Roll skia to r1241.
[chromium-blink-merge.git] / base / message_pump_glib_unittest.cc
blob496fda6f78c0bc5dabc0cd214cec20a932dda37a
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_pump_glib.h"
7 #include <gtk/gtk.h>
8 #include <math.h>
10 #include <algorithm>
11 #include <vector>
13 #include "base/memory/ref_counted.h"
14 #include "base/message_loop.h"
15 #include "base/threading/thread.h"
16 #include "testing/gtest/include/gtest/gtest.h"
18 namespace {
20 // This class injects dummy "events" into the GLib loop. When "handled" these
21 // events can run tasks. This is intended to mock gtk events (the corresponding
22 // GLib source runs at the same priority).
23 class EventInjector {
24 public:
25 EventInjector() : processed_events_(0) {
26 source_ = static_cast<Source*>(g_source_new(&SourceFuncs, sizeof(Source)));
27 source_->injector = this;
28 g_source_attach(source_, NULL);
29 g_source_set_can_recurse(source_, TRUE);
32 ~EventInjector() {
33 g_source_destroy(source_);
34 g_source_unref(source_);
37 int HandlePrepare() {
38 // If the queue is empty, block.
39 if (events_.empty())
40 return -1;
41 base::TimeDelta delta = events_[0].time - base::Time::NowFromSystemTime();
42 return std::max(0, static_cast<int>(ceil(delta.InMillisecondsF())));
45 bool HandleCheck() {
46 if (events_.empty())
47 return false;
48 return events_[0].time <= base::Time::NowFromSystemTime();
51 void HandleDispatch() {
52 if (events_.empty())
53 return;
54 Event event = events_[0];
55 events_.erase(events_.begin());
56 ++processed_events_;
57 if (event.task) {
58 event.task->Run();
59 delete event.task;
63 // Adds an event to the queue. When "handled", executes |task|.
64 // delay_ms is relative to the last event if any, or to Now() otherwise.
65 void AddEvent(int delay_ms, Task* task) {
66 base::Time last_time;
67 if (!events_.empty()) {
68 last_time = (events_.end()-1)->time;
69 } else {
70 last_time = base::Time::NowFromSystemTime();
72 base::Time future = last_time + base::TimeDelta::FromMilliseconds(delay_ms);
73 EventInjector::Event event = { future, task };
74 events_.push_back(event);
77 void Reset() {
78 processed_events_ = 0;
79 events_.clear();
82 int processed_events() const { return processed_events_; }
84 private:
85 struct Event {
86 base::Time time;
87 Task* task;
90 struct Source : public GSource {
91 EventInjector* injector;
94 static gboolean Prepare(GSource* source, gint* timeout_ms) {
95 *timeout_ms = static_cast<Source*>(source)->injector->HandlePrepare();
96 return FALSE;
99 static gboolean Check(GSource* source) {
100 return static_cast<Source*>(source)->injector->HandleCheck();
103 static gboolean Dispatch(GSource* source,
104 GSourceFunc unused_func,
105 gpointer unused_data) {
106 static_cast<Source*>(source)->injector->HandleDispatch();
107 return TRUE;
110 Source* source_;
111 std::vector<Event> events_;
112 int processed_events_;
113 static GSourceFuncs SourceFuncs;
114 DISALLOW_COPY_AND_ASSIGN(EventInjector);
117 GSourceFuncs EventInjector::SourceFuncs = {
118 EventInjector::Prepare,
119 EventInjector::Check,
120 EventInjector::Dispatch,
121 NULL
124 // Does nothing. This function can be called from a task.
125 void DoNothing() {
128 void IncrementInt(int *value) {
129 ++*value;
132 // Checks how many events have been processed by the injector.
133 void ExpectProcessedEvents(EventInjector* injector, int count) {
134 EXPECT_EQ(injector->processed_events(), count);
137 // Quits the current message loop.
138 void QuitMessageLoop() {
139 MessageLoop::current()->Quit();
142 // Returns a new task that quits the main loop.
143 Task* NewQuitTask() {
144 return NewRunnableFunction(QuitMessageLoop);
147 // Posts a task on the current message loop.
