1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "url/url_canon_ip.h"
9 #include "base/basictypes.h"
10 #include "base/logging.h"
11 #include "url/url_canon_internal.h"
17 // Converts one of the character types that represent a numerical base to the
18 // corresponding base.
19 int BaseForType(SharedCharTypes type
) {
32 template<typename CHAR
, typename UCHAR
>
33 bool DoFindIPv4Components(const CHAR
* spec
,
34 const url_parse::Component
& host
,
35 url_parse::Component components
[4]) {
36 if (!host
.is_nonempty())
39 int cur_component
= 0; // Index of the component we're working on.
40 int cur_component_begin
= host
.begin
; // Start of the current component.
42 for (int i
= host
.begin
; /* nothing */; i
++) {
43 if (i
>= end
|| spec
[i
] == '.') {
44 // Found the end of the current component.
45 int component_len
= i
- cur_component_begin
;
46 components
[cur_component
] =
47 url_parse::Component(cur_component_begin
, component_len
);
49 // The next component starts after the dot.
50 cur_component_begin
= i
+ 1;
53 // Don't allow empty components (two dots in a row), except we may
54 // allow an empty component at the end (this would indicate that the
55 // input ends in a dot). We also want to error if the component is
56 // empty and it's the only component (cur_component == 1).
57 if (component_len
== 0 && (i
< end
|| cur_component
== 1))
61 break; // End of the input.
63 if (cur_component
== 4) {
64 // Anything else after the 4th component is an error unless it is a
65 // dot that would otherwise be treated as the end of input.
66 if (spec
[i
] == '.' && i
+ 1 == end
)
70 } else if (static_cast<UCHAR
>(spec
[i
]) >= 0x80 ||
71 !IsIPv4Char(static_cast<unsigned char>(spec
[i
]))) {
72 // Invalid character for an IPv4 address.
77 // Fill in any unused components.
78 while (cur_component
< 4)
79 components
[cur_component
++] = url_parse::Component();
83 // Converts an IPv4 component to a 32-bit number, while checking for overflow.
85 // Possible return values:
86 // - IPV4 - The number was valid, and did not overflow.
87 // - BROKEN - The input was numeric, but too large for a 32-bit field.
88 // - NEUTRAL - Input was not numeric.
90 // The input is assumed to be ASCII. FindIPv4Components should have stripped
91 // out any input that is greater than 7 bits. The components are assumed
93 template<typename CHAR
>
94 CanonHostInfo::Family
IPv4ComponentToNumber(
96 const url_parse::Component
& component
,
98 // Figure out the base
100 int base_prefix_len
= 0; // Size of the prefix for this base.
101 if (spec
[component
.begin
] == '0') {
102 // Either hex or dec, or a standalone zero.
103 if (component
.len
== 1) {
105 } else if (spec
[component
.begin
+ 1] == 'X' ||
106 spec
[component
.begin
+ 1] == 'x') {
117 // Extend the prefix to consume all leading zeros.
118 while (base_prefix_len
< component
.len
&&
119 spec
[component
.begin
+ base_prefix_len
] == '0')
122 // Put the component, minus any base prefix, into a NULL-terminated buffer so
123 // we can call the standard library. Because leading zeros have already been
124 // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
126 const int kMaxComponentLen
= 16;
127 char buf
[kMaxComponentLen
+ 1]; // digits + '\0'
129 for (int i
= component
.begin
+ base_prefix_len
; i
< component
.end(); i
++) {
130 // We know the input is 7-bit, so convert to narrow (if this is the wide
131 // version of the template) by casting.
132 char input
= static_cast<char>(spec
[i
]);
134 // Validate that this character is OK for the given base.
135 if (!IsCharOfType(input
, base
))
136 return CanonHostInfo::NEUTRAL
;
138 // Fill the buffer, if there's space remaining. This check allows us to
139 // verify that all characters are numeric, even those that don't fit.
140 if (dest_i
< kMaxComponentLen
)
141 buf
[dest_i
++] = input
;
146 // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
147 // number can overflow a 64-bit number in <= 16 characters).
