Disabled pinch zooming in non-browser Aura windows.
[chromium-blink-merge.git] / cc / trees / layer_tree_host_common.cc
blobc4baca87a164a198428ea874d4cff9a5e92eb999
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/trees/layer_tree_host_common.h"
7 #include <algorithm>
9 #include "base/debug/trace_event.h"
10 #include "cc/base/math_util.h"
11 #include "cc/layers/heads_up_display_layer_impl.h"
12 #include "cc/layers/layer.h"
13 #include "cc/layers/layer_impl.h"
14 #include "cc/layers/layer_iterator.h"
15 #include "cc/layers/render_surface.h"
16 #include "cc/layers/render_surface_impl.h"
17 #include "cc/trees/layer_sorter.h"
18 #include "cc/trees/layer_tree_impl.h"
19 #include "ui/gfx/point_conversions.h"
20 #include "ui/gfx/rect_conversions.h"
21 #include "ui/gfx/transform.h"
23 namespace cc {
25 ScrollAndScaleSet::ScrollAndScaleSet() {}
27 ScrollAndScaleSet::~ScrollAndScaleSet() {}
29 static void SortLayers(LayerList::iterator forst,
30 LayerList::iterator end,
31 void* layer_sorter) {
32 NOTREACHED();
35 static void SortLayers(LayerImplList::iterator first,
36 LayerImplList::iterator end,
37 LayerSorter* layer_sorter) {
38 DCHECK(layer_sorter);
39 TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers");
40 layer_sorter->Sort(first, end);
43 template <typename LayerType>
44 static gfx::Vector2dF GetEffectiveScrollDelta(LayerType* layer) {
45 gfx::Vector2dF scroll_delta = layer->ScrollDelta();
46 // The scroll parent's scroll delta is the amount we've scrolled on the
47 // compositor thread since the commit for this layer tree's source frame.
48 // we last reported to the main thread. I.e., it's the discrepancy between
49 // a scroll parent's scroll delta and offset, so we must add it here.
50 if (layer->scroll_parent())
51 scroll_delta += layer->scroll_parent()->ScrollDelta();
52 return scroll_delta;
55 template <typename LayerType>
56 static gfx::Vector2dF GetEffectiveTotalScrollOffset(LayerType* layer) {
57 gfx::Vector2dF offset = layer->TotalScrollOffset();
58 // The scroll parent's total scroll offset (scroll offset + scroll delta)
59 // can't be used because its scroll offset has already been applied to the
60 // scroll children's positions by the main thread layer positioning code.
61 if (layer->scroll_parent())
62 offset += layer->scroll_parent()->ScrollDelta();
63 return offset;
66 inline gfx::Rect CalculateVisibleRectWithCachedLayerRect(
67 const gfx::Rect& target_surface_rect,
68 const gfx::Rect& layer_bound_rect,
69 const gfx::Rect& layer_rect_in_target_space,
70 const gfx::Transform& transform) {
71 if (layer_rect_in_target_space.IsEmpty())
72 return gfx::Rect();
74 // Is this layer fully contained within the target surface?
75 if (target_surface_rect.Contains(layer_rect_in_target_space))
76 return layer_bound_rect;
78 // If the layer doesn't fill up the entire surface, then find the part of
79 // the surface rect where the layer could be visible. This avoids trying to
80 // project surface rect points that are behind the projection point.
81 gfx::Rect minimal_surface_rect = target_surface_rect;
82 minimal_surface_rect.Intersect(layer_rect_in_target_space);
84 if (minimal_surface_rect.IsEmpty())
85 return gfx::Rect();
87 // Project the corners of the target surface rect into the layer space.
88 // This bounding rectangle may be larger than it needs to be (being
89 // axis-aligned), but is a reasonable filter on the space to consider.
90 // Non-invertible transforms will create an empty rect here.
92 gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization);
93 if (!transform.GetInverse(&surface_to_layer)) {
94 // Because we cannot use the surface bounds to determine what portion of
95 // the layer is visible, we must conservatively assume the full layer is
96 // visible.
97 return layer_bound_rect;
100 gfx::Rect layer_rect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
101 surface_to_layer, gfx::RectF(minimal_surface_rect)));
102 layer_rect.Intersect(layer_bound_rect);
103 return layer_rect;
106 gfx::Rect LayerTreeHostCommon::CalculateVisibleRect(
107 const gfx::Rect& target_surface_rect,
108 const gfx::Rect& layer_bound_rect,
109 const gfx::Transform& transform) {
110 gfx::Rect layer_in_surface_space =
111 MathUtil::MapClippedRect(transform, layer_bound_rect);
112 return CalculateVisibleRectWithCachedLayerRect(
113 target_surface_rect, layer_bound_rect, layer_in_surface_space, transform);
116 template <typename LayerType>
117 static LayerType* NextTargetSurface(LayerType* layer) {
118 return layer->parent() ? layer->parent()->render_target() : 0;
121 // Given two layers, this function finds their respective render targets and,
122 // computes a change of basis translation. It does this by accumulating the
123 // translation components of the draw transforms of each target between the
124 // ancestor and descendant. These transforms must be 2D translations, and this
125 // requirement is enforced at every step.
126 template <typename LayerType>
127 static gfx::Vector2dF ComputeChangeOfBasisTranslation(
128 const LayerType& ancestor_layer,
129 const LayerType& descendant_layer) {
130 DCHECK(descendant_layer.HasAncestor(&ancestor_layer));
131 const LayerType* descendant_target = descendant_layer.render_target();
132 DCHECK(descendant_target);
133 const LayerType* ancestor_target = ancestor_layer.render_target();
134 DCHECK(ancestor_target);
136 gfx::Vector2dF translation;
137 for (const LayerType* target = descendant_target; target != ancestor_target;
138 target = NextTargetSurface(target)) {
139 const gfx::Transform& trans = target->render_surface()->draw_transform();
140 // Ensure that this translation is truly 2d.
141 DCHECK(trans.IsIdentityOrTranslation());
142 DCHECK_EQ(0.f, trans.matrix().get(2, 3));
143 translation += trans.To2dTranslation();
146 return translation;
149 enum TranslateRectDirection {
150 TranslateRectDirectionToAncestor,
151 TranslateRectDirectionToDescendant
154 template <typename LayerType>
155 static gfx::Rect TranslateRectToTargetSpace(const LayerType& ancestor_layer,
156 const LayerType& descendant_layer,
157 const gfx::Rect& rect,
158 TranslateRectDirection direction) {
159 gfx::Vector2dF translation = ComputeChangeOfBasisTranslation<LayerType>(
160 ancestor_layer, descendant_layer);
161 if (direction == TranslateRectDirectionToDescendant)
162 translation.Scale(-1.f);
163 return gfx::ToEnclosingRect(
164 gfx::RectF(rect.origin() + translation, rect.size()));
167 // Attempts to update the clip rects for the given layer. If the layer has a
168 // clip_parent, it may not inherit its immediate ancestor's clip.
169 template <typename LayerType>
170 static void UpdateClipRectsForClipChild(
171 const LayerType* layer,
172 gfx::Rect* clip_rect_in_parent_target_space,
173 bool* subtree_should_be_clipped) {
174 // If the layer has no clip_parent, or the ancestor is the same as its actual
175 // parent, then we don't need special clip rects. Bail now and leave the out
176 // parameters untouched.
177 const LayerType* clip_parent = layer->scroll_parent();
179 if (!clip_parent)
180 clip_parent = layer->clip_parent();
182 if (!clip_parent || clip_parent == layer->parent())
183 return;
185 // The root layer is never a clip child.
186 DCHECK(layer->parent());
188 // Grab the cached values.
189 *clip_rect_in_parent_target_space = clip_parent->clip_rect();
190 *subtree_should_be_clipped = clip_parent->is_clipped();
192 // We may have to project the clip rect into our parent's target space. Note,
193 // it must be our parent's target space, not ours. For one, we haven't
194 // computed our transforms, so we couldn't put it in our space yet even if we
195 // wanted to. But more importantly, this matches the expectations of
196 // CalculateDrawPropertiesInternal. If we, say, create a render surface, these
197 // clip rects will want to be in its target space, not ours.
