1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/disassembler_win32_x64.h"
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13 #include "base/numerics/safe_conversions.h"
15 #include "courgette/assembly_program.h"
16 #include "courgette/courgette.h"
17 #include "courgette/encoded_program.h"
21 DisassemblerWin32X64::DisassemblerWin32X64(const void* start
, size_t length
)
22 : Disassembler(start
, length
),
23 incomplete_disassembly_(false),
25 optional_header_(NULL
),
26 size_of_optional_header_(0),
27 offset_of_data_directories_(0),
29 number_of_sections_(0),
31 has_text_section_(false),
33 size_of_initialized_data_(0),
34 size_of_uninitialized_data_(0),
39 number_of_data_directories_(0) {
42 // ParseHeader attempts to match up the buffer with the Windows data
43 // structures that exist within a Windows 'Portable Executable' format file.
44 // Returns 'true' if the buffer matches, and 'false' if the data looks
45 // suspicious. Rather than try to 'map' the buffer to the numerous windows
46 // structures, we extract the information we need into the courgette::PEInfo
49 bool DisassemblerWin32X64::ParseHeader() {
50 if (length() < kOffsetOfFileAddressOfNewExeHeader
+ 4 /*size*/)
51 return Bad("Too small");
53 // Have 'MZ' magic for a DOS header?
54 if (start()[0] != 'M' || start()[1] != 'Z')
57 // offset from DOS header to PE header is stored in DOS header.
58 uint32 offset
= ReadU32(start(),
59 kOffsetOfFileAddressOfNewExeHeader
);
61 if (offset
>= length())
62 return Bad("Bad offset to PE header");
64 const uint8
* const pe_header
= OffsetToPointer(offset
);
65 const size_t kMinPEHeaderSize
= 4 /*signature*/ + kSizeOfCoffHeader
;
66 if (pe_header
<= start() ||
67 pe_header
>= end() - kMinPEHeaderSize
)
68 return Bad("Bad offset to PE header");
71 return Bad("Misaligned PE header");
73 // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
74 // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
76 // The first field of the IMAGE_NT_HEADERS is the signature.
77 if (!(pe_header
[0] == 'P' &&
78 pe_header
[1] == 'E' &&
81 return Bad("no PE signature");
83 // The second field of the IMAGE_NT_HEADERS is the COFF header.
84 // The COFF header is also called an IMAGE_FILE_HEADER
85 // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
86 const uint8
* const coff_header
= pe_header
+ 4;
87 machine_type_
= ReadU16(coff_header
, 0);
88 number_of_sections_
= ReadU16(coff_header
, 2);
89 size_of_optional_header_
= ReadU16(coff_header
, 16);
91 // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
92 const uint8
* const optional_header
= coff_header
+ kSizeOfCoffHeader
;
93 optional_header_
= optional_header
;
95 if (optional_header
+ size_of_optional_header_
>= end())
96 return Bad("optional header past end of file");
98 // Check we can read the magic.
99 if (size_of_optional_header_
< 2)
100 return Bad("optional header no magic");
102 uint16 magic
= ReadU16(optional_header
, 0);
104 if (magic
== kImageNtOptionalHdr32Magic
) {
105 is_PE32_plus_
= false;
106 offset_of_data_directories_
=
107 kOffsetOfDataDirectoryFromImageOptionalHeader32
;
108 } else if (magic
== kImageNtOptionalHdr64Magic
) {
109 is_PE32_plus_
= true;
110 offset_of_data_directories_
=
111 kOffsetOfDataDirectoryFromImageOptionalHeader64
;
113 return Bad("unrecognized magic");
116 // Check that we can read the rest of the the fixed fields. Data directories
117 // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
118 if (size_of_optional_header_
< offset_of_data_directories_
)
119 return Bad("optional header too short");
121 // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
122 // IMAGE_OPTIONAL_HEADER64
123 // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
125 // Copy the fields we care about.