148 uint64 num
= _strtoui64(buf
, NULL
, BaseForType(base
));
150 // Check for 32-bit overflow.
151 if (num
> kuint32max
)
152 return CanonHostInfo::BROKEN
;
154 // No overflow. Success!
155 *number
= static_cast<uint32
>(num
);
156 return CanonHostInfo::IPV4
;
159 // See declaration of IPv4AddressToNumber for documentation.
160 template<typename CHAR
>
161 CanonHostInfo::Family
DoIPv4AddressToNumber(const CHAR
* spec
,
162 const url_parse::Component
& host
,
163 unsigned char address
[4],
164 int* num_ipv4_components
) {
165 // The identified components. Not all may exist.
166 url_parse::Component components
[4];
167 if (!FindIPv4Components(spec
, host
, components
))
168 return CanonHostInfo::NEUTRAL
;
170 // Convert existing components to digits. Values up to
171 // |existing_components| will be valid.
172 uint32 component_values
[4];
173 int existing_components
= 0;
175 // Set to true if one or more components are BROKEN. BROKEN is only
176 // returned if all components are IPV4 or BROKEN, so, for example,
177 // 12345678912345.de returns NEUTRAL rather than broken.
179 for (int i
= 0; i
< 4; i
++) {
180 if (components
[i
].len
<= 0)
182 CanonHostInfo::Family family
= IPv4ComponentToNumber(
183 spec
, components
[i
], &component_values
[existing_components
]);
185 if (family
== CanonHostInfo::BROKEN
) {
187 } else if (family
!= CanonHostInfo::IPV4
) {
188 // Stop if we hit a non-BROKEN invalid non-empty component.
192 existing_components
++;
196 return CanonHostInfo::BROKEN
;
198 // Use that sequence of numbers to fill out the 4-component IP address.
200 // First, process all components but the last, while making sure each fits
201 // within an 8-bit field.
202 for (int i
= 0; i
< existing_components
- 1; i
++) {
203 if (component_values
[i
] > kuint8max
)
204 return CanonHostInfo::BROKEN
;
205 address
[i
] = static_cast<unsigned char>(component_values
[i
]);
208 // Next, consume the last component to fill in the remaining bytes.
209 uint32 last_value
= component_values
[existing_components
- 1];
210 for (int i
= 3; i
>= existing_components
- 1; i
--) {
211 address
[i
] = static_cast<unsigned char>(last_value
);
215 // If the last component has residual bits, report overflow.
217 return CanonHostInfo::BROKEN
;
219 // Tell the caller how many components we saw.
220 *num_ipv4_components
= existing_components
;
223 return CanonHostInfo::IPV4
;
226 // Return true if we've made a final IPV4/BROKEN decision, false if the result
227 // is NEUTRAL, and we could use a second opinion.
228 template<typename CHAR
, typename UCHAR
>
229 bool DoCanonicalizeIPv4Address(const CHAR
* spec
,
230 const url_parse::Component
& host
,
232 CanonHostInfo
* host_info
) {
233 host_info
->family
= IPv4AddressToNumber(
234 spec
, host
, host_info
->address
, &host_info
->num_ipv4_components
);
236 switch (host_info
->family
) {
237 case CanonHostInfo::IPV4
:
238 // Definitely an IPv4 address.
239 host_info
->out_host
.begin
= output
->length();
240 AppendIPv4Address(host_info
->address
, output
);
241 host_info
->out_host
.len
= output
->length() - host_info
->out_host
.begin
;
243 case CanonHostInfo::BROKEN
:
244 // Definitely broken.
247 // Could be IPv6 or a hostname.
252 // Helper class that describes the main components of an IPv6 input string.