148 void PostMessageLoopTask(const tracked_objects::Location& from_here,
149 Task* task) {
150 MessageLoop::current()->PostTask(from_here, task);
153 // Test fixture.
154 class MessagePumpGLibTest : public testing::Test {
155 public:
156 MessagePumpGLibTest() : loop_(NULL), injector_(NULL) { }
158 virtual void SetUp() {
159 loop_ = new MessageLoop(MessageLoop::TYPE_UI);
160 injector_ = new EventInjector();
163 virtual void TearDown() {
164 delete injector_;
165 injector_ = NULL;
166 delete loop_;
167 loop_ = NULL;
170 MessageLoop* loop() const { return loop_; }
171 EventInjector* injector() const { return injector_; }
173 private:
174 MessageLoop* loop_;
175 EventInjector* injector_;
176 DISALLOW_COPY_AND_ASSIGN(MessagePumpGLibTest);
179 } // namespace
181 // EventInjector is expected to always live longer than the runnable methods.
182 DISABLE_RUNNABLE_METHOD_REFCOUNT(EventInjector);
184 TEST_F(MessagePumpGLibTest, TestQuit) {
185 // Checks that Quit works and that the basic infrastructure is working.
187 // Quit from a task
188 loop()->PostTask(FROM_HERE, NewQuitTask());
189 loop()->Run();
190 EXPECT_EQ(0, injector()->processed_events());
192 injector()->Reset();
193 // Quit from an event
194 injector()->AddEvent(0, NewQuitTask());
195 loop()->Run();
196 EXPECT_EQ(1, injector()->processed_events());
199 TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) {
200 // Checks that tasks posted by events are executed before the next event if
201 // the posted task queue is empty.
202 // MessageLoop doesn't make strong guarantees that it is the case, but the
203 // current implementation ensures it and the tests below rely on it.
204 // If changes cause this test to fail, it is reasonable to change it, but
205 // TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be
206 // changed accordingly, otherwise they can become flaky.
207 injector()->AddEvent(0, NewRunnableFunction(DoNothing));
208 Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2);
209 Task* posted_task = NewRunnableFunction(PostMessageLoopTask,
210 FROM_HERE, check_task);
211 injector()->AddEvent(0, posted_task);
212 injector()->AddEvent(0, NewRunnableFunction(DoNothing));
213 injector()->AddEvent(0, NewQuitTask());
214 loop()->Run();
215 EXPECT_EQ(4, injector()->processed_events());
217 injector()->Reset();
218 injector()->AddEvent(0, NewRunnableFunction(DoNothing));
219 check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2);
220 posted_task = NewRunnableFunction(PostMessageLoopTask, FROM_HERE, check_task);
221 injector()->AddEvent(0, posted_task);
222 injector()->AddEvent(10, NewRunnableFunction(DoNothing));
223 injector()->AddEvent(0, NewQuitTask());
224 loop()->Run();
225 EXPECT_EQ(4, injector()->processed_events());
228 TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) {
229 int task_count = 0;
230 // Tests that we process tasks while waiting for new events.
231 // The event queue is empty at first.
232 for (int i = 0; i < 10; ++i) {
233 loop()->PostTask(FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
235 // After all the previous tasks have executed, enqueue an event that will
236 // quit.
237 loop()->PostTask(
238 FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent,
239 0, NewQuitTask()));
240 loop()->Run();
241 ASSERT_EQ(10, task_count);
242 EXPECT_EQ(1, injector()->processed_events());
244 // Tests that we process delayed tasks while waiting for new events.
245 injector()->Reset();
246 task_count = 0;
247 for (int i = 0; i < 10; ++i) {
248 loop()->PostDelayedTask(
249 FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 10*i);
251 // After all the previous tasks have executed, enqueue an event that will
252 // quit.
253 // This relies on the fact that delayed tasks are executed in delay order.
254 // That is verified in message_loop_unittest.cc.
255 loop()->PostDelayedTask(
256 FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent,
257 10, NewQuitTask()), 150);
258 loop()->Run();
259 ASSERT_EQ(10, task_count);
260 EXPECT_EQ(1, injector()->processed_events());
263 TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) {
264 // Tests that we process events while waiting for work.
265 // The event queue is empty at first.
