Roll skia to r1241.
[chromium-blink-merge.git] / tools / memory_watcher / mini_disassembler.cc
bloba5fcf54918a750a0b8a749c8016a299095ec9cf1
1 /* Copyright (c) 2007, Google Inc.
2 * All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above
11 * copyright notice, this list of conditions and the following disclaimer
12 * in the documentation and/or other materials provided with the
13 * distribution.
14 * * Neither the name of Google Inc. nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * ---
32 * Implementation of MiniDisassembler.
35 #include "mini_disassembler.h"
37 namespace sidestep {
39 MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits,
40 bool address_default_is_32_bits)
41 : operand_default_is_32_bits_(operand_default_is_32_bits),
42 address_default_is_32_bits_(address_default_is_32_bits) {
43 Initialize();
46 MiniDisassembler::MiniDisassembler()
47 : operand_default_is_32_bits_(true),
48 address_default_is_32_bits_(true) {
49 Initialize();
52 InstructionType MiniDisassembler::Disassemble(
53 unsigned char* start_byte,
54 unsigned int& instruction_bytes) {
55 // Clean up any state from previous invocations.
56 Initialize();
58 // Start by processing any prefixes.
59 unsigned char* current_byte = start_byte;
60 unsigned int size = 0;
61 InstructionType instruction_type = ProcessPrefixes(current_byte, size);
63 if (IT_UNKNOWN == instruction_type)
64 return instruction_type;
66 current_byte += size;
67 size = 0;
69 // Invariant: We have stripped all prefixes, and the operand_is_32_bits_
70 // and address_is_32_bits_ flags are correctly set.
72 instruction_type = ProcessOpcode(current_byte, 0, size);
74 // Check for error processing instruction
75 if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) {
76 return IT_UNKNOWN;
79 current_byte += size;
81 // Invariant: operand_bytes_ indicates the total size of operands
82 // specified by the opcode and/or ModR/M byte and/or SIB byte.
83 // pCurrentByte points to the first byte after the ModR/M byte, or after
84 // the SIB byte if it is present (i.e. the first byte of any operands
85 // encoded in the instruction).
87 // We get the total length of any prefixes, the opcode, and the ModR/M and
88 // SIB bytes if present, by taking the difference of the original starting
89 // address and the current byte (which points to the first byte of the
90 // operands if present, or to the first byte of the next instruction if
91 // they are not). Adding the count of bytes in the operands encoded in
92 // the instruction gives us the full length of the instruction in bytes.
93 instruction_bytes += operand_bytes_ + (current_byte - start_byte);
95 // Return the instruction type, which was set by ProcessOpcode().
96 return instruction_type_;
99 void MiniDisassembler::Initialize() {
100 operand_is_32_bits_ = operand_default_is_32_bits_;
101 address_is_32_bits_ = address_default_is_32_bits_;
102 operand_bytes_ = 0;
103 have_modrm_ = false;
104 should_decode_modrm_ = false;
105 instruction_type_ = IT_UNKNOWN;
106 got_f2_prefix_ = false;
107 got_f3_prefix_ = false;
108 got_66_prefix_ = false;
111 InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte,
112 unsigned int& size) {
113 InstructionType instruction_type = IT_GENERIC;
114 const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte];
116 switch (opcode.type_) {
117 case IT_PREFIX_ADDRESS:
118 address_is_32_bits_ = !address_default_is_32_bits_;
119 goto nochangeoperand;
120 case IT_PREFIX_OPERAND:
121 operand_is_32_bits_ = !operand_default_is_32_bits_;
122 nochangeoperand:
123 case IT_PREFIX:
125 if (0xF2 == (*start_byte))
126 got_f2_prefix_ = true;
127 else if (0xF3 == (*start_byte))
128 got_f3_prefix_ = true;
129 else if (0x66 == (*start_byte))
130 got_66_prefix_ = true;
132 instruction_type = opcode.type_;
133 size ++;
134 // we got a prefix, so add one and check next byte
135 ProcessPrefixes(start_byte + 1, size);
136 default:
137 break; // not a prefix byte
140 return instruction_type;
143 InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte,
144 unsigned int table_index,
145 unsigned int& size) {
146 const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table
147 unsigned char current_byte = (*start_byte) >> table.shift_;
148 current_byte = current_byte & table.mask_; // Mask out the bits we will use
150 // Check whether the byte we have is inside the table we have.
151 if (current_byte < table.min_lim_ || current_byte > table.max_lim_) {
152 instruction_type_ = IT_UNKNOWN;
153 return instruction_type_;
156 const Opcode& opcode = table.table_[current_byte];
157 if (IT_UNUSED == opcode.type_) {
158 // This instruction is not used by the IA-32 ISA, so we indicate
159 // this to the user. Probably means that we were pointed to
160 // a byte in memory that was not the start of an instruction.