198 if (clip_parent == layer->clip_parent()) {
199 *clip_rect_in_parent_target_space = TranslateRectToTargetSpace<LayerType>(
200 *clip_parent,
201 *layer->parent(),
202 *clip_rect_in_parent_target_space,
203 TranslateRectDirectionToDescendant);
204 } else {
205 // If we're being clipped by our scroll parent, we must translate through
206 // our common ancestor. This happens to be our parent, so it is sufficent to
207 // translate from our clip parent's space to the space of its ancestor (our
208 // parent).
209 *clip_rect_in_parent_target_space =
210 TranslateRectToTargetSpace<LayerType>(*layer->parent(),
211 *clip_parent,
212 *clip_rect_in_parent_target_space,
213 TranslateRectDirectionToAncestor);
217 // We collect an accumulated drawable content rect per render surface.
218 // Typically, a layer will contribute to only one surface, the surface
219 // associated with its render target. Clip children, however, may affect
220 // several surfaces since there may be several surfaces between the clip child
221 // and its parent.
223 // NB: we accumulate the layer's *clipped* drawable content rect.
224 template <typename LayerType>
225 struct AccumulatedSurfaceState {
226 explicit AccumulatedSurfaceState(LayerType* render_target)
227 : render_target(render_target) {}
229 // The accumulated drawable content rect for the surface associated with the
230 // given |render_target|.
231 gfx::Rect drawable_content_rect;
233 // The target owning the surface. (We hang onto the target rather than the
234 // surface so that we can DCHECK that the surface's draw transform is simply
235 // a translation when |render_target| reports that it has no unclipped
236 // descendants).
237 LayerType* render_target;
240 template <typename LayerType>
241 void UpdateAccumulatedSurfaceState(
242 LayerType* layer,
243 const gfx::Rect& drawable_content_rect,
244 std::vector<AccumulatedSurfaceState<LayerType> >*
245 accumulated_surface_state) {
246 if (IsRootLayer(layer))
247 return;
249 // We will apply our drawable content rect to the accumulated rects for all
250 // surfaces between us and |render_target| (inclusive). This is either our
251 // clip parent's target if we are a clip child, or else simply our parent's
252 // target. We use our parent's target because we're either the owner of a
253 // render surface and we'll want to add our rect to our *surface's* target, or
254 // we're not and our target is the same as our parent's. In both cases, the
255 // parent's target gives us what we want.
256 LayerType* render_target = layer->clip_parent()
257 ? layer->clip_parent()->render_target()
258 : layer->parent()->render_target();
260 // If the layer owns a surface, then the content rect is in the wrong space.
261 // Instead, we will use the surface's DrawableContentRect which is in target
262 // space as required.
263 gfx::Rect target_rect = drawable_content_rect;
264 if (layer->render_surface()) {
265 target_rect =
266 gfx::ToEnclosedRect(layer->render_surface()->DrawableContentRect());
269 if (render_target->is_clipped()) {
270 gfx::Rect clip_rect = render_target->clip_rect();
271 // If the layer has a clip parent, the clip rect may be in the wrong space,
272 // so we'll need to transform it before it is applied.
273 if (layer->clip_parent()) {
274 clip_rect = TranslateRectToTargetSpace<LayerType>(
275 *layer->clip_parent(),
276 *layer,
277 clip_rect,
278 TranslateRectDirectionToDescendant);
280 target_rect.Intersect(clip_rect);
283 // We must have at least one entry in the vector for the root.
284 DCHECK_LT(0ul, accumulated_surface_state->size());
286 typedef typename std::vector<AccumulatedSurfaceState<LayerType> >
287 AccumulatedSurfaceStateVector;
288 typedef typename AccumulatedSurfaceStateVector::reverse_iterator
289 AccumulatedSurfaceStateIterator;
290 AccumulatedSurfaceStateIterator current_state =
291 accumulated_surface_state->rbegin();
293 // Add this rect to the accumulated content rect for all surfaces until we
294 // reach the target surface.
295 bool found_render_target = false;
296 for (; current_state != accumulated_surface_state->rend(); ++current_state) {
297 current_state->drawable_content_rect.Union(target_rect);
299 // If we've reached |render_target| our work is done and we can bail.
300 if (current_state->render_target == render_target) {
301 found_render_target = true;
302 break;
305 // Transform rect from the current target's space to the next.
306 LayerType* current_target = current_state->render_target;
307 DCHECK(current_target->render_surface());
308 const gfx::Transform& current_draw_transform =
309 current_target->render_surface()->draw_transform();
311 // If we have unclipped descendants, the draw transform is a translation.
312 DCHECK(current_target->num_unclipped_descendants() == 0 ||
313 current_draw_transform.IsIdentityOrTranslation());
315 target_rect = gfx::ToEnclosingRect(
316 MathUtil::MapClippedRect(current_draw_transform, target_rect));
319 // It is an error to not reach |render_target|. If this happens, it means that
320 // either the clip parent is not an ancestor of the clip child or the surface
321 // state vector is empty, both of which should be impossible.
322 DCHECK(found_render_target);
325 template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) {
326 return !layer->parent();
329 template <typename LayerType>
330 static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) {
331 // According to current W3C spec on CSS transforms, a layer is part of an
332 // established 3d rendering context if its parent has transform-style of
333 // preserves-3d.
334 return layer->parent() && layer->parent()->preserves_3d();
337 template <typename LayerType>
338 static bool IsRootLayerOfNewRenderingContext(LayerType* layer) {
339 // According to current W3C spec on CSS transforms (Section 6.1), a layer is
340 // the beginning of 3d rendering context if its parent does not have
341 // transform-style: preserve-3d, but this layer itself does.
342 if (layer->parent())
343 return !layer->parent()->preserves_3d() && layer->preserves_3d();
345 return layer->preserves_3d();
348 template <typename LayerType>
349 static bool IsLayerBackFaceVisible(LayerType* layer) {
350 // The current W3C spec on CSS transforms says that backface visibility should
351 // be determined differently depending on whether the layer is in a "3d
352 // rendering context" or not. For Chromium code, we can determine whether we
353 // are in a 3d rendering context by checking if the parent preserves 3d.
355 if (LayerIsInExisting3DRenderingContext(layer))
356 return layer->draw_transform().IsBackFaceVisible();
358 // In this case, either the layer establishes a new 3d rendering context, or
359 // is not in a 3d rendering context at all.
360 return layer->transform().IsBackFaceVisible();
363 template <typename LayerType>
364 static bool IsSurfaceBackFaceVisible(LayerType* layer,
365 const gfx::Transform& draw_transform) {
366 if (LayerIsInExisting3DRenderingContext(layer))
367 return draw_transform.IsBackFaceVisible();
369 if (IsRootLayerOfNewRenderingContext(layer))
370 return layer->transform().IsBackFaceVisible();
372 // If the render_surface is not part of a new or existing rendering context,
373 // then the layers that contribute to this surface will decide back-face
374 // visibility for themselves.
375 return false;
378 template <typename LayerType>
379 static inline bool LayerClipsSubtree(LayerType* layer) {
380 return layer->masks_to_bounds() || layer->mask_layer();
383 template <typename LayerType>
384 static gfx::Rect CalculateVisibleContentRect(
385 LayerType* layer,
386 const gfx::Rect& clip_rect_of_target_surface_in_target_space,
387 const gfx::Rect& layer_rect_in_target_space) {
388 DCHECK(layer->render_target());
390 // Nothing is visible if the layer bounds are empty.
391 if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() ||
392 layer->drawable_content_rect().IsEmpty())
393 return gfx::Rect();
395 // Compute visible bounds in target surface space.
396 gfx::Rect visible_rect_in_target_surface_space =
397 layer->drawable_content_rect();
399 if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) {
400 // The |layer| L has a target T which owns a surface Ts. The surface Ts
401 // has a target TsT.
403 // In this case the target surface Ts does clip the layer L that contributes
404 // to it. So, we have to convert the clip rect of Ts from the target space
405 // of Ts (that is the space of TsT), to the current render target's space
406 // (that is the space of T). This conversion is done outside this function
407 // so that it can be cached instead of computing it redundantly for every
408 // layer.
