolutionTimerModeLeaseTimeMs);
574 #endif
575 } else {
576 DCHECK_EQ(delay_ms, 0) << "delay should not be negative";
579 #if defined(OS_WIN)
580 if (!high_resolution_timer_expiration_.is_null()) {
581 if (TimeTicks::Now() > high_resolution_timer_expiration_) {
582 base::Time::ActivateHighResolutionTimer(false);
583 high_resolution_timer_expiration_ = TimeTicks();
586 #endif
588 return delayed_run_time;
591 // Possibly called on a background thread!
592 void MessageLoop::AddToIncomingQueue(PendingTask* pending_task) {
593 // Warning: Don't try to short-circuit, and handle this thread's tasks more
594 // directly, as it could starve handling of foreign threads. Put every task
595 // into this queue.
597 scoped_refptr<base::MessagePump> pump;
599 base::AutoLock locked(incoming_queue_lock_);
601 bool was_empty = incoming_queue_.empty();
602 incoming_queue_.push(*pending_task);
603 pending_task->task.Reset();
604 if (!was_empty)
605 return; // Someone else should have started the sub-pump.
607 pump = pump_;
609 // Since the incoming_queue_ may contain a task that destroys this message
610 // loop, we cannot exit incoming_queue_lock_ until we are done with |this|.
611 // We use a stack-based reference to the message pump so that we can call
612 // ScheduleWork outside of incoming_queue_lock_.
614 pump->ScheduleWork();
617 //------------------------------------------------------------------------------
618 // Method and data for histogramming events and actions taken by each instance
619 // on each thread.
621 void MessageLoop::StartHistogrammer() {
622 if (enable_histogrammer_ && !message_histogram_
623 && base::StatisticsRecorder::IsActive()) {
624 DCHECK(!thread_name_.empty());
625 message_histogram_ = base::LinearHistogram::FactoryGet(
626 "MsgLoop:" + thread_name_,
627 kLeastNonZeroMessageId, kMaxMessageId,
628 kNumberOfDistinctMessagesDisplayed,
629 message_histogram_->kHexRangePrintingFlag);
630 message_histogram_->SetRangeDescriptions(event_descriptions_);
634 void MessageLoop::HistogramEvent(int event) {
635 if (message_histogram_)
636 message_histogram_->Add(event);
639 bool MessageLoop::DoWork() {
640 if (!nestable_tasks_allowed_) {
641 // Task can't be executed right now.
642 return false;
645 for (;;) {
646 ReloadWorkQueue();
647 if (work_queue_.empty())
648 break;
650 // Execute oldest task.
651 do {
652 PendingTask pending_task = work_queue_.front();
653 work_queue_.pop();
654 if (!pending_task.delayed_run_time.is_null()) {
655 AddToDelayedWorkQueue(pending_task);
656 // If we changed the topmost task, then it is time to reschedule.
657 if (delayed_work_queue_.top().task.Equals(pending_task.task))
658 pump_->ScheduleDelayedWork(pending_task.delayed_run_time);
659 } else {
660 if (DeferOrRunPendingTask(pending_task))
661 return true;
663 } while (!work_queue_.empty());
666 // Nothing happened.
667 return false;
670 bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) {
671 if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
672 recent_time_ = *next_delayed_work_time = TimeTicks();
673 return false;
676 // When we "fall behind," there will be a lot of tasks in the delayed work
677 // queue that are ready to run. To increase efficiency when we fall behind,
678 // we will only call Time::Now() intermittently, and then process all tasks
679 // that are ready to run before calling it again. As a result, the more we
680 // fall behind (and have a lot of ready-to-run delayed tasks), the more
681 // efficient we'll be at handling the tasks.
683 TimeTicks next_run_time = delayed_work_queue_.top().delayed_run_time;
684 if (next_run_time > recent_time_) {
685 recent_time_ = TimeTicks::Now(); // Get a better view of Now();
686 if (next_run_time > recent_time_) {
687 *next_delayed_work_time = next_run_time;
688 return false;
692 PendingTask pending_task = delayed_work_queue_.top();
693 delayed_work_queue_.pop();
695 if (!delayed_work_queue_.empty())
696 *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
698 return DeferOrRunPendingTask(pending_task);
701 bool MessageLoop::DoIdleWork() {
702 if (ProcessNextDelayedNonNestableTask())
703 return true;
705 if (state_->quit_received)
706 pump_->Quit();
708 return false;
711 void MessageLoop::DeleteSoonInternal(const tracked_objects::Location& from_here,
712 void(*deleter)(const void*),
713 const void* object) {
714 PostNonNestableTask(from_here, base::Bind(deleter, object));
717 void MessageLoop::ReleaseSoonInternal(
718 const tracked_objects::Location& from_here,
719 void(*releaser)(const void*),
720 const void* object) {
721 PostNonNestableTask(from_here, base::Bind(releaser, object));
724 //------------------------------------------------------------------------------
725 // MessageLoop::AutoRunState
727 MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) {
728 // Make the loop reference us.
729 previous_state_ = loop_->state_;
730 if (previous_state_) {
731 run_depth = previous_state_->run_depth + 1;
732 } else {
733 run_depth = 1;
735 loop_->state_ = this;
737 // Initialize the other fields:
738 quit_received = false;
739 #if !defined(OS_MACOSX) && !defined(OS_ANDROID)
740 dispatcher = NULL;
741 #endif
744 MessageLoop::AutoRunState::~AutoRunState() {
745 loop_->state_ = previous_state_;
748 //------------------------------------------------------------------------------
749 // MessageLoopForUI
751 #if defined(OS_WIN)
752 void MessageLoopForUI::DidProcessMessage(const MSG& message) {
753 pump_win()->DidProcessMessage(message);
755 #endif // defined(OS_WIN)
757 #if defined(OS_ANDROID)
758 void MessageLoopForUI::Start() {
759 // No Histogram support for UI message loop as it is managed by Java side
760 static_cast<base::MessagePumpForUI*>(pump_.get())->Start(this);
762 #endif
764 #if !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(OS_ANDROID)
765 void MessageLoopForUI::AddObserver(Observer* observer) {
766 pump_ui()->AddObserver(observer);
769 void MessageLoopForUI::RemoveObserver(Observer* observer) {
770 pump_ui()->RemoveObserver(observer);
773 void MessageLoopForUI::RunWithDispatcher(Dispatcher* dispatcher) {
774 AutoRunState save_state(this);
775 state_->dispatcher = dispatcher;
776 RunHandler();
779 void MessageLoopForUI::RunAllPendingWithDispatcher(Dispatcher* dispatcher) {
780 AutoRunState save_state(this);
781 state_->dispatcher = dispatcher;
782 state_->quit_received = true; // Means run until we would otherwise block.
783 RunHandler();
786 #endif // !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(OS_ANDROID)
788 //------------------------------------------------------------------------------
789 // MessageLoopForIO
791 #if defined(OS_WIN)
793 void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
794 pump_io()->RegisterIOHandler(file, handler);
797 bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
798 return pump_io()->WaitForIOCompletion(timeout, filter);
801 #elif defined(OS_POSIX) && !defined(OS_NACL)
803 bool MessageLoopForIO::WatchFileDescriptor(int fd,
804 bool persistent,
805 Mode mode,
806 FileDescriptorWatcher *controller,
807 Watcher *delegate) {
808 return pump_libevent()->WatchFileDescriptor(
810 persistent,
811 static_cast<base::MessagePumpLibevent::Mode>(mode),
812 controller,
813 delegate);
816 #endif