253 // See the following examples to understand how it breaks up an input string:
255 // [Example 1]: input = "[::aa:bb]"
256 // ==> num_hex_components = 2
257 // ==> hex_components[0] = Component(3,2) "aa"
258 // ==> hex_components[1] = Component(6,2) "bb"
259 // ==> index_of_contraction = 0
260 // ==> ipv4_component = Component(0, -1)
262 // [Example 2]: input = "[1:2::3:4:5]"
263 // ==> num_hex_components = 5
264 // ==> hex_components[0] = Component(1,1) "1"
265 // ==> hex_components[1] = Component(3,1) "2"
266 // ==> hex_components[2] = Component(6,1) "3"
267 // ==> hex_components[3] = Component(8,1) "4"
268 // ==> hex_components[4] = Component(10,1) "5"
269 // ==> index_of_contraction = 2
270 // ==> ipv4_component = Component(0, -1)
272 // [Example 3]: input = "[::ffff:192.168.0.1]"
273 // ==> num_hex_components = 1
274 // ==> hex_components[0] = Component(3,4) "ffff"
275 // ==> index_of_contraction = 0
276 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
278 // [Example 4]: input = "[1::]"
279 // ==> num_hex_components = 1
280 // ==> hex_components[0] = Component(1,1) "1"
281 // ==> index_of_contraction = 1
282 // ==> ipv4_component = Component(0, -1)
284 // [Example 5]: input = "[::192.168.0.1]"
285 // ==> num_hex_components = 0
286 // ==> index_of_contraction = 0
287 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
290 // Zero-out the parse information.
292 num_hex_components
= 0;
293 index_of_contraction
= -1;
294 ipv4_component
.reset();
297 // There can be up to 8 hex components (colon separated) in the literal.
298 url_parse::Component hex_components
[8];
300 // The count of hex components present. Ranges from [0,8].
301 int num_hex_components
;
303 // The index of the hex component that the "::" contraction precedes, or
304 // -1 if there is no contraction.
305 int index_of_contraction
;
307 // The range of characters which are an IPv4 literal.
308 url_parse::Component ipv4_component
;
311 // Parse the IPv6 input string. If parsing succeeded returns true and fills
312 // |parsed| with the information. If parsing failed (because the input is
313 // invalid) returns false.
314 template<typename CHAR
, typename UCHAR
>
315 bool DoParseIPv6(const CHAR
* spec
,
316 const url_parse::Component
& host
,
317 IPv6Parsed
* parsed
) {
318 // Zero-out the info.
321 if (!host
.is_nonempty())
324 // The index for start and end of address range (no brackets).
325 int begin
= host
.begin
;
326 int end
= host
.end();
328 int cur_component_begin
= begin
; // Start of the current component.
330 // Scan through the input, searching for hex components, "::" contractions,
331 // and IPv4 components.
332 for (int i
= begin
; /* i <= end */; i
++) {
333 bool is_colon
= spec
[i
] == ':';
334 bool is_contraction
= is_colon
&& i
< end
- 1 && spec
[i
+ 1] == ':';
336 // We reached the end of the current component if we encounter a colon
337 // (separator between hex components, or start of a contraction), or end of
339 if (is_colon
|| i
== end
) {
340 int component_len
= i
- cur_component_begin
;
342 // A component should not have more than 4 hex digits.
343 if (component_len
> 4)
346 // Don't allow empty components.
347 if (component_len
== 0) {
348 // The exception is when contractions appear at beginning of the
349 // input or at the end of the input.
350 if (!((is_contraction
&& i
== begin
) || (i
== end
&&
351 parsed
->index_of_contraction
== parsed
->num_hex_components
)))
355 // Add the hex component we just found to running list.
356 if (component_len
> 0) {
357 // Can't have more than 8 components!
358 if (parsed
->num_hex_components
>= 8)
361 parsed
->hex_components
[parsed
->num_hex_components
++] =
362 url_parse::Component(cur_component_begin
, component_len
);
367 break; // Reached the end of the input, DONE.
369 // We found a "::" contraction.
370 if (is_contraction
) {
371 // There can be at most one contraction in the literal.
372 if (parsed
->index_of_contraction
!= -1)
374 parsed
->index_of_contraction
= parsed
->num_hex_components
;
375 ++i
; // Consume the colon we peeked.
