1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/memory/discardable_memory_ashmem_allocator.h"
16 #include "base/basictypes.h"
17 #include "base/containers/hash_tables.h"
18 #include "base/files/file_util.h"
19 #include "base/files/scoped_file.h"
20 #include "base/logging.h"
21 #include "base/memory/scoped_vector.h"
22 #include "third_party/ashmem/ashmem.h"
24 // The allocator consists of three parts (classes):
25 // - DiscardableMemoryAshmemAllocator: entry point of all allocations (through
26 // its Allocate() method) that are dispatched to the AshmemRegion instances
28 // - AshmemRegion: manages allocations and destructions inside a single large
29 // (e.g. 32 MBytes) ashmem region.
30 // - DiscardableAshmemChunk: class mimicking the DiscardableMemory interface
31 // whose instances are returned to the client.
36 // Only tolerate fragmentation in used chunks *caused by the client* (as opposed
37 // to the allocator when a free chunk is reused). The client can cause such
38 // fragmentation by e.g. requesting 4097 bytes. This size would be rounded up to
39 // 8192 by the allocator which would cause 4095 bytes of fragmentation (which is
40 // currently the maximum allowed). If the client requests 4096 bytes and a free
41 // chunk of 8192 bytes is available then the free chunk gets splitted into two
42 // pieces to minimize fragmentation (since 8192 - 4096 = 4096 which is greater
44 // TODO(pliard): tune this if splitting chunks too often leads to performance
46 const size_t kMaxChunkFragmentationBytes
= 4096 - 1;
48 const size_t kMinAshmemRegionSize
= 32 * 1024 * 1024;
50 // Returns 0 if the provided size is too high to be aligned.
51 size_t AlignToNextPage(size_t size
) {
52 const size_t kPageSize
= 4096;
53 DCHECK_EQ(static_cast<int>(kPageSize
), getpagesize());
54 if (size
> std::numeric_limits
<size_t>::max() - kPageSize
+ 1)
56 const size_t mask
= ~(kPageSize
- 1);
57 return (size
+ kPageSize
- 1) & mask
;
60 bool CreateAshmemRegion(const char* name
,
63 uintptr_t* out_address
) {
64 base::ScopedFD
fd(ashmem_create_region(name
, size
));
66 DLOG(ERROR
) << "ashmem_create_region() failed";
70 const int err
= ashmem_set_prot_region(fd
.get(), PROT_READ
| PROT_WRITE
);
72 DLOG(ERROR
) << "Error " << err
<< " when setting protection of ashmem";
76 // There is a problem using MAP_PRIVATE here. As we are constantly calling
77 // Lock() and Unlock(), data could get lost if they are not written to the
78 // underlying file when Unlock() gets called.
79 void* const address
= mmap(
80 NULL
, size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
, fd
.get(), 0);
81 if (address
== MAP_FAILED
) {
82 DPLOG(ERROR
) << "Failed to map memory.";
86 *out_fd
= fd
.release();
87 *out_address
= reinterpret_cast<uintptr_t>(address
);
91 bool CloseAshmemRegion(int fd
, size_t size
, void* address
) {
92 if (munmap(address
, size
) == -1) {
93 DPLOG(ERROR
) << "Failed to unmap memory.";
97 return close(fd
) == 0;
100 bool LockAshmemRegion(int fd
, size_t off
, size_t size
) {
101 return ashmem_pin_region(fd
, off
, size
) != ASHMEM_WAS_PURGED
;
104 bool UnlockAshmemRegion(int fd
, size_t off
, size_t size
) {
105 const int failed
= ashmem_unpin_region(fd
, off
, size
);
107 DLOG(ERROR
) << "Failed to unpin memory.";
117 // Note that |allocator| must outlive |this|.
118 static scoped_ptr
<AshmemRegion
> Create(
120 const std::string
& name
,
121 DiscardableMemoryAshmemAllocator
* allocator
) {
122 DCHECK_EQ(size
, AlignToNextPage(size
));
125 if (!CreateAshmemRegion(name
.c_str(), size
, &fd
, &base
))
126 return scoped_ptr
<AshmemRegion
>();
127 return make_scoped_ptr(new AshmemRegion(fd
, size
, base
, allocator
));
131 const bool result
= CloseAshmemRegion(
132 fd_
, size_
, reinterpret_cast<void*>(base_
));
134 DCHECK(!highest_allocated_chunk_
);
137 // Returns a new instance of DiscardableAshmemChunk whose size is greater or
138 // equal than |actual_size| (which is expected to be greater or equal than
139 // |client_requested_size|).