126 size_of_code_
= ReadU32(optional_header
, 4);
127 size_of_initialized_data_
= ReadU32(optional_header
, 8);
128 size_of_uninitialized_data_
= ReadU32(optional_header
, 12);
129 base_of_code_
= ReadU32(optional_header
, 20);
132 image_base_
= ReadU64(optional_header
, 24);
134 base_of_data_
= ReadU32(optional_header
, 24);
135 image_base_
= ReadU32(optional_header
, 28);
137 size_of_image_
= ReadU32(optional_header
, 56);
138 number_of_data_directories_
=
139 ReadU32(optional_header
, (is_PE32_plus_
? 108 : 92));
141 if (size_of_code_
>= length() ||
142 size_of_initialized_data_
>= length() ||
143 size_of_code_
+ size_of_initialized_data_
>= length()) {
144 // This validation fires on some perfectly fine executables.
145 // return Bad("code or initialized data too big");
148 // TODO(sra): we can probably get rid of most of the data directories.
150 // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
151 // for correctness and it compiles smaller this way.
152 b
&= ReadDataDirectory(0, &export_table_
);
153 b
&= ReadDataDirectory(1, &import_table_
);
154 b
&= ReadDataDirectory(2, &resource_table_
);
155 b
&= ReadDataDirectory(3, &exception_table_
);
156 b
&= ReadDataDirectory(5, &base_relocation_table_
);
157 b
&= ReadDataDirectory(11, &bound_import_table_
);
158 b
&= ReadDataDirectory(12, &import_address_table_
);
159 b
&= ReadDataDirectory(13, &delay_import_descriptor_
);
160 b
&= ReadDataDirectory(14, &clr_runtime_header_
);
162 return Bad("malformed data directory");
165 // Sections follow the optional header.
167 reinterpret_cast<const Section
*>(optional_header
+
168 size_of_optional_header_
);
169 size_t detected_length
= 0;
171 for (int i
= 0; i
< number_of_sections_
; ++i
) {
172 const Section
* section
= §ions_
[i
];
174 // TODO(sra): consider using the 'characteristics' field of the section
175 // header to see if the section contains instructions.
176 if (memcmp(section
->name
, ".text", 6) == 0)
177 has_text_section_
= true;
180 section
->file_offset_of_raw_data
+ section
->size_of_raw_data
;
181 if (section_end
> detected_length
)
182 detected_length
= section_end
;
185 // Pretend our in-memory copy is only as long as our detected length.
186 ReduceLength(detected_length
);
189 return Bad("32 bit executables are not supported by this disassembler");
192 if (!has_text_section()) {
193 return Bad("Resource-only executables are not yet supported");
199 bool DisassemblerWin32X64::Disassemble(AssemblyProgram
* target
) {
203 target
->set_image_base(image_base());
205 if (!ParseAbs32Relocs())
208 ParseRel32RelocsFromSections();
210 if (!ParseFile(target
))
213 target
->DefaultAssignIndexes();
218 ////////////////////////////////////////////////////////////////////////////////
220 bool DisassemblerWin32X64::ParseRelocs(std::vector
<RVA
> *relocs
) {
223 size_t relocs_size
= base_relocation_table_
.size_
;
224 if (relocs_size
== 0)
227 // The format of the base relocation table is a sequence of variable sized
228 // IMAGE_BASE_RELOCATION blocks. Search for
229 // "The format of the base relocation data is somewhat quirky"
230 // at http://msdn.microsoft.com/en-us/library/ms809762.aspx
232 const uint8
* relocs_start
= RVAToPointer(base_relocation_table_
.address_
);
233 const uint8
* relocs_end
= relocs_start
+ relocs_size
;
235 // Make sure entire base relocation table is within the buffer.
236 if (relocs_start
< start() ||
237 relocs_start
>= end() ||
238 relocs_end
<= start() ||
239 relocs_end
> end()) {
240 return Bad(".relocs outside image");
243 const uint8
* block
= relocs_start
;
245 // Walk the variable sized blocks.
246 while (block
+ 8 < relocs_end
) {
247 RVA page_rva
= ReadU32(block
, 0);
248 uint32 size
= ReadU32(block
, 4);
249 if (size
< 8 || // Size includes header ...
250 size
% 4 != 0) // ... and is word aligned.
251 return Bad("unreasonable relocs block");
253 const uint8
* end_entries
= block
+ size
;
255 if (end_entries
<= block
||
256 end_entries
<= start() ||
258 return Bad(".relocs block outside image");
260 // Walk through the two-byte entries.