409 visible_rect_in_target_surface_space.Intersect(
410 clip_rect_of_target_surface_in_target_space);
413 if (visible_rect_in_target_surface_space.IsEmpty())
414 return gfx::Rect();
416 return CalculateVisibleRectWithCachedLayerRect(
417 visible_rect_in_target_surface_space,
418 gfx::Rect(layer->content_bounds()),
419 layer_rect_in_target_space,
420 layer->draw_transform());
423 static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; }
425 static inline bool TransformToParentIsKnown(Layer* layer) {
426 return !layer->TransformIsAnimating();
429 static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; }
431 static inline bool TransformToScreenIsKnown(Layer* layer) {
432 return !layer->screen_space_transform_is_animating();
435 template <typename LayerType>
436 static bool LayerShouldBeSkipped(LayerType* layer,
437 bool layer_is_visible) {
438 // Layers can be skipped if any of these conditions are met.
439 // - is not visible due to it or one of its ancestors being hidden.
440 // - has empty bounds
441 // - the layer is not double-sided, but its back face is visible.
442 // - is transparent
443 // - does not draw content and does not participate in hit testing.
445 // Some additional conditions need to be computed at a later point after the
446 // recursion is finished.
447 // - the intersection of render_surface content and layer clip_rect is empty
448 // - the visible_content_rect is empty
450 // Note, if the layer should not have been drawn due to being fully
451 // transparent, we would have skipped the entire subtree and never made it
452 // into this function, so it is safe to omit this check here.
454 if (!layer_is_visible)
455 return true;
457 if (layer->bounds().IsEmpty())
458 return true;
460 LayerType* backface_test_layer = layer;
461 if (layer->use_parent_backface_visibility()) {
462 DCHECK(layer->parent());
463 DCHECK(!layer->parent()->use_parent_backface_visibility());
464 backface_test_layer = layer->parent();
467 // The layer should not be drawn if (1) it is not double-sided and (2) the
468 // back of the layer is known to be facing the screen.
469 if (!backface_test_layer->double_sided() &&
470 TransformToScreenIsKnown(backface_test_layer) &&
471 IsLayerBackFaceVisible(backface_test_layer))
472 return true;
474 // The layer is visible to events. If it's subject to hit testing, then
475 // we can't skip it.
476 bool can_accept_input = !layer->touch_event_handler_region().IsEmpty() ||
477 layer->have_wheel_event_handlers();
478 if (!layer->DrawsContent() && !can_accept_input)
479 return true;
481 return false;
484 static inline bool SubtreeShouldBeSkipped(LayerImpl* layer,
485 bool layer_is_visible) {
486 // When we need to do a readback/copy of a layer's output, we can not skip
487 // it or any of its ancestors.
488 if (layer->draw_properties().layer_or_descendant_has_copy_request)
489 return false;
491 // If the layer is not visible, then skip it and its subtree.
492 if (!layer_is_visible)
493 return true;
495 // If layer is on the pending tree and opacity is being animated then
496 // this subtree can't be skipped as we need to create, prioritize and
497 // include tiles for this layer when deciding if tree can be activated.
498 if (layer->layer_tree_impl()->IsPendingTree() && layer->OpacityIsAnimating())
499 return false;
501 // The opacity of a layer always applies to its children (either implicitly
502 // via a render surface or explicitly if the parent preserves 3D), so the
503 // entire subtree can be skipped if this layer is fully transparent.
504 // TODO(sad): Don't skip layers used for hit testing crbug.com/295295.
505 return !layer->opacity();
508 static inline bool SubtreeShouldBeSkipped(Layer* layer,
509 bool layer_is_visible) {
510 // When we need to do a readback/copy of a layer's output, we can not skip
511 // it or any of its ancestors.
512 if (layer->draw_properties().layer_or_descendant_has_copy_request)
513 return false;
515 // If the layer is not visible, then skip it and its subtree.
516 if (!layer_is_visible)
517 return true;
519 // If the opacity is being animated then the opacity on the main thread is
520 // unreliable (since the impl thread may be using a different opacity), so it
521 // should not be trusted.
522 // In particular, it should not cause the subtree to be skipped.
523 // Similarly, for layers that might animate opacity using an impl-only
524 // animation, their subtree should also not be skipped.
525 // TODO(sad): Don't skip layers used for hit testing crbug.com/295295.
526 return !layer->opacity() && !layer->OpacityIsAnimating() &&
527 !layer->OpacityCanAnimateOnImplThread();
530 static inline void SavePaintPropertiesLayer(LayerImpl* layer) {}
532 static inline void SavePaintPropertiesLayer(Layer* layer) {
533 layer->SavePaintProperties();
535 if (layer->mask_layer())
536 layer->mask_layer()->SavePaintProperties();
537 if (layer->replica_layer() && layer->replica_layer()->mask_layer())
538 layer->replica_layer()->mask_layer()->SavePaintProperties();
541 template <typename LayerType>
542 static bool SubtreeShouldRenderToSeparateSurface(
543 LayerType* layer,
544 bool axis_aligned_with_respect_to_parent) {
546 // A layer and its descendants should render onto a new RenderSurfaceImpl if
547 // any of these rules hold:
550 // The root layer owns a render surface, but it never acts as a contributing
551 // surface to another render target. Compositor features that are applied via
552 // a contributing surface can not be applied to the root layer. In order to
553 // use these effects, another child of the root would need to be introduced
554 // in order to act as a contributing surface to the root layer's surface.
555 bool is_root = IsRootLayer(layer);
557 // If the layer uses a mask.
558 if (layer->mask_layer()) {
559 DCHECK(!is_root);
560 return true;
563 // If the layer has a reflection.
564 if (layer->replica_layer()) {
565 DCHECK(!is_root);
566 return true;
569 // If the layer uses a CSS filter.
570 if (!layer->filters().IsEmpty() || !layer->background_filters().IsEmpty()) {
571 DCHECK(!is_root);
572 return true;
575 int num_descendants_that_draw_content =
576 layer->draw_properties().num_descendants_that_draw_content;
578 // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but
579 // it is treated as a 3D object by its parent (i.e. parent does preserve-3d).
580 if (LayerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() &&
581 num_descendants_that_draw_content > 0) {
582 TRACE_EVENT_INSTANT0(
583 "cc",
584 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening",
585 TRACE_EVENT_SCOPE_THREAD);
586 DCHECK(!is_root);
587 return true;
590 // If the layer has blending.
591 // TODO(rosca): this is temporary, until blending is implemented for other
592 // types of quads than RenderPassDrawQuad. Layers having descendants that draw
593 // content will still create a separate rendering surface.
594 if (!layer->uses_default_blend_mode()) {
595 TRACE_EVENT_INSTANT0(
596 "cc",
597 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface blending",
598 TRACE_EVENT_SCOPE_THREAD);
599 DCHECK(!is_root);
600 return true;
603 // If the layer clips its descendants but it is not axis-aligned with respect
604 // to its parent.
605 bool layer_clips_external_content =
606 LayerClipsSubtree(layer) || layer->HasDelegatedContent();
607 if (layer_clips_external_content && !axis_aligned_with_respect_to_parent &&
608 num_descendants_that_draw_content > 0) {
609 TRACE_EVENT_INSTANT0(
610 "cc",
611 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping",
612 TRACE_EVENT_SCOPE_THREAD);
613 DCHECK(!is_root);
614 return true;
617 // If the layer has some translucency and does not have a preserves-3d
618 // transform style. This condition only needs a render surface if two or more
619 // layers in the subtree overlap. But checking layer overlaps is unnecessarily
620 // costly so instead we conservatively create a surface whenever at least two
621 // layers draw content for this subtree.
622 bool at_least_two_layers_in_subtree_draw_content =
623 num_descendants_that_draw_content > 0 &&
624 (layer->DrawsContent() || num_descendants_that_draw_content > 1);
626 if (layer->opacity() != 1.f && !layer->preserves_3d() &&
627 at_least_two_layers_in_subtree_draw_content) {
628 TRACE_EVENT_INSTANT0(
629 "cc",
630 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity",
631 TRACE_EVENT_SCOPE_THREAD);
632 DCHECK(!is_root);
633 return true;
636 // The root layer should always have a render_surface.
637 if (is_root)
638 return true;
641 // These are allowed on the root surface, as they don't require the surface to
642 // be used as a contributing surface in order to apply correctly.
645 // If the layer has isolation.
646 // TODO(rosca): to be optimized - create separate rendering surface only when
647 // the blending descendants might have access to the content behind this layer
648 // (layer has transparent background or descendants overflow).
649 // https://code.google.com/p/chromium/issues/detail?id=301738
650 if (layer->is_root_for_isolated_group()) {
651 TRACE_EVENT_INSTANT0(
652 "cc",
653 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface isolation",
654 TRACE_EVENT_SCOPE_THREAD);
655 return true;
658 // If we force it.