379 // Colons are separators between components, keep track of where the
380 // current component started (after this colon).
381 cur_component_begin
= i
+ 1;
383 if (static_cast<UCHAR
>(spec
[i
]) >= 0x80)
384 return false; // Not ASCII.
386 if (!IsHexChar(static_cast<unsigned char>(spec
[i
]))) {
387 // Regular components are hex numbers. It is also possible for
388 // a component to be an IPv4 address in dotted form.
389 if (IsIPv4Char(static_cast<unsigned char>(spec
[i
]))) {
390 // Since IPv4 address can only appear at the end, assume the rest
391 // of the string is an IPv4 address. (We will parse this separately
393 parsed
->ipv4_component
= url_parse::Component(
394 cur_component_begin
, end
- cur_component_begin
);
397 // The character was neither a hex digit, nor an IPv4 character.
407 // Verifies the parsed IPv6 information, checking that the various components
408 // add up to the right number of bits (hex components are 16 bits, while
409 // embedded IPv4 formats are 32 bits, and contractions are placeholdes for
410 // 16 or more bits). Returns true if sizes match up, false otherwise. On
411 // success writes the length of the contraction (if any) to
412 // |out_num_bytes_of_contraction|.
413 bool CheckIPv6ComponentsSize(const IPv6Parsed
& parsed
,
414 int* out_num_bytes_of_contraction
) {
415 // Each group of four hex digits contributes 16 bits.
416 int num_bytes_without_contraction
= parsed
.num_hex_components
* 2;
418 // If an IPv4 address was embedded at the end, it contributes 32 bits.
419 if (parsed
.ipv4_component
.is_valid())
420 num_bytes_without_contraction
+= 4;
422 // If there was a "::" contraction, its size is going to be:
423 // MAX([16bits], [128bits] - num_bytes_without_contraction).
424 int num_bytes_of_contraction
= 0;
425 if (parsed
.index_of_contraction
!= -1) {
426 num_bytes_of_contraction
= 16 - num_bytes_without_contraction
;
427 if (num_bytes_of_contraction
< 2)
428 num_bytes_of_contraction
= 2;
431 // Check that the numbers add up.
432 if (num_bytes_without_contraction
+ num_bytes_of_contraction
!= 16)
435 *out_num_bytes_of_contraction
= num_bytes_of_contraction
;
439 // Converts a hex comonent into a number. This cannot fail since the caller has
440 // already verified that each character in the string was a hex digit, and
441 // that there were no more than 4 characters.
442 template<typename CHAR
>
443 uint16
IPv6HexComponentToNumber(const CHAR
* spec
,
444 const url_parse::Component
& component
) {
445 DCHECK(component
.len
<= 4);
447 // Copy the hex string into a C-string.
449 for (int i
= 0; i
< component
.len
; ++i
)
450 buf
[i
] = static_cast<char>(spec
[component
.begin
+ i
]);
451 buf
[component
.len
] = '\0';
453 // Convert it to a number (overflow is not possible, since with 4 hex
454 // characters we can at most have a 16 bit number).
455 return static_cast<uint16
>(_strtoui64(buf
, NULL
, 16));
458 // Converts an IPv6 address to a 128-bit number (network byte order), returning
459 // true on success. False means that the input was not a valid IPv6 address.
460 template<typename CHAR
, typename UCHAR
>
461 bool DoIPv6AddressToNumber(const CHAR
* spec
,
462 const url_parse::Component
& host
,
463 unsigned char address
[16]) {
464 // Make sure the component is bounded by '[' and ']'.
465 int end
= host
.end();
466 if (!host
.is_nonempty() || spec
[host
.begin
] != '[' || spec
[end
- 1] != ']')
469 // Exclude the square brackets.
470 url_parse::Component
ipv6_comp(host
.begin
+ 1, host
.len
- 2);
472 // Parse the IPv6 address -- identify where all the colon separated hex
473 // components are, the "::" contraction, and the embedded IPv4 address.