261 for (const uint8
* p
= block
+ 8; p
< end_entries
; p
+= 2) {
262 uint16 entry
= ReadU16(p
, 0);
263 int type
= entry
>> 12;
264 int offset
= entry
& 0xFFF;
266 RVA rva
= page_rva
+ offset
;
267 if (type
== 10) { // IMAGE_REL_BASED_DIR64
268 relocs
->push_back(rva
);
269 } else if (type
== 0) { // IMAGE_REL_BASED_ABSOLUTE
270 // Ignore, used as padding.
272 // Does not occur in Windows x64 executables.
273 return Bad("unknown type of reloc");
280 std::sort(relocs
->begin(), relocs
->end());
285 const Section
* DisassemblerWin32X64::RVAToSection(RVA rva
) const {
286 for (int i
= 0; i
< number_of_sections_
; i
++) {
287 const Section
* section
= §ions_
[i
];
288 uint32 offset
= rva
- section
->virtual_address
;
289 if (offset
< section
->virtual_size
) {
296 int DisassemblerWin32X64::RVAToFileOffset(RVA rva
) const {
297 const Section
* section
= RVAToSection(rva
);
299 uint32 offset
= rva
- section
->virtual_address
;
300 if (offset
< section
->size_of_raw_data
) {
301 return section
->file_offset_of_raw_data
+ offset
;
303 return kNoOffset
; // In section but not in file (e.g. uninit data).
307 // Small RVA values point into the file header in the loaded image.
308 // RVA 0 is the module load address which Windows uses as the module handle.
309 // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
311 if (rva
== 0 || rva
== 2)
318 const uint8
* DisassemblerWin32X64::RVAToPointer(RVA rva
) const {
319 int file_offset
= RVAToFileOffset(rva
);
320 if (file_offset
== kNoOffset
)
323 return OffsetToPointer(file_offset
);
326 std::string
DisassemblerWin32X64::SectionName(const Section
* section
) {
330 memcpy(name
, section
->name
, 8);
331 name
[8] = '\0'; // Ensure termination.
335 CheckBool
DisassemblerWin32X64::ParseFile(AssemblyProgram
* program
) {
336 // Walk all the bytes in the file, whether or not in a section.
337 uint32 file_offset
= 0;
338 while (file_offset
< length()) {
339 const Section
* section
= FindNextSection(file_offset
);
340 if (section
== NULL
) {
341 // No more sections. There should not be extra stuff following last
343 // ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
346 if (file_offset
< section
->file_offset_of_raw_data
) {
347 uint32 section_start_offset
= section
->file_offset_of_raw_data
;
348 if(!ParseNonSectionFileRegion(file_offset
, section_start_offset
,
352 file_offset
= section_start_offset
;
354 uint32 end
= file_offset
+ section
->size_of_raw_data
;
355 if (!ParseFileRegion(section
, file_offset
, end
, program
))
360 #if COURGETTE_HISTOGRAM_TARGETS
361 HistogramTargets("abs32 relocs", abs32_target_rvas_
);
362 HistogramTargets("rel32 relocs", rel32_target_rvas_
);
368 bool DisassemblerWin32X64::ParseAbs32Relocs() {
369 abs32_locations_
.clear();
370 if (!ParseRelocs(&abs32_locations_
))
373 std::sort(abs32_locations_
.begin(), abs32_locations_
.end());
375 #if COURGETTE_HISTOGRAM_TARGETS
376 for (size_t i
= 0; i
< abs32_locations_
.size(); ++i
) {
377 RVA rva
= abs32_locations_
[i
];
378 // The 4 bytes at the relocation are a reference to some address.