659 if (layer->force_render_surface())
660 return true;
662 // If we'll make a copy of the layer's contents.
663 if (layer->HasCopyRequest())
664 return true;
666 return false;
669 // This function returns a translation matrix that can be applied on a vector
670 // that's in the layer's target surface coordinate, while the position offset is
671 // specified in some ancestor layer's coordinate.
672 gfx::Transform ComputeSizeDeltaCompensation(
673 LayerImpl* layer,
674 LayerImpl* container,
675 const gfx::Vector2dF& position_offset) {
676 gfx::Transform result_transform;
678 // To apply a translate in the container's layer space,
679 // the following steps need to be done:
680 // Step 1a. transform from target surface space to the container's target
681 // surface space
682 // Step 1b. transform from container's target surface space to the
683 // container's layer space
684 // Step 2. apply the compensation
685 // Step 3. transform back to target surface space
687 gfx::Transform target_surface_space_to_container_layer_space;
688 // Calculate step 1a
689 LayerImpl* container_target_surface = container->render_target();
690 for (LayerImpl* current_target_surface = NextTargetSurface(layer);
691 current_target_surface &&
692 current_target_surface != container_target_surface;
693 current_target_surface = NextTargetSurface(current_target_surface)) {
694 // Note: Concat is used here to convert the result coordinate space from
695 // current render surface to the next render surface.
696 target_surface_space_to_container_layer_space.ConcatTransform(
697 current_target_surface->render_surface()->draw_transform());
699 // Calculate step 1b
700 gfx::Transform container_layer_space_to_container_target_surface_space =
701 container->draw_transform();
702 container_layer_space_to_container_target_surface_space.Scale(
703 container->contents_scale_x(), container->contents_scale_y());
705 gfx::Transform container_target_surface_space_to_container_layer_space;
706 if (container_layer_space_to_container_target_surface_space.GetInverse(
707 &container_target_surface_space_to_container_layer_space)) {
708 // Note: Again, Concat is used to conver the result coordinate space from
709 // the container render surface to the container layer.
710 target_surface_space_to_container_layer_space.ConcatTransform(
711 container_target_surface_space_to_container_layer_space);
714 // Apply step 3
715 gfx::Transform container_layer_space_to_target_surface_space;
716 if (target_surface_space_to_container_layer_space.GetInverse(
717 &container_layer_space_to_target_surface_space)) {
718 result_transform.PreconcatTransform(
719 container_layer_space_to_target_surface_space);
720 } else {
721 // TODO(shawnsingh): A non-invertible matrix could still make meaningful
722 // projection. For example ScaleZ(0) is non-invertible but the layer is
723 // still visible.
724 return gfx::Transform();
727 // Apply step 2
728 result_transform.Translate(position_offset.x(), position_offset.y());
730 // Apply step 1
731 result_transform.PreconcatTransform(
732 target_surface_space_to_container_layer_space);
734 return result_transform;
737 void ApplyPositionAdjustment(
738 Layer* layer,
739 Layer* container,
740 const gfx::Transform& scroll_compensation,
741 gfx::Transform* combined_transform) {}
742 void ApplyPositionAdjustment(
743 LayerImpl* layer,
744 LayerImpl* container,
745 const gfx::Transform& scroll_compensation,
746 gfx::Transform* combined_transform) {
747 if (!layer->position_constraint().is_fixed_position())
748 return;
750 // Special case: this layer is a composited fixed-position layer; we need to
751 // explicitly compensate for all ancestors' nonzero scroll_deltas to keep
752 // this layer fixed correctly.
753 // Note carefully: this is Concat, not Preconcat
754 // (current_scroll_compensation * combined_transform).
755 combined_transform->ConcatTransform(scroll_compensation);
757 // For right-edge or bottom-edge anchored fixed position layers,
758 // the layer should relocate itself if the container changes its size.
759 bool fixed_to_right_edge =
760 layer->position_constraint().is_fixed_to_right_edge();
761 bool fixed_to_bottom_edge =
762 layer->position_constraint().is_fixed_to_bottom_edge();
763 gfx::Vector2dF position_offset = container->fixed_container_size_delta();
764 position_offset.set_x(fixed_to_right_edge ? position_offset.x() : 0);
765 position_offset.set_y(fixed_to_bottom_edge ? position_offset.y() : 0);
766 if (position_offset.IsZero())
767 return;
769 // Note: Again, this is Concat. The compensation matrix will be applied on
770 // the vector in target surface space.
771 combined_transform->ConcatTransform(
772 ComputeSizeDeltaCompensation(layer, container, position_offset));
775 gfx::Transform ComputeScrollCompensationForThisLayer(
776 LayerImpl* scrolling_layer,
777 const gfx::Transform& parent_matrix,
778 const gfx::Vector2dF& scroll_delta) {
779 // For every layer that has non-zero scroll_delta, we have to compute a
780 // transform that can undo the scroll_delta translation. In particular, we
781 // want this matrix to premultiply a fixed-position layer's parent_matrix, so
782 // we design this transform in three steps as follows. The steps described
783 // here apply from right-to-left, so Step 1 would be the right-most matrix:
785 // Step 1. transform from target surface space to the exact space where
786 // scroll_delta is actually applied.
787 // -- this is inverse of parent_matrix
788 // Step 2. undo the scroll_delta
789 // -- this is just a translation by scroll_delta.
790 // Step 3. transform back to target surface space.
791 // -- this transform is the parent_matrix
793 // These steps create a matrix that both start and end in target surface
794 // space. So this matrix can pre-multiply any fixed-position layer's
795 // draw_transform to undo the scroll_deltas -- as long as that fixed position
796 // layer is fixed onto the same render_target as this scrolling_layer.
799 gfx::Transform scroll_compensation_for_this_layer = parent_matrix; // Step 3
800 scroll_compensation_for_this_layer.Translate(
801 scroll_delta.x(),
802 scroll_delta.y()); // Step 2
804 gfx::Transform inverse_parent_matrix(gfx::Transform::kSkipInitialization);
805 if (!parent_matrix.GetInverse(&inverse_parent_matrix)) {
806 // TODO(shawnsingh): Either we need to handle uninvertible transforms
807 // here, or DCHECK that the transform is invertible.
809 scroll_compensation_for_this_layer.PreconcatTransform(
810 inverse_parent_matrix); // Step 1
811 return scroll_compensation_for_this_layer;
814 gfx::Transform ComputeScrollCompensationMatrixForChildren(
815 Layer* current_layer,
816 const gfx::Transform& current_parent_matrix,
817 const gfx::Transform& current_scroll_compensation,
818 const gfx::Vector2dF& scroll_delta) {
819 // The main thread (i.e. Layer) does not need to worry about scroll
820 // compensation. So we can just return an identity matrix here.
821 return gfx::Transform();
824 gfx::Transform ComputeScrollCompensationMatrixForChildren(
825 LayerImpl* layer,
826 const gfx::Transform& parent_matrix,
827 const gfx::Transform& current_scroll_compensation_matrix,
828 const gfx::Vector2dF& scroll_delta) {
829 // "Total scroll compensation" is the transform needed to cancel out all
830 // scroll_delta translations that occurred since the nearest container layer,
831 // even if there are render_surfaces in-between.
833 // There are some edge cases to be aware of, that are not explicit in the
834 // code:
835 // - A layer that is both a fixed-position and container should not be its
836 // own container, instead, that means it is fixed to an ancestor, and is a
837 // container for any fixed-position descendants.
838 // - A layer that is a fixed-position container and has a render_surface
839 // should behave the same as a container without a render_surface, the
840 // render_surface is irrelevant in that case.
841 // - A layer that does not have an explicit container is simply fixed to the
842 // viewport. (i.e. the root render_surface.)
843 // - If the fixed-position layer has its own render_surface, then the
844 // render_surface is the one who gets fixed.
846 // This function needs to be called AFTER layers create their own
847 // render_surfaces.
850 // Scroll compensation restarts from identity under two possible conditions:
851 // - the current layer is a container for fixed-position descendants
852 // - the current layer is fixed-position itself, so any fixed-position
853 // descendants are positioned with respect to this layer. Thus, any
854 // fixed position descendants only need to compensate for scrollDeltas
855 // that occur below this layer.