474 IPv6Parsed ipv6_parsed
;
475 if (!DoParseIPv6
<CHAR
, UCHAR
>(spec
, ipv6_comp
, &ipv6_parsed
))
478 // Do some basic size checks to make sure that the address doesn't
479 // specify more than 128 bits or fewer than 128 bits. This also resolves
480 // how may zero bytes the "::" contraction represents.
481 int num_bytes_of_contraction
;
482 if (!CheckIPv6ComponentsSize(ipv6_parsed
, &num_bytes_of_contraction
))
485 int cur_index_in_address
= 0;
487 // Loop through each hex components, and contraction in order.
488 for (int i
= 0; i
<= ipv6_parsed
.num_hex_components
; ++i
) {
489 // Append the contraction if it appears before this component.
490 if (i
== ipv6_parsed
.index_of_contraction
) {
491 for (int j
= 0; j
< num_bytes_of_contraction
; ++j
)
492 address
[cur_index_in_address
++] = 0;
494 // Append the hex component's value.
495 if (i
!= ipv6_parsed
.num_hex_components
) {
496 // Get the 16-bit value for this hex component.
497 uint16 number
= IPv6HexComponentToNumber
<CHAR
>(
498 spec
, ipv6_parsed
.hex_components
[i
]);
499 // Append to |address|, in network byte order.
500 address
[cur_index_in_address
++] = (number
& 0xFF00) >> 8;
501 address
[cur_index_in_address
++] = (number
& 0x00FF);
505 // If there was an IPv4 section, convert it into a 32-bit number and append
507 if (ipv6_parsed
.ipv4_component
.is_valid()) {
508 // Append the 32-bit number to |address|.
509 int ignored_num_ipv4_components
;
510 if (CanonHostInfo::IPV4
!=
511 IPv4AddressToNumber(spec
,
512 ipv6_parsed
.ipv4_component
,
513 &address
[cur_index_in_address
],
514 &ignored_num_ipv4_components
))
521 // Searches for the longest sequence of zeros in |address|, and writes the
522 // range into |contraction_range|. The run of zeros must be at least 16 bits,
523 // and if there is a tie the first is chosen.
524 void ChooseIPv6ContractionRange(const unsigned char address
[16],
525 url_parse::Component
* contraction_range
) {
526 // The longest run of zeros in |address| seen so far.
527 url_parse::Component max_range
;
529 // The current run of zeros in |address| being iterated over.
530 url_parse::Component cur_range
;
532 for (int i
= 0; i
< 16; i
+= 2) {
533 // Test for 16 bits worth of zero.
534 bool is_zero
= (address
[i
] == 0 && address
[i
+ 1] == 0);
537 // Add the zero to the current range (or start a new one).
538 if (!cur_range
.is_valid())
539 cur_range
= url_parse::Component(i
, 0);
543 if (!is_zero
|| i
== 14) {
544 // Just completed a run of zeros. If the run is greater than 16 bits,
545 // it is a candidate for the contraction.
546 if (cur_range
.len
> 2 && cur_range
.len
> max_range
.len
) {
547 max_range
= cur_range
;
552 *contraction_range
= max_range
;
555 // Return true if we've made a final IPV6/BROKEN decision, false if the result
556 // is NEUTRAL, and we could use a second opinion.
557 template<typename CHAR
, typename UCHAR
>
558 bool DoCanonicalizeIPv6Address(const CHAR
* spec
,
559 const url_parse::Component
& host
,
561 CanonHostInfo
* host_info
) {
562 // Turn the IP address into a 128 bit number.
563 if (!IPv6AddressToNumber(spec
, host
, host_info
->address
)) {
564 // If it's not an IPv6 address, scan for characters that should *only*
565 // exist in an IPv6 address.
566 for (int i
= host
.begin
; i
< host
.end(); i
++) {
571 host_info
->family
= CanonHostInfo::BROKEN
;
576 // No invalid characters. Could still be IPv4 or a hostname.