161 instruction_type_ = IT_UNUSED;
162 return instruction_type_;
163 } else if (IT_REFERENCE == opcode.type_) {
164 // We are looking at an opcode that has more bytes (or is continued
165 // in the ModR/M byte). Recursively find the opcode definition in
166 // the table for the opcode's next byte.
167 size++;
168 ProcessOpcode(start_byte + 1, opcode.table_index_, size);
169 return instruction_type_;
172 const SpecificOpcode* specific_opcode = (SpecificOpcode*)&opcode;
173 if (opcode.is_prefix_dependent_) {
174 if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) {
175 specific_opcode = &opcode.opcode_if_f2_prefix_;
176 } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) {
177 specific_opcode = &opcode.opcode_if_f3_prefix_;
178 } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) {
179 specific_opcode = &opcode.opcode_if_66_prefix_;
183 // Inv: The opcode type is known.
184 instruction_type_ = specific_opcode->type_;
186 // Let's process the operand types to see if we have any immediate
187 // operands, and/or a ModR/M byte.
189 ProcessOperand(specific_opcode->flag_dest_);
190 ProcessOperand(specific_opcode->flag_source_);
191 ProcessOperand(specific_opcode->flag_aux_);
193 // Inv: We have processed the opcode and incremented operand_bytes_
194 // by the number of bytes of any operands specified by the opcode
195 // that are stored in the instruction (not registers etc.). Now
196 // we need to return the total number of bytes for the opcode and
197 // for the ModR/M or SIB bytes if they are present.
199 if (table.mask_ != 0xff) {
200 if (have_modrm_) {
201 // we're looking at a ModR/M byte so we're not going to
202 // count that into the opcode size
203 ProcessModrm(start_byte, size);
204 return IT_GENERIC;
205 } else {
206 // need to count the ModR/M byte even if it's just being
207 // used for opcode extension
208 size++;
209 return IT_GENERIC;
211 } else {
212 if (have_modrm_) {
213 // The ModR/M byte is the next byte.
214 size++;
215 ProcessModrm(start_byte + 1, size);
216 return IT_GENERIC;
217 } else {
218 size++;
219 return IT_GENERIC;
224 bool MiniDisassembler::ProcessOperand(int flag_operand) {
225 bool succeeded = true;
226 if (AM_NOT_USED == flag_operand)
227 return succeeded;
229 // Decide what to do based on the addressing mode.
230 switch (flag_operand & AM_MASK) {
231 // No ModR/M byte indicated by these addressing modes, and no
232 // additional (e.g. immediate) parameters.
233 case AM_A: // Direct address
234 case AM_F: // EFLAGS register
235 case AM_X: // Memory addressed by the DS:SI register pair
236 case AM_Y: // Memory addressed by the ES:DI register pair
237 case AM_IMPLICIT: // Parameter is implicit, occupies no space in
238 // instruction
239 break;
241 // There is a ModR/M byte but it does not necessarily need
242 // to be decoded.
243 case AM_C: // reg field of ModR/M selects a control register
244 case AM_D: // reg field of ModR/M selects a debug register
245 case AM_G: // reg field of ModR/M selects a general register
246 case AM_P: // reg field of ModR/M selects an MMX register
247 case AM_R: // mod field of ModR/M may refer only to a general register
248 case AM_S: // reg field of ModR/M selects a segment register
249 case AM_T: // reg field of ModR/M selects a test register
250 case AM_V: // reg field of ModR/M selects a 128-bit XMM register
251 have_modrm_ = true;
252 break;
254 // In these addressing modes, there is a ModR/M byte and it needs to be
255 // decoded. No other (e.g. immediate) params than indicated in ModR/M.
256 case AM_E: // Operand is either a general-purpose register or memory,
257 // specified by ModR/M byte
258 case AM_M: // ModR/M byte will refer only to memory
259 case AM_Q: // Operand is either an MMX register or memory (complex
260 // evaluation), specified by ModR/M byte
261 case AM_W: // Operand is either a 128-bit XMM register or memory (complex
262 // eval), specified by ModR/M byte
263 have_modrm_ = true;
264 should_decode_modrm_ = true;
265 break;
267 // These addressing modes specify an immediate or an offset value
268 // directly, so we need to look at the operand type to see how many
269 // bytes.
270 case AM_I: // Immediate data.
271 case AM_J: // Jump to offset.
272 case AM_O: // Operand is at offset.
273 switch (flag_operand & OT_MASK) {
274 case OT_B: // Byte regardless of operand-size attribute.
275 operand_bytes_ += OS_BYTE;
276 break;
277 case OT_C: // Byte or word, depending on operand-size attribute.