140 // Allocation works as follows:
141 // 1) Reuse a previously freed chunk and return it if it succeeded. See
142 // ReuseFreeChunk_Locked() below for more information.
143 // 2) If no free chunk could be reused and the region is not big enough for
144 // the requested size then NULL is returned.
145 // 3) If there is enough room in the ashmem region then a new chunk is
146 // returned. This new chunk starts at |offset_| which is the end of the
147 // previously highest chunk in the region.
148 scoped_ptr
<DiscardableAshmemChunk
> Allocate_Locked(
149 size_t client_requested_size
,
150 size_t actual_size
) {
151 DCHECK_LE(client_requested_size
, actual_size
);
152 allocator_
->lock_
.AssertAcquired();
154 // Check that the |highest_allocated_chunk_| field doesn't contain a stale
155 // pointer. It should point to either a free chunk or a used chunk.
156 DCHECK(!highest_allocated_chunk_
||
157 address_to_free_chunk_map_
.find(highest_allocated_chunk_
) !=
158 address_to_free_chunk_map_
.end() ||
159 used_to_previous_chunk_map_
.find(highest_allocated_chunk_
) !=
160 used_to_previous_chunk_map_
.end());
162 scoped_ptr
<DiscardableAshmemChunk
> memory
= ReuseFreeChunk_Locked(
163 client_requested_size
, actual_size
);
165 return memory
.Pass();
167 if (size_
- offset_
< actual_size
) {
168 // This region does not have enough space left to hold the requested size.
169 return scoped_ptr
<DiscardableAshmemChunk
>();
172 uintptr_t const address
= base_
+ offset_
;
174 new DiscardableAshmemChunk(this, fd_
, reinterpret_cast<void*>(address
),
175 offset_
, actual_size
));
177 used_to_previous_chunk_map_
.insert(
178 std::make_pair(address
, highest_allocated_chunk_
));
179 highest_allocated_chunk_
= reinterpret_cast<uintptr_t>(address
);
180 offset_
+= actual_size
;
181 DCHECK_LE(offset_
, size_
);
182 return memory
.Pass();
185 void OnChunkDeletion(uintptr_t chunk
, size_t size
) {
186 AutoLock
auto_lock(allocator_
->lock_
);
187 MergeAndAddFreeChunk_Locked(chunk
, size
);
188 // Note that |this| might be deleted beyond this point.
193 FreeChunk() : previous_chunk(0), start(0), size(0) {}
195 explicit FreeChunk(size_t size
)
201 FreeChunk(uintptr_t previous_chunk
, uintptr_t start
, size_t size
)
202 : previous_chunk(previous_chunk
),
205 DCHECK_LT(previous_chunk
, start
);
208 uintptr_t const previous_chunk
;
209 uintptr_t const start
;
212 bool is_null() const { return !start
; }
214 bool operator<(const FreeChunk
& other
) const {
215 return size
< other
.size
;
219 // Note that |allocator| must outlive |this|.
223 DiscardableMemoryAshmemAllocator
* allocator
)
227 allocator_(allocator
),
228 highest_allocated_chunk_(0),
231 DCHECK_GE(size
, kMinAshmemRegionSize
);
236 // Tries to reuse a previously freed chunk by doing a closest size match.
237 scoped_ptr
<DiscardableAshmemChunk
> ReuseFreeChunk_Locked(
238 size_t client_requested_size
,
239 size_t actual_size
) {
240 allocator_
->lock_
.AssertAcquired();
241 const FreeChunk reused_chunk
= RemoveFreeChunkFromIterator_Locked(
242 free_chunks_
.lower_bound(FreeChunk(actual_size
)));
243 if (reused_chunk
.is_null())
244 return scoped_ptr
<DiscardableAshmemChunk
>();
246 used_to_previous_chunk_map_
.insert(
247 std::make_pair(reused_chunk
.start
, reused_chunk
.previous_chunk
));
248 size_t reused_chunk_size
= reused_chunk
.size
;
249 // |client_requested_size| is used below rather than |actual_size| to
250 // reflect the amount of bytes that would not be usable by the client (i.e.