379 uint32 target_address
= Read32LittleEndian(RVAToPointer(rva
));
380 ++abs32_target_rvas_
[target_address
- image_base()];
386 void DisassemblerWin32X64::ParseRel32RelocsFromSections() {
387 uint32 file_offset
= 0;
388 while (file_offset
< length()) {
389 const Section
* section
= FindNextSection(file_offset
);
392 if (file_offset
< section
->file_offset_of_raw_data
)
393 file_offset
= section
->file_offset_of_raw_data
;
394 ParseRel32RelocsFromSection(section
);
395 file_offset
+= section
->size_of_raw_data
;
397 std::sort(rel32_locations_
.begin(), rel32_locations_
.end());
399 #if COURGETTE_HISTOGRAM_TARGETS
400 VLOG(1) << "abs32_locations_ " << abs32_locations_
.size()
401 << "\nrel32_locations_ " << rel32_locations_
.size()
402 << "\nabs32_target_rvas_ " << abs32_target_rvas_
.size()
403 << "\nrel32_target_rvas_ " << rel32_target_rvas_
.size();
406 std::map
<RVA
, int>::iterator abs32_iter
= abs32_target_rvas_
.begin();
407 std::map
<RVA
, int>::iterator rel32_iter
= rel32_target_rvas_
.begin();
408 while (abs32_iter
!= abs32_target_rvas_
.end() &&
409 rel32_iter
!= rel32_target_rvas_
.end()) {
410 if (abs32_iter
->first
< rel32_iter
->first
)
412 else if (rel32_iter
->first
< abs32_iter
->first
)
420 VLOG(1) << "common " << common
;
424 void DisassemblerWin32X64::ParseRel32RelocsFromSection(const Section
* section
) {
425 // TODO(sra): use characteristic.
426 bool isCode
= strcmp(section
->name
, ".text") == 0;
430 uint32 start_file_offset
= section
->file_offset_of_raw_data
;
431 uint32 end_file_offset
= start_file_offset
+ section
->size_of_raw_data
;
432 RVA relocs_start_rva
= base_relocation_table().address_
;
434 const uint8
* start_pointer
= OffsetToPointer(start_file_offset
);
435 const uint8
* end_pointer
= OffsetToPointer(end_file_offset
);
437 RVA start_rva
= FileOffsetToRVA(start_file_offset
);
438 RVA end_rva
= start_rva
+ section
->virtual_size
;
440 // Quick way to convert from Pointer to RVA within a single Section is to
441 // subtract 'pointer_to_rva'.
442 const uint8
* const adjust_pointer_to_rva
= start_pointer
- start_rva
;
444 std::vector
<RVA
>::iterator abs32_pos
= abs32_locations_
.begin();
446 // Find the rel32 relocations.
447 const uint8
* p
= start_pointer
;
448 while (p
< end_pointer
) {
449 RVA current_rva
= static_cast<RVA
>(p
- adjust_pointer_to_rva
);
450 if (current_rva
== relocs_start_rva
) {
451 uint32 relocs_size
= base_relocation_table().size_
;
458 //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
461 // Heuristic discovery of rel32 locations in instruction stream: are the
462 // next few bytes the start of an instruction containing a rel32
464 const uint8
* rel32
= NULL
;
465 bool is_rip_relative
= false;
467 if (p
+ 5 <= end_pointer
) {
468 if (*p
== 0xE8 || *p
== 0xE9) // jmp rel32 and call rel32
471 if (p
+ 6 <= end_pointer
) {
472 if (*p
== 0x0F && (*(p
+ 1) & 0xF0) == 0x80) { // Jcc long form
473 if (p
[1] != 0x8A && p
[1] != 0x8B) // JPE/JPO unlikely
475 } else if (*p
== 0xFF && (*(p
+ 1) == 0x15 || *(p
+ 1) == 0x25)) {
476 // rip relative call/jmp
478 is_rip_relative
= true;
481 if (p
+ 7 <= end_pointer
) {
482 if ((*p
& 0xFB) == 0x48 && *(p
+ 1) == 0x8D &&
483 (*(p
+ 2) & 0xC7) == 0x05) {
486 is_rip_relative
= true;
487 } else if ((*p
& 0xFB) == 0x48 && *(p
+ 1) == 0x8B &&
488 (*(p
+ 2) & 0xC7) == 0x05) {
491 is_rip_relative
= true;
496 RVA rel32_rva
= static_cast<RVA
>(rel32
- adjust_pointer_to_rva
);
498 // Is there an abs32 reloc overlapping the candidate?