278 if (operand_is_32_bits_)
279 operand_bytes_ += OS_WORD;
280 else
281 operand_bytes_ += OS_BYTE;
282 break;
283 case OT_D: // Doubleword, regardless of operand-size attribute.
284 operand_bytes_ += OS_DOUBLE_WORD;
285 break;
286 case OT_DQ: // Double-quadword, regardless of operand-size attribute.
287 operand_bytes_ += OS_DOUBLE_QUAD_WORD;
288 break;
289 case OT_P: // 32-bit or 48-bit pointer, depending on operand-size
290 // attribute.
291 if (operand_is_32_bits_)
292 operand_bytes_ += OS_48_BIT_POINTER;
293 else
294 operand_bytes_ += OS_32_BIT_POINTER;
295 break;
296 case OT_PS: // 128-bit packed single-precision floating-point data.
297 operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING;
298 break;
299 case OT_Q: // Quadword, regardless of operand-size attribute.
300 operand_bytes_ += OS_QUAD_WORD;
301 break;
302 case OT_S: // 6-byte pseudo-descriptor.
303 operand_bytes_ += OS_PSEUDO_DESCRIPTOR;
304 break;
305 case OT_SD: // Scalar Double-Precision Floating-Point Value
306 case OT_PD: // Unaligned packed double-precision floating point value
307 operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING;
308 break;
309 case OT_SS:
310 // Scalar element of a 128-bit packed single-precision
311 // floating data.
312 // We simply return enItUnknown since we don't have to support
313 // floating point
314 succeeded = false;
315 break;
316 case OT_V: // Word or doubleword, depending on operand-size attribute.
317 if (operand_is_32_bits_)
318 operand_bytes_ += OS_DOUBLE_WORD;
319 else
320 operand_bytes_ += OS_WORD;
321 break;
322 case OT_W: // Word, regardless of operand-size attribute.
323 operand_bytes_ += OS_WORD;
324 break;
326 // Can safely ignore these.
327 case OT_A: // Two one-word operands in memory or two double-word
328 // operands in memory
329 case OT_PI: // Quadword MMX technology register (e.g. mm0)
330 case OT_SI: // Doubleword integer register (e.g., eax)
331 break;
333 default:
334 break;
336 break;
338 default:
339 break;
342 return succeeded;
345 bool MiniDisassembler::ProcessModrm(unsigned char* start_byte,
346 unsigned int& size) {
347 // If we don't need to decode, we just return the size of the ModR/M
348 // byte (there is never a SIB byte in this case).
349 if (!should_decode_modrm_) {
350 size++;
351 return true;
354 // We never care about the reg field, only the combination of the mod
355 // and r/m fields, so let's start by packing those fields together into
356 // 5 bits.
357 unsigned char modrm = (*start_byte);
358 unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field
359 modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field
360 mod = mod >> 3; // shift the mod field to the right place
361 modrm = mod | modrm; // combine the r/m and mod fields as discussed
362 mod = mod >> 3; // shift the mod field to bits 2..0
364 // Invariant: modrm contains the mod field in bits 4..3 and the r/m field
365 // in bits 2..0, and mod contains the mod field in bits 2..0
367 const ModrmEntry* modrm_entry = 0;
368 if (address_is_32_bits_)
369 modrm_entry = &s_ia32_modrm_map_[modrm];
370 else
371 modrm_entry = &s_ia16_modrm_map_[modrm];
373 // Invariant: modrm_entry points to information that we need to decode
374 // the ModR/M byte.
376 // Add to the count of operand bytes, if the ModR/M byte indicates
377 // that some operands are encoded in the instruction.
378 if (modrm_entry->is_encoded_in_instruction_)
379 operand_bytes_ += modrm_entry->operand_size_;
381 // Process the SIB byte if necessary, and return the count
382 // of ModR/M and SIB bytes.
383 if (modrm_entry->use_sib_byte_) {
384 size++;
385 return ProcessSib(start_byte + 1, mod, size);
386 } else {
387 size++;
388 return true;
392 bool MiniDisassembler::ProcessSib(unsigned char* start_byte,
393 unsigned char mod,
394 unsigned int& size) {
395 // get the mod field from the 2..0 bits of the SIB byte
396 unsigned char sib_base = (*start_byte) & 0x07;
397 if (0x05 == sib_base) {
398 switch (mod) {
399 case 0x00: // mod == 00
400 case 0x02: // mod == 10
401 operand_bytes_ += OS_DOUBLE_WORD;
402 break;
403 case 0x01: // mod == 01
404 operand_bytes_ += OS_BYTE;
405 break;
406 case 0x03: // mod == 11
407 // According to the IA-32 docs, there does not seem to be a disp
408 // value for this value of mod
409 default:
410 break;
414 size++;
415 return true;
418 }; // namespace sidestep