1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // The main idea in Courgette is to do patching *under a tranformation*. The
6 // input is transformed into a new representation, patching occurs in the new
7 // repesentation, and then the tranform is reversed to get the patched data.
9 // The idea is applied to pieces (or 'Elements') of the whole (or 'Ensemble').
10 // Each of the elements has to go through the same set of steps in lock-step,
11 // but there may be many different kinds of elements, which have different
14 // This file declares all the main types involved in creating and applying a
15 // patch with this structure.
17 #ifndef COURGETTE_ENSEMBLE_H_
18 #define COURGETTE_ENSEMBLE_H_
23 #include "base/basictypes.h"
25 #include "courgette/courgette.h"
26 #include "courgette/region.h"
27 #include "courgette/streams.h"
31 // Forward declarations:
34 // An Element is a region of an Ensemble with an identifyable kind.
38 Element(ExecutableType kind
,
40 const Region
& region
);
44 ExecutableType
kind() const { return kind_
; }
45 const Region
& region() const { return region_
; }
47 // The name is used only for debugging and logging.
48 virtual std::string
Name() const;
50 // Returns the byte position of this Element relative to the start of
51 // containing Ensemble.
52 size_t offset_in_ensemble() const;
59 DISALLOW_COPY_AND_ASSIGN(Element
);
65 Ensemble(const Region
& region
, const char* name
)
66 : region_(region
), name_(name
) {}
69 const Region
& region() const { return region_
; }
70 const std::string
& name() const { return name_
; }
72 // Scans the region to find Elements within the region().
73 Status
FindEmbeddedElements();
75 // Returns the elements found by 'FindEmbeddedElements'.
76 const std::vector
<Element
*>& elements() const { return elements_
; }
80 Region region_
; // The memory, owned by caller, containing the
82 std::string name_
; // A debugging/logging name for the Ensemble.
84 std::vector
<Element
*> elements_
; // Embedded elements discovered.
85 std::vector
<Element
*> owned_elements_
; // For deallocation.
87 DISALLOW_COPY_AND_ASSIGN(Ensemble
);
90 inline size_t Element::offset_in_ensemble() const {
91 return region().start() - ensemble_
->region().start();
94 // The 'CourgettePatchFile' is class is a 'namespace' for the constants that
95 // appear in a Courgette patch file.
96 struct CourgettePatchFile
{
98 // The Courgette patch format interleaves the data for N embedded Elements.
100 // Format of a patch file:
106 // final-patch-input-size (an allocation hint)
109 // number-of-transformed-elements (N) - varint32
110 // transformation-1-method-id
111 // transformation-2-method-id
113 // transformation-1-initial-parameters
114 // transformation-2-initial-parameters
118 // transformation-1-parameters
119 // transformation-2-parameters
123 // transformed-element-1
124 // transformed-element-2
133 static const uint32 kMagic
= 'C' | ('o' << 8) | ('u' << 16);
135 static const uint32 kVersion
= 20110216;
138 // For any transform you would implement both a TransformationPatcher and a
139 // TransformationPatchGenerator.
141 // TransformationPatcher is the interface which abstracts out the actual
142 // transformation used on an Element. The patching itself happens outside the
143 // actions of a TransformationPatcher. There are four steps.
145 // The first step is an Init step. The parameters to the Init step identify the
146 // element, for example, range of locations within the original ensemble that
147 // correspond to the element.
149 // PredictTransformParameters, explained below.
151 // The two final steps are 'Transform' - to transform the element into a new
152 // representation, and to 'Reform' - to transform from the new representation
153 // back to the original form.
155 // The Transform step takes some parameters. This allows the transform to be
156 // customized to the particular element, or to receive some assistance in the
157 // analysis required to perform the transform. The transform parameters might
158 // be extensive but mostly predicable, so preceeding Transform is a
159 // PredictTransformParameters step.
161 class TransformationPatcher
{
163 virtual ~TransformationPatcher() {}
165 // First step: provides parameters for the patching. This would at a minimum
166 // identify the element within the ensemble being patched.
167 virtual Status
Init(SourceStream
* parameter_stream
) = 0;
169 // Second step: predicts transform parameters.
170 virtual Status
PredictTransformParameters(
171 SinkStreamSet
* predicted_parameters
) = 0;
173 // Third step: transforms element from original representation into alternate
175 virtual Status
Transform(SourceStreamSet
* corrected_parameters
,
176 SinkStreamSet
* transformed_element
) = 0;
178 // Final step: transforms element back from alternate representation into
179 // original representation.
180 virtual Status
Reform(SourceStreamSet
* transformed_element
,
181 SinkStream
* reformed_element
) = 0;
184 // TransformationPatchGenerator is the interface which abstracts out the actual
185 // transformation used (and adjustment used) when differentially compressing one
186 // Element from the |new_ensemble| against a corresponding element in the
189 // This is not a pure interface. There is a small amount of inheritance
190 // implementation for the fields and actions common to all
191 // TransformationPatchGenerators.
193 // When TransformationPatchGenerator is subclassed, there will be a
194 // corresponding subclass of TransformationPatcher.
196 class TransformationPatchGenerator
{
198 TransformationPatchGenerator(Element
* old_element
,
199 Element
* new_element
,
200 TransformationPatcher
* patcher
);
202 virtual ~TransformationPatchGenerator();
204 // Returns the TransformationMethodId that identies this transformation.
205 virtual ExecutableType
Kind() = 0;
207 // Writes the parameters that will be passed to TransformationPatcher::Init.
208 virtual Status
WriteInitialParameters(SinkStream
* parameter_stream
) = 0;
210 // Predicts the transform parameters for the |old_element|. This must match
211 // exactly the output that will be produced by the PredictTransformParameters
212 // method of the corresponding subclass of TransformationPatcher. This method
213 // is not pure. The default implementation delegates to the patcher to
214 // guarantee matching output.
215 virtual Status
PredictTransformParameters(SinkStreamSet
* prediction
);
217 // Writes the desired parameters for the transform of the old element from the
218 // file representation to the alternate representation.
219 virtual Status
CorrectedTransformParameters(SinkStreamSet
* parameters
) = 0;
221 // Writes both |old_element| and |new_element| in the new representation.
222 // |old_corrected_parameters| will match the |corrected_parameters| passed to
223 // the Transform method of the corresponding sublcass of
224 // TransformationPatcher.
226 // The output written to |old_transformed_element| must match exactly the
227 // output written by the Transform method of the corresponding subclass of
228 // TransformationPatcher.
229 virtual Status
Transform(SourceStreamSet
* old_corrected_parameters
,
230 SinkStreamSet
* old_transformed_element
,
231 SinkStreamSet
* new_transformed_element
) = 0;
233 // Transforms the new transformed_element back from the alternate
234 // representation into the original file format. This must match exactly the
235 // output that will be produced by the corresponding subclass of
236 // TransformationPatcher::Reform. This method is not pure. The default
237 // implementation delegates to the patcher.
238 virtual Status
Reform(SourceStreamSet
* transformed_element
,
239 SinkStream
* reformed_element
);
242 Element
* old_element_
;
243 Element
* new_element_
;
244 TransformationPatcher
* patcher_
;
248 #endif // COURGETTE_ENSEMBLE_H_