499 while (abs32_pos
!= abs32_locations_
.end() && *abs32_pos
< rel32_rva
- 3)
501 // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
502 // region that could overlap rel32_rva.
503 if (abs32_pos
!= abs32_locations_
.end()) {
504 if (*abs32_pos
< rel32_rva
+ 4) {
505 // Beginning of abs32 reloc is before end of rel32 reloc so they
506 // overlap. Skip four bytes past the abs32 reloc.
507 p
+= (*abs32_pos
+ 4) - current_rva
;
512 RVA target_rva
= rel32_rva
+ 4 + Read32LittleEndian(rel32
);
513 // To be valid, rel32 target must be within image, and within this
515 if (IsValidRVA(target_rva
) &&
517 (start_rva
<= target_rva
&& target_rva
< end_rva
))) {
518 rel32_locations_
.push_back(rel32_rva
);
519 #if COURGETTE_HISTOGRAM_TARGETS
520 ++rel32_target_rvas_
[target_rva
];
530 CheckBool
DisassemblerWin32X64::ParseNonSectionFileRegion(
531 uint32 start_file_offset
,
532 uint32 end_file_offset
,
533 AssemblyProgram
* program
) {
534 if (incomplete_disassembly_
)
537 if (end_file_offset
> start_file_offset
) {
538 if (!program
->EmitBytesInstruction(OffsetToPointer(start_file_offset
),
539 end_file_offset
- start_file_offset
)) {
547 CheckBool
DisassemblerWin32X64::ParseFileRegion(
548 const Section
* section
,
549 uint32 start_file_offset
, uint32 end_file_offset
,
550 AssemblyProgram
* program
) {
551 RVA relocs_start_rva
= base_relocation_table().address_
;
553 const uint8
* start_pointer
= OffsetToPointer(start_file_offset
);
554 const uint8
* end_pointer
= OffsetToPointer(end_file_offset
);
556 RVA start_rva
= FileOffsetToRVA(start_file_offset
);
557 RVA end_rva
= start_rva
+ section
->virtual_size
;
559 // Quick way to convert from Pointer to RVA within a single Section is to
560 // subtract 'pointer_to_rva'.
561 const uint8
* const adjust_pointer_to_rva
= start_pointer
- start_rva
;
563 std::vector
<RVA
>::iterator rel32_pos
= rel32_locations_
.begin();
564 std::vector
<RVA
>::iterator abs32_pos
= abs32_locations_
.begin();
566 if (!program
->EmitOriginInstruction(start_rva
))
569 const uint8
* p
= start_pointer
;
571 while (p
< end_pointer
) {
572 RVA current_rva
= static_cast<RVA
>(p
- adjust_pointer_to_rva
);
574 // The base relocation table is usually in the .relocs section, but it could
575 // actually be anywhere. Make sure we skip it because we will regenerate it
577 if (current_rva
== relocs_start_rva
) {
578 if (!program
->EmitPeRelocsInstruction())
580 uint32 relocs_size
= base_relocation_table().size_
;
587 while (abs32_pos
!= abs32_locations_
.end() && *abs32_pos
< current_rva
)
590 if (abs32_pos
!= abs32_locations_
.end() && *abs32_pos
== current_rva
) {
591 uint64 target_address
= Read64LittleEndian(p
);
592 RVA target_rva
= base::checked_cast
<RVA
>(target_address
- image_base());
593 // TODO(sra): target could be Label+offset. It is not clear how to guess
594 // which it might be. We assume offset==0.
595 if (!program
->EmitAbs64(program
->FindOrMakeAbs32Label(target_rva
)))
601 while (rel32_pos
!= rel32_locations_
.end() && *rel32_pos
< current_rva
)
604 if (rel32_pos
!= rel32_locations_
.end() && *rel32_pos
== current_rva
) {
605 RVA target_rva
= current_rva
+ 4 + Read32LittleEndian(p
);
606 if (!program
->EmitRel32(program
->FindOrMakeRel32Label(target_rva
)))
612 if (incomplete_disassembly_
) {
613 if ((abs32_pos
== abs32_locations_
.end() || end_rva
<= *abs32_pos
) &&
614 (rel32_pos
== rel32_locations_
.end() || end_rva
<= *rel32_pos
) &&
615 (end_rva
<= relocs_start_rva
|| current_rva
>= relocs_start_rva
)) {
616 // No more relocs in this section, don't bother encoding bytes.