251 // wasted). Using |actual_size| instead would not allow us to detect
252 // fragmentation caused by the client if he did misaligned allocations.
253 DCHECK_GE(reused_chunk
.size
, client_requested_size
);
254 const size_t fragmentation_bytes
=
255 reused_chunk
.size
- client_requested_size
;
257 if (fragmentation_bytes
> kMaxChunkFragmentationBytes
) {
258 // Split the free chunk being recycled so that its unused tail doesn't get
259 // reused (i.e. locked) which would prevent it from being evicted under
261 reused_chunk_size
= actual_size
;
262 uintptr_t const new_chunk_start
= reused_chunk
.start
+ actual_size
;
263 if (reused_chunk
.start
== highest_allocated_chunk_
) {
264 // We also need to update the pointer to the highest allocated chunk in
265 // case we are splitting the highest chunk.
266 highest_allocated_chunk_
= new_chunk_start
;
268 DCHECK_GT(reused_chunk
.size
, actual_size
);
269 const size_t new_chunk_size
= reused_chunk
.size
- actual_size
;
270 // Note that merging is not needed here since there can't be contiguous
271 // free chunks at this point.
273 FreeChunk(reused_chunk
.start
, new_chunk_start
, new_chunk_size
));
276 const size_t offset
= reused_chunk
.start
- base_
;
277 LockAshmemRegion(fd_
, offset
, reused_chunk_size
);
278 scoped_ptr
<DiscardableAshmemChunk
> memory(
279 new DiscardableAshmemChunk(this, fd_
,
280 reinterpret_cast<void*>(reused_chunk
.start
),
281 offset
, reused_chunk_size
));
282 return memory
.Pass();
285 // Makes the chunk identified with the provided arguments free and possibly
286 // merges this chunk with the previous and next contiguous ones.
287 // If the provided chunk is the only one used (and going to be freed) in the
288 // region then the internal ashmem region is closed so that the underlying
289 // physical pages are immediately released.
290 // Note that free chunks are unlocked therefore they can be reclaimed by the
291 // kernel if needed (under memory pressure) but they are not immediately
292 // released unfortunately since madvise(MADV_REMOVE) and
293 // fallocate(FALLOC_FL_PUNCH_HOLE) don't seem to work on ashmem. This might
294 // change in versions of kernel >=3.5 though. The fact that free chunks are
295 // not immediately released is the reason why we are trying to minimize
296 // fragmentation in order not to cause "artificial" memory pressure.
297 void MergeAndAddFreeChunk_Locked(uintptr_t chunk
, size_t size
) {
298 allocator_
->lock_
.AssertAcquired();
299 size_t new_free_chunk_size
= size
;
300 // Merge with the previous chunk.
301 uintptr_t first_free_chunk
= chunk
;
302 DCHECK(!used_to_previous_chunk_map_
.empty());
303 const hash_map
<uintptr_t, uintptr_t>::iterator previous_chunk_it
=
304 used_to_previous_chunk_map_
.find(chunk
);
305 DCHECK(previous_chunk_it
!= used_to_previous_chunk_map_
.end());
306 uintptr_t previous_chunk
= previous_chunk_it
->second
;
307 used_to_previous_chunk_map_
.erase(previous_chunk_it
);
309 if (previous_chunk
) {
310 const FreeChunk free_chunk
= RemoveFreeChunk_Locked(previous_chunk
);
311 if (!free_chunk
.is_null()) {
312 new_free_chunk_size
+= free_chunk
.size
;
313 first_free_chunk
= previous_chunk
;
314 if (chunk
== highest_allocated_chunk_
)
315 highest_allocated_chunk_
= previous_chunk
;
317 // There should not be more contiguous previous free chunks.
318 previous_chunk
= free_chunk
.previous_chunk
;
319 DCHECK(!address_to_free_chunk_map_
.count(previous_chunk
));
323 // Merge with the next chunk if free and present.