266 for (int i = 0; i < 10; ++i) {
267 injector()->AddEvent(0, NULL);
269 // After all the events have been processed, post a task that will check that
270 // the events have been processed (note: the task executes after the event
271 // that posted it has been handled, so we expect 11 at that point).
272 Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 11);
273 Task* posted_task = NewRunnableFunction(PostMessageLoopTask,
274 FROM_HERE, check_task);
275 injector()->AddEvent(10, posted_task);
277 // And then quit (relies on the condition tested by TestEventTaskInterleave).
278 injector()->AddEvent(10, NewQuitTask());
279 loop()->Run();
281 EXPECT_EQ(12, injector()->processed_events());
284 namespace {
286 // This class is a helper for the concurrent events / posted tasks test below.
287 // It will quit the main loop once enough tasks and events have been processed,
288 // while making sure there is always work to do and events in the queue.
289 class ConcurrentHelper : public base::RefCounted<ConcurrentHelper> {
290 public:
291 explicit ConcurrentHelper(EventInjector* injector)
292 : injector_(injector),
293 event_count_(kStartingEventCount),
294 task_count_(kStartingTaskCount) {
297 void FromTask() {
298 if (task_count_ > 0) {
299 --task_count_;
301 if (task_count_ == 0 && event_count_ == 0) {
302 MessageLoop::current()->Quit();
303 } else {
304 MessageLoop::current()->PostTask(
305 FROM_HERE, NewRunnableMethod(this, &ConcurrentHelper::FromTask));
309 void FromEvent() {
310 if (event_count_ > 0) {
311 --event_count_;
313 if (task_count_ == 0 && event_count_ == 0) {
314 MessageLoop::current()->Quit();
315 } else {
316 injector_->AddEvent(
317 0, NewRunnableMethod(this, &ConcurrentHelper::FromEvent));
321 int event_count() const { return event_count_; }
322 int task_count() const { return task_count_; }
324 private:
325 friend class base::RefCounted<ConcurrentHelper>;
327 ~ConcurrentHelper() {}
329 static const int kStartingEventCount = 20;
330 static const int kStartingTaskCount = 20;
332 EventInjector* injector_;
333 int event_count_;
334 int task_count_;
337 } // namespace
339 TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) {
340 // Tests that posted tasks don't starve events, nor the opposite.
341 // We use the helper class above. We keep both event and posted task queues
342 // full, the helper verifies that both tasks and events get processed.
343 // If that is not the case, either event_count_ or task_count_ will not get
344 // to 0, and MessageLoop::Quit() will never be called.
345 scoped_refptr<ConcurrentHelper> helper = new ConcurrentHelper(injector());
347 // Add 2 events to the queue to make sure it is always full (when we remove
348 // the event before processing it).
349 injector()->AddEvent(
350 0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent));
351 injector()->AddEvent(
352 0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent));
354 // Similarly post 2 tasks.
355 loop()->PostTask(
356 FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask));
357 loop()->PostTask(
358 FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask));
360 loop()->Run();
361 EXPECT_EQ(0, helper->event_count());
362 EXPECT_EQ(0, helper->task_count());
365 namespace {
367 void AddEventsAndDrainGLib(EventInjector* injector) {
368 // Add a couple of dummy events
369 injector->AddEvent(0, NULL);
370 injector->AddEvent(0, NULL);
371 // Then add an event that will quit the main loop.
372 injector->AddEvent(0, NewQuitTask());
374 // Post a couple of dummy tasks
375 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
376 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
378 // Drain the events
379 while (g_main_context_pending(NULL)) {
380 g_main_context_iteration(NULL, FALSE);
384 } // namespace
386 TEST_F(MessagePumpGLibTest, TestDrainingGLib) {
387 // Tests that draining events using GLib works.
388 loop()->PostTask(
389 FROM_HERE, NewRunnableFunction(AddEventsAndDrainGLib, injector()));
390 loop()->Run();
392 EXPECT_EQ(3, injector()->processed_events());
396 namespace {
398 void AddEventsAndDrainGtk(EventInjector* injector) {
399 // Add a couple of dummy events
400 injector->AddEvent(0, NULL);
401 injector->AddEvent(0, NULL);
402 // Then add an event that will quit the main loop.