621 if (!program
->EmitByteInstruction(*p
))
629 #if COURGETTE_HISTOGRAM_TARGETS
630 // Histogram is printed to std::cout. It is purely for debugging the algorithm
631 // and is only enabled manually in 'exploration' builds. I don't want to add
632 // command-line configuration for this feature because this code has to be
633 // small, which means compiled-out.
634 void DisassemblerWin32X64::HistogramTargets(const char* kind
,
635 const std::map
<RVA
, int>& map
) {
637 std::map
<int, std::vector
<RVA
> > h
;
638 for (std::map
<RVA
, int>::const_iterator p
= map
.begin();
641 h
[p
->second
].push_back(p
->first
);
645 std::cout
<< total
<< " " << kind
<< " to "
646 << map
.size() << " unique targets" << std::endl
;
648 std::cout
<< "indegree: #targets-with-indegree (example)" << std::endl
;
649 const int kFirstN
= 15;
650 bool someSkipped
= false;
652 for (std::map
<int, std::vector
<RVA
> >::reverse_iterator p
= h
.rbegin();
656 if (index
<= kFirstN
|| p
->first
<= 3) {
658 std::cout
<< "..." << std::endl
;
660 size_t count
= p
->second
.size();
661 std::cout
<< std::dec
<< p
->first
<< ": " << count
;
663 for (size_t i
= 0; i
< count
; ++i
)
664 std::cout
<< " " << DescribeRVA(p
->second
[i
]);
666 std::cout
<< std::endl
;
673 #endif // COURGETTE_HISTOGRAM_TARGETS
676 // DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
677 // that during development I'm finding I need to call it when compiled in
678 // Release mode. Hence:
679 // TODO(sra): make this compile only for debug mode.
680 std::string
DisassemblerWin32X64::DescribeRVA(RVA rva
) const {
681 const Section
* section
= RVAToSection(rva
);
682 std::ostringstream s
;
683 s
<< std::hex
<< rva
;
686 s
<< SectionName(section
) << "+"
687 << std::hex
<< (rva
- section
->virtual_address
)
693 const Section
* DisassemblerWin32X64::FindNextSection(uint32 fileOffset
) const {
694 const Section
* best
= 0;
695 for (int i
= 0; i
< number_of_sections_
; i
++) {
696 const Section
* section
= §ions_
[i
];
697 if (section
->size_of_raw_data
> 0) { // i.e. has data in file.
698 if (fileOffset
<= section
->file_offset_of_raw_data
) {
700 section
->file_offset_of_raw_data
< best
->file_offset_of_raw_data
) {
709 RVA
DisassemblerWin32X64::FileOffsetToRVA(uint32 file_offset
) const {
710 for (int i
= 0; i
< number_of_sections_
; i
++) {
711 const Section
* section
= §ions_
[i
];
712 uint32 offset
= file_offset
- section
->file_offset_of_raw_data
;
713 if (offset
< section
->size_of_raw_data
) {
714 return section
->virtual_address
+ offset
;
720 bool DisassemblerWin32X64::ReadDataDirectory(
722 ImageDataDirectory
* directory
) {
724 if (index
< number_of_data_directories_
) {
725 size_t offset
= index
* 8 + offset_of_data_directories_
;
726 if (offset
>= size_of_optional_header_
)
727 return Bad("number of data directories inconsistent");
728 const uint8
* data_directory
= optional_header_
+ offset
;
729 if (data_directory
< start() ||
730 data_directory
+ 8 >= end())
731 return Bad("data directory outside image");
732 RVA rva
= ReadU32(data_directory
, 0);
733 size_t size
= ReadU32(data_directory
, 4);
734 if (size
> size_of_image_
)
735 return Bad("data directory size too big");
737 // TODO(sra): validate RVA.
738 directory
->address_
= rva
;
739 directory
->size_
= static_cast<uint32
>(size
);
742 directory
->address_
= 0;
743 directory
->size_
= 0;
748 } // namespace courgette