577 host_info
->family
= CanonHostInfo::NEUTRAL
;
581 host_info
->out_host
.begin
= output
->length();
582 output
->push_back('[');
583 AppendIPv6Address(host_info
->address
, output
);
584 output
->push_back(']');
585 host_info
->out_host
.len
= output
->length() - host_info
->out_host
.begin
;
587 host_info
->family
= CanonHostInfo::IPV6
;
593 void AppendIPv4Address(const unsigned char address
[4], CanonOutput
* output
) {
594 for (int i
= 0; i
< 4; i
++) {
596 _itoa_s(address
[i
], str
, 10);
598 for (int ch
= 0; str
[ch
] != 0; ch
++)
599 output
->push_back(str
[ch
]);
602 output
->push_back('.');
606 void AppendIPv6Address(const unsigned char address
[16], CanonOutput
* output
) {
607 // We will output the address according to the rules in:
608 // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
610 // Start by finding where to place the "::" contraction (if any).
611 url_parse::Component contraction_range
;
612 ChooseIPv6ContractionRange(address
, &contraction_range
);
614 for (int i
= 0; i
<= 14;) {
615 // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
617 if (i
== contraction_range
.begin
&& contraction_range
.len
> 0) {
618 // Jump over the contraction.
620 output
->push_back(':');
621 output
->push_back(':');
622 i
= contraction_range
.end();
624 // Consume the next 16 bits from |address|.
625 int x
= address
[i
] << 8 | address
[i
+ 1];
629 // Stringify the 16 bit number (at most requires 4 hex digits).
632 for (int ch
= 0; str
[ch
] != 0; ++ch
)
633 output
->push_back(str
[ch
]);
635 // Put a colon after each number, except the last.
637 output
->push_back(':');
642 bool FindIPv4Components(const char* spec
,
643 const url_parse::Component
& host
,
644 url_parse::Component components
[4]) {
645 return DoFindIPv4Components
<char, unsigned char>(spec
, host
, components
);
648 bool FindIPv4Components(const base::char16
* spec
,
649 const url_parse::Component
& host
,
650 url_parse::Component components
[4]) {
651 return DoFindIPv4Components
<base::char16
, base::char16
>(
652 spec
, host
, components
);
655 void CanonicalizeIPAddress(const char* spec
,
656 const url_parse::Component
& host
,
658 CanonHostInfo
* host_info
) {
659 if (DoCanonicalizeIPv4Address
<char, unsigned char>(
660 spec
, host
, output
, host_info
))
662 if (DoCanonicalizeIPv6Address
<char, unsigned char>(
663 spec
, host
, output
, host_info
))
667 void CanonicalizeIPAddress(const base::char16
* spec
,
668 const url_parse::Component
& host
,
670 CanonHostInfo
* host_info
) {
671 if (DoCanonicalizeIPv4Address
<base::char16
, base::char16
>(
672 spec
, host
, output
, host_info
))
674 if (DoCanonicalizeIPv6Address
<base::char16
, base::char16
>(
675 spec
, host
, output
, host_info
))
679 CanonHostInfo::Family
IPv4AddressToNumber(const char* spec
,
680 const url_parse::Component
& host
,
681 unsigned char address
[4],
682 int* num_ipv4_components
) {
683 return DoIPv4AddressToNumber
<char>(spec
, host
, address
, num_ipv4_components
);
686 CanonHostInfo::Family
IPv4AddressToNumber(const base::char16
* spec
,
687 const url_parse::Component
& host
,
688 unsigned char address
[4],
689 int* num_ipv4_components
) {
690 return DoIPv4AddressToNumber
<base::char16
>(
691 spec
, host
, address
, num_ipv4_components
);
694 bool IPv6AddressToNumber(const char* spec
,
695 const url_parse::Component
& host
,
696 unsigned char address
[16]) {
697 return DoIPv6AddressToNumber
<char, unsigned char>(spec
, host
, address
);
700 bool IPv6AddressToNumber(const base::char16
* spec
,
701 const url_parse::Component
& host
,
702 unsigned char address
[16]) {
703 return DoIPv6AddressToNumber
<base::char16
, base::char16
>(spec
, host
, address
);
706 } // namespace url_canon