856 bool current_layer_resets_scroll_compensation_for_descendants =
857 layer->IsContainerForFixedPositionLayers() ||
858 layer->position_constraint().is_fixed_position();
860 // Avoid the overheads (including stack allocation and matrix
861 // initialization/copy) if we know that the scroll compensation doesn't need
862 // to be reset or adjusted.
863 if (!current_layer_resets_scroll_compensation_for_descendants &&
864 scroll_delta.IsZero() && !layer->render_surface())
865 return current_scroll_compensation_matrix;
867 // Start as identity matrix.
868 gfx::Transform next_scroll_compensation_matrix;
870 // If this layer does not reset scroll compensation, then it inherits the
871 // existing scroll compensations.
872 if (!current_layer_resets_scroll_compensation_for_descendants)
873 next_scroll_compensation_matrix = current_scroll_compensation_matrix;
875 // If the current layer has a non-zero scroll_delta, then we should compute
876 // its local scroll compensation and accumulate it to the
877 // next_scroll_compensation_matrix.
878 if (!scroll_delta.IsZero()) {
879 gfx::Transform scroll_compensation_for_this_layer =
880 ComputeScrollCompensationForThisLayer(
881 layer, parent_matrix, scroll_delta);
882 next_scroll_compensation_matrix.PreconcatTransform(
883 scroll_compensation_for_this_layer);
886 // If the layer created its own render_surface, we have to adjust
887 // next_scroll_compensation_matrix. The adjustment allows us to continue
888 // using the scroll compensation on the next surface.
889 // Step 1 (right-most in the math): transform from the new surface to the
890 // original ancestor surface
891 // Step 2: apply the scroll compensation
892 // Step 3: transform back to the new surface.
893 if (layer->render_surface() &&
894 !next_scroll_compensation_matrix.IsIdentity()) {
895 gfx::Transform inverse_surface_draw_transform(
896 gfx::Transform::kSkipInitialization);
897 if (!layer->render_surface()->draw_transform().GetInverse(
898 &inverse_surface_draw_transform)) {
899 // TODO(shawnsingh): Either we need to handle uninvertible transforms
900 // here, or DCHECK that the transform is invertible.
902 next_scroll_compensation_matrix =
903 inverse_surface_draw_transform * next_scroll_compensation_matrix *
904 layer->render_surface()->draw_transform();
907 return next_scroll_compensation_matrix;
910 template <typename LayerType>
911 static inline void CalculateContentsScale(LayerType* layer,
912 float contents_scale,
913 float device_scale_factor,
914 float page_scale_factor,
915 bool animating_transform_to_screen) {
916 layer->CalculateContentsScale(contents_scale,
917 device_scale_factor,
918 page_scale_factor,
919 animating_transform_to_screen,
920 &layer->draw_properties().contents_scale_x,
921 &layer->draw_properties().contents_scale_y,
922 &layer->draw_properties().content_bounds);
924 LayerType* mask_layer = layer->mask_layer();
925 if (mask_layer) {
926 mask_layer->CalculateContentsScale(
927 contents_scale,
928 device_scale_factor,
929 page_scale_factor,
930 animating_transform_to_screen,
931 &mask_layer->draw_properties().contents_scale_x,
932 &mask_layer->draw_properties().contents_scale_y,
933 &mask_layer->draw_properties().content_bounds);
936 LayerType* replica_mask_layer =
937 layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL;
938 if (replica_mask_layer) {
939 replica_mask_layer->CalculateContentsScale(
940 contents_scale,
941 device_scale_factor,
942 page_scale_factor,
943 animating_transform_to_screen,
944 &replica_mask_layer->draw_properties().contents_scale_x,
945 &replica_mask_layer->draw_properties().contents_scale_y,
946 &replica_mask_layer->draw_properties().content_bounds);
950 static inline void UpdateLayerContentsScale(
951 LayerImpl* layer,
952 bool can_adjust_raster_scale,
953 float ideal_contents_scale,
954 float device_scale_factor,
955 float page_scale_factor,
956 bool animating_transform_to_screen) {
957 CalculateContentsScale(layer,
958 ideal_contents_scale,
959 device_scale_factor,
960 page_scale_factor,
961 animating_transform_to_screen);
964 static inline void UpdateLayerContentsScale(
965 Layer* layer,
966 bool can_adjust_raster_scale,
967 float ideal_contents_scale,
968 float device_scale_factor,
969 float page_scale_factor,
970 bool animating_transform_to_screen) {
971 if (can_adjust_raster_scale) {
972 float ideal_raster_scale =
973 ideal_contents_scale / (device_scale_factor * page_scale_factor);
975 bool need_to_set_raster_scale = layer->raster_scale_is_unknown();
977 // If we've previously saved a raster_scale but the ideal changes, things
978 // are unpredictable and we should just use 1.
979 if (!need_to_set_raster_scale && layer->raster_scale() != 1.f &&
980 ideal_raster_scale != layer->raster_scale()) {
981 ideal_raster_scale = 1.f;
982 need_to_set_raster_scale = true;
985 if (need_to_set_raster_scale) {
986 bool use_and_save_ideal_scale =
987 ideal_raster_scale >= 1.f && !animating_transform_to_screen;
988 if (use_and_save_ideal_scale)
989 layer->set_raster_scale(ideal_raster_scale);
993 float raster_scale = 1.f;
994 if (!layer->raster_scale_is_unknown())
995 raster_scale = layer->raster_scale();
998 float contents_scale = raster_scale * device_scale_factor * page_scale_factor;
999 CalculateContentsScale(layer,
1000 contents_scale,
1001 device_scale_factor,
1002 page_scale_factor,
1003 animating_transform_to_screen);
1006 static inline RenderSurface* CreateOrReuseRenderSurface(Layer* layer) {
1007 // The render surface should always be new on the main thread, as the
1008 // RenderSurfaceLayerList should be a new empty list when given to
1009 // CalculateDrawProperties.
1010 DCHECK(!layer->render_surface());
1011 layer->CreateRenderSurface();
1012 return layer->render_surface();
1015 static inline RenderSurfaceImpl* CreateOrReuseRenderSurface(LayerImpl* layer) {
1016 if (!layer->render_surface()) {
1017 layer->CreateRenderSurface();
1018 return layer->render_surface();
1021 layer->render_surface()->ClearLayerLists();
1022 return layer->render_surface();
1025 template <typename LayerType>
1026 static inline void RemoveSurfaceForEarlyExit(
1027 LayerType* layer_to_remove,
1028 typename LayerType::RenderSurfaceListType* render_surface_layer_list) {
1029 DCHECK(layer_to_remove->render_surface());
1030 // Technically, we know that the layer we want to remove should be
1031 // at the back of the render_surface_layer_list. However, we have had
1032 // bugs before that added unnecessary layers here
1033 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
1034 // things to crash. So here we proactively remove any additional
1035 // layers from the end of the list.
1036 while (render_surface_layer_list->back() != layer_to_remove) {
1037 render_surface_layer_list->back()->ClearRenderSurface();
1038 render_surface_layer_list->pop_back();
1040 DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove);
1041 render_surface_layer_list->pop_back();
1042 layer_to_remove->ClearRenderSurface();
1045 struct PreCalculateMetaInformationRecursiveData {
1046 bool layer_or_descendant_has_copy_request;
1047 int num_unclipped_descendants;
1049 PreCalculateMetaInformationRecursiveData()
1050 : layer_or_descendant_has_copy_request(false),
1051 num_unclipped_descendants(0) {}
1053 void Merge(const PreCalculateMetaInformationRecursiveData& data) {
1054 layer_or_descendant_has_copy_request |=
1055 data.layer_or_descendant_has_copy_request;
1056 num_unclipped_descendants +=
1057 data.num_unclipped_descendants;
1061 // Recursively walks the layer tree to compute any information that is needed
1062 // before doing the main recursion.
1063 template <typename LayerType>
1064 static void PreCalculateMetaInformation(
1065 LayerType* layer,
1066 PreCalculateMetaInformationRecursiveData* recursive_data) {
1067 bool has_delegated_content = layer->HasDelegatedContent();
1068 int num_descendants_that_draw_content = 0;
1070 if (has_delegated_content) {
1071 // Layers with delegated content need to be treated as if they have as
1072 // many children as the number of layers they own delegated quads for.
1073 // Since we don't know this number right now, we choose one that acts like
1074 // infinity for our purposes.