403 injector->AddEvent(0, NewQuitTask());
405 // Post a couple of dummy tasks
406 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
407 MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
409 // Drain the events
410 while (gtk_events_pending()) {
411 gtk_main_iteration();
415 } // namespace
417 TEST_F(MessagePumpGLibTest, TestDrainingGtk) {
418 // Tests that draining events using Gtk works.
419 loop()->PostTask(
420 FROM_HERE, NewRunnableFunction(AddEventsAndDrainGtk, injector()));
421 loop()->Run();
423 EXPECT_EQ(3, injector()->processed_events());
426 namespace {
428 // Helper class that lets us run the GLib message loop.
429 class GLibLoopRunner : public base::RefCounted<GLibLoopRunner> {
430 public:
431 GLibLoopRunner() : quit_(false) { }
433 void RunGLib() {
434 while (!quit_) {
435 g_main_context_iteration(NULL, TRUE);
439 void RunGtk() {
440 while (!quit_) {
441 gtk_main_iteration();
445 void Quit() {
446 quit_ = true;
449 void Reset() {
450 quit_ = false;
453 private:
454 friend class base::RefCounted<GLibLoopRunner>;
456 ~GLibLoopRunner() {}
458 bool quit_;
461 void TestGLibLoopInternal(EventInjector* injector) {
462 // Allow tasks to be processed from 'native' event loops.
463 MessageLoop::current()->SetNestableTasksAllowed(true);
464 scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
466 int task_count = 0;
467 // Add a couple of dummy events
468 injector->AddEvent(0, NULL);
469 injector->AddEvent(0, NULL);
470 // Post a couple of dummy tasks
471 MessageLoop::current()->PostTask(
472 FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
473 MessageLoop::current()->PostTask(
474 FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
475 // Delayed events
476 injector->AddEvent(10, NULL);
477 injector->AddEvent(10, NULL);
478 // Delayed work
479 MessageLoop::current()->PostDelayedTask(
480 FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30);
481 MessageLoop::current()->PostDelayedTask(
482 FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40);
484 // Run a nested, straight GLib message loop.
485 runner->RunGLib();
487 ASSERT_EQ(3, task_count);
488 EXPECT_EQ(4, injector->processed_events());
489 MessageLoop::current()->Quit();
492 void TestGtkLoopInternal(EventInjector* injector) {
493 // Allow tasks to be processed from 'native' event loops.
494 MessageLoop::current()->SetNestableTasksAllowed(true);
495 scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
497 int task_count = 0;
498 // Add a couple of dummy events
499 injector->AddEvent(0, NULL);
500 injector->AddEvent(0, NULL);
501 // Post a couple of dummy tasks
502 MessageLoop::current()->PostTask(
503 FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
504 MessageLoop::current()->PostTask(
505 FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
506 // Delayed events
507 injector->AddEvent(10, NULL);
508 injector->AddEvent(10, NULL);
509 // Delayed work
510 MessageLoop::current()->PostDelayedTask(
511 FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30);
512 MessageLoop::current()->PostDelayedTask(
513 FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40);
515 // Run a nested, straight Gtk message loop.
516 runner->RunGtk();
518 ASSERT_EQ(3, task_count);
519 EXPECT_EQ(4, injector->processed_events());
520 MessageLoop::current()->Quit();
523 } // namespace
525 TEST_F(MessagePumpGLibTest, TestGLibLoop) {
526 // Tests that events and posted tasks are correctly exectuted if the message
527 // loop is not run by MessageLoop::Run() but by a straight GLib loop.
528 // Note that in this case we don't make strong guarantees about niceness
529 // between events and posted tasks.
530 loop()->PostTask(FROM_HERE,
531 NewRunnableFunction(TestGLibLoopInternal, injector()));
532 loop()->Run();
535 TEST_F(MessagePumpGLibTest, TestGtkLoop) {
536 // Tests that events and posted tasks are correctly exectuted if the message
537 // loop is not run by MessageLoop::Run() but by a straight Gtk loop.
538 // Note that in this case we don't make strong guarantees about niceness
539 // between events and posted tasks.
540 loop()->PostTask(FROM_HERE,
541 NewRunnableFunction(TestGtkLoopInternal, injector()));
542 loop()->Run();