324 uintptr_t next_chunk
= chunk
+ size
;
325 const FreeChunk next_free_chunk
= RemoveFreeChunk_Locked(next_chunk
);
326 if (!next_free_chunk
.is_null()) {
327 new_free_chunk_size
+= next_free_chunk
.size
;
328 if (next_free_chunk
.start
== highest_allocated_chunk_
)
329 highest_allocated_chunk_
= first_free_chunk
;
333 !address_to_free_chunk_map_
.count(next_chunk
+ next_free_chunk
.size
));
336 const bool whole_ashmem_region_is_free
=
337 used_to_previous_chunk_map_
.empty();
338 if (!whole_ashmem_region_is_free
) {
340 FreeChunk(previous_chunk
, first_free_chunk
, new_free_chunk_size
));
344 // The whole ashmem region is free thus it can be deleted.
345 DCHECK_EQ(base_
, first_free_chunk
);
346 DCHECK_EQ(base_
, highest_allocated_chunk_
);
347 DCHECK(free_chunks_
.empty());
348 DCHECK(address_to_free_chunk_map_
.empty());
349 DCHECK(used_to_previous_chunk_map_
.empty());
350 highest_allocated_chunk_
= 0;
351 allocator_
->DeleteAshmemRegion_Locked(this); // Deletes |this|.
354 void AddFreeChunk_Locked(const FreeChunk
& free_chunk
) {
355 allocator_
->lock_
.AssertAcquired();
356 const std::multiset
<FreeChunk
>::iterator it
= free_chunks_
.insert(
358 address_to_free_chunk_map_
.insert(std::make_pair(free_chunk
.start
, it
));
359 // Update the next used contiguous chunk, if any, since its previous chunk
360 // may have changed due to free chunks merging/splitting.
361 uintptr_t const next_used_contiguous_chunk
=
362 free_chunk
.start
+ free_chunk
.size
;
363 hash_map
<uintptr_t, uintptr_t>::iterator previous_it
=
364 used_to_previous_chunk_map_
.find(next_used_contiguous_chunk
);
365 if (previous_it
!= used_to_previous_chunk_map_
.end())
366 previous_it
->second
= free_chunk
.start
;
369 // Finds and removes the free chunk, if any, whose start address is
370 // |chunk_start|. Returns a copy of the unlinked free chunk or a free chunk
371 // whose content is null if it was not found.
372 FreeChunk
RemoveFreeChunk_Locked(uintptr_t chunk_start
) {
373 allocator_
->lock_
.AssertAcquired();
375 uintptr_t, std::multiset
<FreeChunk
>::iterator
>::iterator it
=
376 address_to_free_chunk_map_
.find(chunk_start
);
377 if (it
== address_to_free_chunk_map_
.end())
379 return RemoveFreeChunkFromIterator_Locked(it
->second
);
382 // Same as above but takes an iterator in.
383 FreeChunk
RemoveFreeChunkFromIterator_Locked(
384 std::multiset
<FreeChunk
>::iterator free_chunk_it
) {
385 allocator_
->lock_
.AssertAcquired();
386 if (free_chunk_it
== free_chunks_
.end())
388 DCHECK(free_chunk_it
!= free_chunks_
.end());
389 const FreeChunk
free_chunk(*free_chunk_it
);
390 address_to_free_chunk_map_
.erase(free_chunk_it
->start
);
391 free_chunks_
.erase(free_chunk_it
);
397 uintptr_t const base_
;
398 DiscardableMemoryAshmemAllocator
* const allocator_
;
399 // Points to the chunk with the highest address in the region. This pointer
400 // needs to be carefully updated when chunks are merged/split.
401 uintptr_t highest_allocated_chunk_
;
402 // Points to the end of |highest_allocated_chunk_|.
404 // Allows free chunks recycling (lookup, insertion and removal) in O(log N).
405 // Note that FreeChunk values are indexed by their size and also note that
406 // multiple free chunks can have the same size (which is why multiset<> is
407 // used instead of e.g. set<>).