1075 num_descendants_that_draw_content = 1000;
1078 layer->draw_properties().sorted_for_recursion = false;
1079 layer->draw_properties().has_child_with_a_scroll_parent = false;
1081 if (layer->clip_parent())
1082 recursive_data->num_unclipped_descendants++;
1084 for (size_t i = 0; i < layer->children().size(); ++i) {
1085 LayerType* child_layer =
1086 LayerTreeHostCommon::get_child_as_raw_ptr(layer->children(), i);
1088 PreCalculateMetaInformationRecursiveData data_for_child;
1089 PreCalculateMetaInformation(child_layer, &data_for_child);
1091 num_descendants_that_draw_content += child_layer->DrawsContent() ? 1 : 0;
1092 num_descendants_that_draw_content +=
1093 child_layer->draw_properties().num_descendants_that_draw_content;
1095 if (child_layer->scroll_parent())
1096 layer->draw_properties().has_child_with_a_scroll_parent = true;
1097 recursive_data->Merge(data_for_child);
1100 if (layer->clip_children()) {
1101 int num_clip_children = layer->clip_children()->size();
1102 DCHECK_GE(recursive_data->num_unclipped_descendants, num_clip_children);
1103 recursive_data->num_unclipped_descendants -= num_clip_children;
1106 if (layer->HasCopyRequest())
1107 recursive_data->layer_or_descendant_has_copy_request = true;
1109 layer->draw_properties().num_descendants_that_draw_content =
1110 num_descendants_that_draw_content;
1111 layer->draw_properties().num_unclipped_descendants =
1112 recursive_data->num_unclipped_descendants;
1113 layer->draw_properties().layer_or_descendant_has_copy_request =
1114 recursive_data->layer_or_descendant_has_copy_request;
1117 static void RoundTranslationComponents(gfx::Transform* transform) {
1118 transform->matrix().set(0, 3, MathUtil::Round(transform->matrix().get(0, 3)));
1119 transform->matrix().set(1, 3, MathUtil::Round(transform->matrix().get(1, 3)));
1122 template <typename LayerType>
1123 struct SubtreeGlobals {
1124 LayerSorter* layer_sorter;
1125 int max_texture_size;
1126 float device_scale_factor;
1127 float page_scale_factor;
1128 const LayerType* page_scale_application_layer;
1129 bool can_adjust_raster_scales;
1130 bool can_render_to_separate_surface;
1133 template<typename LayerType>
1134 struct DataForRecursion {
1135 // The accumulated sequence of transforms a layer will use to determine its
1136 // own draw transform.
1137 gfx::Transform parent_matrix;
1139 // The accumulated sequence of transforms a layer will use to determine its
1140 // own screen-space transform.
1141 gfx::Transform full_hierarchy_matrix;
1143 // The transform that removes all scrolling that may have occurred between a
1144 // fixed-position layer and its container, so that the layer actually does
1145 // remain fixed.
1146 gfx::Transform scroll_compensation_matrix;
1148 // The ancestor that would be the container for any fixed-position / sticky
1149 // layers.
1150 LayerType* fixed_container;
1152 // This is the normal clip rect that is propagated from parent to child.
1153 gfx::Rect clip_rect_in_target_space;
1155 // When the layer's children want to compute their visible content rect, they
1156 // want to know what their target surface's clip rect will be. BUT - they
1157 // want to know this clip rect represented in their own target space. This
1158 // requires inverse-projecting the surface's clip rect from the surface's
1159 // render target space down to the surface's own space. Instead of computing
1160 // this value redundantly for each child layer, it is computed only once
1161 // while dealing with the parent layer, and then this precomputed value is
1162 // passed down the recursion to the children that actually use it.
1163 gfx::Rect clip_rect_of_target_surface_in_target_space;
1165 bool ancestor_clips_subtree;
1166 typename LayerType::RenderSurfaceType*
1167 nearest_occlusion_immune_ancestor_surface;
1168 bool in_subtree_of_page_scale_application_layer;
1169 bool subtree_can_use_lcd_text;
1170 bool subtree_is_visible_from_ancestor;
1173 template <typename LayerType>
1174 static LayerType* GetChildContainingLayer(const LayerType& parent,
1175 LayerType* layer) {
1176 for (LayerType* ancestor = layer; ancestor; ancestor = ancestor->parent()) {
1177 if (ancestor->parent() == &parent)
1178 return ancestor;
1180 NOTREACHED();
1181 return 0;
1184 template <typename LayerType>
1185 static void AddScrollParentChain(std::vector<LayerType*>* out,
1186 const LayerType& parent,
1187 LayerType* layer) {
1188 // At a high level, this function walks up the chain of scroll parents
1189 // recursively, and once we reach the end of the chain, we add the child
1190 // of |parent| containing each scroll ancestor as we unwind. The result is
1191 // an ordering of parent's children that ensures that scroll parents are
1192 // visited before their descendants.
1193 // Take for example this layer tree:
1195 // + stacking_context
1196 // + scroll_child (1)
1197 // + scroll_parent_graphics_layer (*)
1198 // | + scroll_parent_scrolling_layer
1199 // | + scroll_parent_scrolling_content_layer (2)
1200 // + scroll_grandparent_graphics_layer (**)
1201 // + scroll_grandparent_scrolling_layer
1202 // + scroll_grandparent_scrolling_content_layer (3)
1204 // The scroll child is (1), its scroll parent is (2) and its scroll
1205 // grandparent is (3). Note, this doesn't mean that (2)'s scroll parent is
1206 // (3), it means that (*)'s scroll parent is (3). We don't want our list to
1207 // look like [ (3), (2), (1) ], even though that does have the ancestor chain
1208 // in the right order. Instead, we want [ (**), (*), (1) ]. That is, only want
1209 // (1)'s siblings in the list, but we want them to appear in such an order
1210 // that the scroll ancestors get visited in the correct order.
1212 // So our first task at this step of the recursion is to determine the layer
1213 // that we will potentionally add to the list. That is, the child of parent
1214 // containing |layer|.
1215 LayerType* child = GetChildContainingLayer(parent, layer);
1216 if (child->draw_properties().sorted_for_recursion)
1217 return;
1219 if (LayerType* scroll_parent = child->scroll_parent())
1220 AddScrollParentChain(out, parent, scroll_parent);
1222 out->push_back(child);
1223 child->draw_properties().sorted_for_recursion = true;
1226 template <typename LayerType>
1227 static bool SortChildrenForRecursion(std::vector<LayerType*>* out,
1228 const LayerType& parent) {
1229 out->reserve(parent.children().size());
1230 bool order_changed = false;
1231 for (size_t i = 0; i < parent.children().size(); ++i) {
1232 LayerType* current =
1233 LayerTreeHostCommon::get_child_as_raw_ptr(parent.children(), i);
1235 if (current->draw_properties().sorted_for_recursion) {
1236 order_changed = true;
1237 continue;
1240 AddScrollParentChain(out, parent, current);
1243 DCHECK_EQ(parent.children().size(), out->size());
1244 return order_changed;
1247 template <typename LayerType>
1248 static void GetNewDescendantsStartIndexAndCount(LayerType* layer,
1249 size_t* start_index,
1250 size_t* count) {
1251 *start_index = layer->draw_properties().index_of_first_descendants_addition;
1252 *count = layer->draw_properties().num_descendants_added;
1255 template <typename LayerType>
1256 static void GetNewRenderSurfacesStartIndexAndCount(LayerType* layer,
1257 size_t* start_index,
1258 size_t* count) {
1259 *start_index = layer->draw_properties()
1260 .index_of_first_render_surface_layer_list_addition;
1261 *count = layer->draw_properties().num_render_surfaces_added;
1264 template <typename LayerType,
1265 typename GetIndexAndCountType>
1266 static void SortLayerListContributions(
1267 const LayerType& parent,
1268 typename LayerType::RenderSurfaceListType* unsorted,
1269 size_t start_index_for_all_contributions,
1270 GetIndexAndCountType get_index_and_count) {
1272 typename LayerType::LayerListType buffer;
1273 for (size_t i = 0; i < parent.children().size(); ++i) {
1274 LayerType* child =
1275 LayerTreeHostCommon::get_child_as_raw_ptr(parent.children(), i);
1277 size_t start_index = 0;
1278 size_t count = 0;
1279 get_index_and_count(child, &start_index, &count);
1280 for (size_t j = start_index; j < start_index + count; ++j)
1281 buffer.push_back(unsorted->at(j));
1284 DCHECK_EQ(buffer.size(),
1285 unsorted->size() - start_index_for_all_contributions);
1287 for (size_t i = 0; i < buffer.size(); ++i)
1288 (*unsorted)[i + start_index_for_all_contributions] = buffer[i];
1291 // Recursively walks the layer tree starting at the given node and computes all
1292 // the necessary transformations, clip rects, render surfaces, etc.
1293 template <typename LayerType>
1294 static void CalculateDrawPropertiesInternal(
1295 LayerType* layer,
1296 const SubtreeGlobals<LayerType>& globals,
1297 const DataForRecursion<LayerType>& data_from_ancestor,
1298 typename LayerType::RenderSurfaceListType* render_surface_layer_list,
1299 typename LayerType::RenderSurfaceListType* layer_list,
1300 std::vector<AccumulatedSurfaceState<LayerType> >*
1301 accumulated_surface_state) {
1302 // This function computes the new matrix transformations recursively for this
1303 // layer and all its descendants. It also computes the appropriate render
1304 // surfaces.
1305 // Some important points to remember:
1307 // 0. Here, transforms are notated in Matrix x Vector order, and in words we
1308 // describe what the transform does from left to right.
1310 // 1. In our terminology, the "layer origin" refers to the top-left corner of
1311 // a layer, and the positive Y-axis points downwards. This interpretation is
1312 // valid because the orthographic projection applied at draw time flips the Y
1313 // axis appropriately.
1315 // 2. The anchor point, when given as a PointF object, is specified in "unit
1316 // layer space", where the bounds of the layer map to [0, 1]. However, as a
1317 // Transform object, the transform to the anchor point is specified in "layer
1318 // space", where the bounds of the layer map to [bounds.width(),
1319 // bounds.height()].
1321 // 3. Definition of various transforms used:
1322 // M[parent] is the parent matrix, with respect to the nearest render
1323 // surface, passed down recursively.
1325 // M[root] is the full hierarchy, with respect to the root, passed down
1326 // recursively.
1328 // Tr[origin] is the translation matrix from the parent's origin to
1329 // this layer's origin.
1331 // Tr[origin2anchor] is the translation from the layer's origin to its
1332 // anchor point
1334 // Tr[origin2center] is the translation from the layer's origin to its
1335 // center
1337 // M[layer] is the layer's matrix (applied at the anchor point)
1339 // M[sublayer] is the layer's sublayer transform (also applied at the
1340 // layer's anchor point)
1342 // S[layer2content] is the ratio of a layer's content_bounds() to its
1343 // Bounds().
1345 // Some composite transforms can help in understanding the sequence of
1346 // transforms:
1347 // composite_layer_transform = Tr[origin2anchor] * M[layer] *
1348 // Tr[origin2anchor].inverse()
1350 // composite_sublayer_transform = Tr[origin2anchor] * M[sublayer] *
1351 // Tr[origin2anchor].inverse()
1353 // 4. When a layer (or render surface) is drawn, it is drawn into a "target
1354 // render surface". Therefore the draw transform does not necessarily
1355 // transform from screen space to local layer space. Instead, the draw
1356 // transform is the transform between the "target render surface space" and
1357 // local layer space. Note that render surfaces, except for the root, also
1358 // draw themselves into a different target render surface, and so their draw
1359 // transform and origin transforms are also described with respect to the
1360 // target.
1362 // Using these definitions, then:
1364 // The draw transform for the layer is:
1365 // M[draw] = M[parent] * Tr[origin] * composite_layer_transform *
1366 // S[layer2content] = M[parent] * Tr[layer->position() + anchor] *
1367 // M[layer] * Tr[anchor2origin] * S[layer2content]
1369 // Interpreting the math left-to-right, this transforms from the
1370 // layer's render surface to the origin of the layer in content space.
1372 // The screen space transform is:
1373 // M[screenspace] = M[root] * Tr[origin] * composite_layer_transform *
1374 // S[layer2content]
1375 // = M[root] * Tr[layer->position() + anchor] * M[layer]
1376 // * Tr[anchor2origin] * S[layer2content]
1378 // Interpreting the math left-to-right, this transforms from the root
1379 // render surface's content space to the origin of the layer in content
1380 // space.
1382 // The transform hierarchy that is passed on to children (i.e. the child's
1383 // parent_matrix) is:
1384 // M[parent]_for_child = M[parent] * Tr[origin] *
1385 // composite_layer_transform * composite_sublayer_transform
1386 // = M[parent] * Tr[layer->position() + anchor] *
1387 // M[layer] * Tr[anchor2origin] *
1388 // composite_sublayer_transform
1390 // and a similar matrix for the full hierarchy with respect to the
1391 // root.
1393 // Finally, note that the final matrix used by the shader for the layer is P *
1394 // M[draw] * S . This final product is computed in drawTexturedQuad(), where:
1395 // P is the projection matrix
1396 // S is the scale adjustment (to scale up a canonical quad to the
1397 // layer's size)
1399 // When a render surface has a replica layer, that layer's transform is used
1400 // to draw a second copy of the surface. gfx::Transforms named here are
1401 // relative to the surface, unless they specify they are relative to the
1402 // replica layer.
1404 // We will denote a scale by device scale S[deviceScale]
1406 // The render surface draw transform to its target surface origin is:
1407 // M[surfaceDraw] = M[owningLayer->Draw]
1409 // The render surface origin transform to its the root (screen space) origin
1410 // is:
1411 // M[surface2root] = M[owningLayer->screenspace] *
1412 // S[deviceScale].inverse()
1414 // The replica draw transform to its target surface origin is:
1415 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] *
1416 // Tr[replica->position() + replica->anchor()] * Tr[replica] *
1417 // Tr[origin2anchor].inverse() * S[contents_scale].inverse()
1419 // The replica draw transform to the root (screen space) origin is:
1420 // M[replica2root] = M[surface2root] * Tr[replica->position()] *
1421 // Tr[replica] * Tr[origin2anchor].inverse()
1424 // It makes no sense to have a non-unit page_scale_factor without specifying
1425 // which layer roots the subtree the scale is applied to.
1426 DCHECK(globals.page_scale_application_layer ||
1427 (globals.page_scale_factor == 1.f));
1429 DataForRecursion<LayerType> data_for_children;
1430 typename LayerType::RenderSurfaceType*
1431 nearest_occlusion_immune_ancestor_surface =
1432 data_from_ancestor.nearest_occlusion_immune_ancestor_surface;
1433 data_for_children.in_subtree_of_page_scale_application_layer =
1434 data_from_ancestor.in_subtree_of_page_scale_application_layer;
1435 data_for_children.subtree_can_use_lcd_text =
1436 data_from_ancestor.subtree_can_use_lcd_text;
1438 // Layers with a copy request are always visible, as well as un-hiding their
1439 // subtree. Otherise, layers that are marked as hidden will hide themselves
1440 // and their subtree.
1441 bool layer_is_visible =
1442 data_from_ancestor.subtree_is_visible_from_ancestor &&
1443 !layer->hide_layer_and_subtree();
1444 if (layer->HasCopyRequest())
1445 layer_is_visible = true;
1447 // The root layer cannot skip CalcDrawProperties.
1448 if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_visible)) {
1449 if (layer->render_surface())
1450 layer->ClearRenderSurface();
1451 return;
1454 // We need to circumvent the normal recursive flow of information for clip
1455 // children (they don't inherit their direct ancestor's clip information).
1456 // This is unfortunate, and would be unnecessary if we were to formally
1457 // separate the clipping hierarchy from the layer hierarchy.
1458 bool ancestor_clips_subtree = data_from_ancestor.ancestor_clips_subtree;
1459 gfx::Rect ancestor_clip_rect_in_target_space =
1460 data_from_ancestor.clip_rect_in_target_space;
1462 // Update our clipping state. If we have a clip parent we will need to pull
1463 // from the clip state cache rather than using the clip state passed from our
1464 // immediate ancestor.
1465 UpdateClipRectsForClipChild<LayerType>(
1466 layer, &ancestor_clip_rect_in_target_space, &ancestor_clips_subtree);
1468 // As this function proceeds, these are the properties for the current
1469 // layer that actually get computed. To avoid unnecessary copies
1470 // (particularly for matrices), we do computations directly on these values
1471 // when possible.