408 std::multiset
<FreeChunk
> free_chunks_
;
409 // Used while merging free contiguous chunks to erase free chunks (from their
410 // start address) in constant time. Note that multiset<>::{insert,erase}()
411 // don't invalidate iterators (except the one for the element being removed
414 uintptr_t, std::multiset
<FreeChunk
>::iterator
> address_to_free_chunk_map_
;
415 // Maps the address of *used* chunks to the address of their previous
417 hash_map
<uintptr_t, uintptr_t> used_to_previous_chunk_map_
;
419 DISALLOW_COPY_AND_ASSIGN(AshmemRegion
);
422 DiscardableAshmemChunk::~DiscardableAshmemChunk() {
424 UnlockAshmemRegion(fd_
, offset_
, size_
);
425 ashmem_region_
->OnChunkDeletion(reinterpret_cast<uintptr_t>(address_
), size_
);
428 bool DiscardableAshmemChunk::Lock() {
431 return LockAshmemRegion(fd_
, offset_
, size_
);
434 void DiscardableAshmemChunk::Unlock() {
437 UnlockAshmemRegion(fd_
, offset_
, size_
);
440 void* DiscardableAshmemChunk::Memory() const {
444 // Note that |ashmem_region| must outlive |this|.
445 DiscardableAshmemChunk::DiscardableAshmemChunk(AshmemRegion
* ashmem_region
,
450 : ashmem_region_(ashmem_region
),
458 DiscardableMemoryAshmemAllocator::DiscardableMemoryAshmemAllocator(
459 const std::string
& name
,
460 size_t ashmem_region_size
)
463 std::max(kMinAshmemRegionSize
, AlignToNextPage(ashmem_region_size
))),
464 last_ashmem_region_size_(0) {
465 DCHECK_GE(ashmem_region_size_
, kMinAshmemRegionSize
);
468 DiscardableMemoryAshmemAllocator::~DiscardableMemoryAshmemAllocator() {
469 DCHECK(ashmem_regions_
.empty());
472 scoped_ptr
<DiscardableAshmemChunk
> DiscardableMemoryAshmemAllocator::Allocate(
474 const size_t aligned_size
= AlignToNextPage(size
);
476 return scoped_ptr
<DiscardableAshmemChunk
>();
477 // TODO(pliard): make this function less naive by e.g. moving the free chunks
478 // multiset to the allocator itself in order to decrease even more
479 // fragmentation/speedup allocation. Note that there should not be more than a
480 // couple (=5) of AshmemRegion instances in practice though.
481 AutoLock
auto_lock(lock_
);
482 DCHECK_LE(ashmem_regions_
.size(), 5U);
483 for (ScopedVector
<AshmemRegion
>::iterator it
= ashmem_regions_
.begin();
484 it
!= ashmem_regions_
.end(); ++it
) {
485 scoped_ptr
<DiscardableAshmemChunk
> memory(
486 (*it
)->Allocate_Locked(size
, aligned_size
));
488 return memory
.Pass();
490 // The creation of the (large) ashmem region might fail if the address space
491 // is too fragmented. In case creation fails the allocator retries by
492 // repetitively dividing the size by 2.
493 const size_t min_region_size
= std::max(kMinAshmemRegionSize
, aligned_size
);
494 for (size_t region_size
= std::max(ashmem_region_size_
, aligned_size
);
495 region_size
>= min_region_size
;
496 region_size
= AlignToNextPage(region_size
/ 2)) {
497 scoped_ptr
<AshmemRegion
> new_region(
498 AshmemRegion::Create(region_size
, name_
.c_str(), this));
501 last_ashmem_region_size_
= region_size
;
502 ashmem_regions_
.push_back(new_region
.release());
503 return ashmem_regions_
.back()->Allocate_Locked(size
, aligned_size
);
505 // TODO(pliard): consider adding an histogram to see how often this happens.
506 return scoped_ptr
<DiscardableAshmemChunk
>();
509 size_t DiscardableMemoryAshmemAllocator::last_ashmem_region_size() const {
510 AutoLock
auto_lock(lock_
);
511 return last_ashmem_region_size_
;
514 void DiscardableMemoryAshmemAllocator::DeleteAshmemRegion_Locked(
515 AshmemRegion
* region
) {
516 lock_
.AssertAcquired();
517 // Note that there should not be more than a couple of ashmem region instances
518 // in |ashmem_regions_|.
519 DCHECK_LE(ashmem_regions_
.size(), 5U);
520 const ScopedVector
<AshmemRegion
>::iterator it
= std::find(
521 ashmem_regions_
.begin(), ashmem_regions_
.end(), region
);
522 DCHECK(ashmem_regions_
.end() != it
);
523 std::swap(*it
, ashmem_regions_
.back());
524 ashmem_regions_
.pop_back();
527 } // namespace internal