1472 DrawProperties<LayerType>& layer_draw_properties = layer->draw_properties();
1474 gfx::Rect clip_rect_in_target_space;
1475 bool layer_or_ancestor_clips_descendants = false;
1477 // This value is cached on the stack so that we don't have to inverse-project
1478 // the surface's clip rect redundantly for every layer. This value is the
1479 // same as the target surface's clip rect, except that instead of being
1480 // described in the target surface's target's space, it is described in the
1481 // current render target's space.
1482 gfx::Rect clip_rect_of_target_surface_in_target_space;
1484 float accumulated_draw_opacity = layer->opacity();
1485 bool animating_opacity_to_target = layer->OpacityIsAnimating();
1486 bool animating_opacity_to_screen = animating_opacity_to_target;
1487 if (layer->parent()) {
1488 accumulated_draw_opacity *= layer->parent()->draw_opacity();
1489 animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating();
1490 animating_opacity_to_screen |=
1491 layer->parent()->screen_space_opacity_is_animating();
1494 bool animating_transform_to_target = layer->TransformIsAnimating();
1495 bool animating_transform_to_screen = animating_transform_to_target;
1496 if (layer->parent()) {
1497 animating_transform_to_target |=
1498 layer->parent()->draw_transform_is_animating();
1499 animating_transform_to_screen |=
1500 layer->parent()->screen_space_transform_is_animating();
1503 gfx::Size bounds = layer->bounds();
1504 gfx::PointF anchor_point = layer->anchor_point();
1505 gfx::Vector2dF scroll_offset = GetEffectiveTotalScrollOffset(layer);
1506 gfx::PointF position = layer->position() - scroll_offset;
1508 gfx::Transform combined_transform = data_from_ancestor.parent_matrix;
1509 if (!layer->transform().IsIdentity()) {
1510 // LT = Tr[origin] * Tr[origin2anchor]
1511 combined_transform.Translate3d(
1512 position.x() + anchor_point.x() * bounds.width(),
1513 position.y() + anchor_point.y() * bounds.height(),
1514 layer->anchor_point_z());
1515 // LT = Tr[origin] * Tr[origin2anchor] * M[layer]
1516 combined_transform.PreconcatTransform(layer->transform());
1517 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
1518 combined_transform.Translate3d(-anchor_point.x() * bounds.width(),
1519 -anchor_point.y() * bounds.height(),
1520 -layer->anchor_point_z());
1521 } else {
1522 combined_transform.Translate(position.x(), position.y());
1525 gfx::Vector2dF effective_scroll_delta = GetEffectiveScrollDelta(layer);
1526 if (!animating_transform_to_target && layer->scrollable() &&
1527 combined_transform.IsScaleOrTranslation()) {
1528 // Align the scrollable layer's position to screen space pixels to avoid
1529 // blurriness. To avoid side-effects, do this only if the transform is
1530 // simple.
1531 gfx::Vector2dF previous_translation = combined_transform.To2dTranslation();
1532 RoundTranslationComponents(&combined_transform);
1533 gfx::Vector2dF current_translation = combined_transform.To2dTranslation();
1535 // This rounding changes the scroll delta, and so must be included
1536 // in the scroll compensation matrix.
1537 effective_scroll_delta -= current_translation - previous_translation;
1540 // Apply adjustment from position constraints.
1541 ApplyPositionAdjustment(layer, data_from_ancestor.fixed_container,
1542 data_from_ancestor.scroll_compensation_matrix, &combined_transform);
1544 // Compute the 2d scale components of the transform hierarchy up to the target
1545 // surface. From there, we can decide on a contents scale for the layer.
1546 float layer_scale_factors = globals.device_scale_factor;
1547 if (data_from_ancestor.in_subtree_of_page_scale_application_layer)
1548 layer_scale_factors *= globals.page_scale_factor;
1549 gfx::Vector2dF combined_transform_scales =
1550 MathUtil::ComputeTransform2dScaleComponents(
1551 combined_transform,
1552 layer_scale_factors);
1554 float ideal_contents_scale =
1555 globals.can_adjust_raster_scales
1556 ? std::max(combined_transform_scales.x(),
1557 combined_transform_scales.y())
1558 : layer_scale_factors;
1559 UpdateLayerContentsScale(
1560 layer,
1561 globals.can_adjust_raster_scales,
1562 ideal_contents_scale,
1563 globals.device_scale_factor,
1564 data_from_ancestor.in_subtree_of_page_scale_application_layer ?
1565 globals.page_scale_factor : 1.f,
1566 animating_transform_to_screen);
1568 // The draw_transform that gets computed below is effectively the layer's
1569 // draw_transform, unless the layer itself creates a render_surface. In that
1570 // case, the render_surface re-parents the transforms.
1571 layer_draw_properties.target_space_transform = combined_transform;
1572 // M[draw] = M[parent] * LT * S[layer2content]
1573 layer_draw_properties.target_space_transform.Scale(
1574 SK_MScalar1 / layer->contents_scale_x(),
1575 SK_MScalar1 / layer->contents_scale_y());
1577 // The layer's screen_space_transform represents the transform between root
1578 // layer's "screen space" and local content space.
1579 layer_draw_properties.screen_space_transform =
1580 data_from_ancestor.full_hierarchy_matrix;
1581 if (!layer->preserves_3d())
1582 layer_draw_properties.screen_space_transform.FlattenTo2d();
1583 layer_draw_properties.screen_space_transform.PreconcatTransform
1584 (layer_draw_properties.target_space_transform);
1586 // Adjusting text AA method during animation may cause repaints, which in-turn
1587 // causes jank.
1588 bool adjust_text_aa =
1589 !animating_opacity_to_screen && !animating_transform_to_screen;
1590 // To avoid color fringing, LCD text should only be used on opaque layers with
1591 // just integral translation.
1592 bool layer_can_use_lcd_text =
1593 data_from_ancestor.subtree_can_use_lcd_text &&
1594 accumulated_draw_opacity == 1.f &&
1595 layer_draw_properties.target_space_transform.
1596 IsIdentityOrIntegerTranslation();
1598 gfx::RectF content_rect(layer->content_bounds());
1600 // full_hierarchy_matrix is the matrix that transforms objects between screen
1601 // space (except projection matrix) and the most recent RenderSurfaceImpl's
1602 // space. next_hierarchy_matrix will only change if this layer uses a new
1603 // RenderSurfaceImpl, otherwise remains the same.
1604 data_for_children.full_hierarchy_matrix =
1605 data_from_ancestor.full_hierarchy_matrix;
1607 // If the subtree will scale layer contents by the transform hierarchy, then
1608 // we should scale things into the render surface by the transform hierarchy
1609 // to take advantage of that.
1610 gfx::Vector2dF render_surface_sublayer_scale =
1611 globals.can_adjust_raster_scales
1612 ? combined_transform_scales
1613 : gfx::Vector2dF(layer_scale_factors, layer_scale_factors);
1615 bool render_to_separate_surface;
1616 if (globals.can_render_to_separate_surface) {
1617 render_to_separate_surface = SubtreeShouldRenderToSeparateSurface(
1618 layer, combined_transform.Preserves2dAxisAlignment());
1619 } else {
1620 render_to_separate_surface = IsRootLayer(layer);
1622 if (render_to_separate_surface) {
1623 // Check back-face visibility before continuing with this surface and its
1624 // subtree
1625 if (!layer->double_sided() && TransformToParentIsKnown(layer) &&
1626 IsSurfaceBackFaceVisible(layer, combined_transform)) {
1627 layer->ClearRenderSurface();
1628 return;
1631 typename LayerType::RenderSurfaceType* render_surface =
1632 CreateOrReuseRenderSurface(layer);
1634 if (IsRootLayer(layer)) {
1635 // The root layer's render surface size is predetermined and so the root
1636 // layer can't directly support non-identity transforms. It should just
1637 // forward top-level transforms to the rest of the tree.
1638 data_for_children.parent_matrix = combined_transform;
1640 // The root surface does not contribute to any other surface, it has no
1641 // target.
1642 layer->render_surface()->set_contributes_to_drawn_surface(false);
1643 } else {
1644 // The owning layer's draw transform has a scale from content to layer
1645 // space which we do not want; so here we use the combined_transform
1646 // instead of the draw_transform. However, we do need to add a different
1647 // scale factor that accounts for the surface's pixel dimensions.
1648 combined_transform.Scale(1.0 / render_surface_sublayer_scale.x(),
1649 1.0 / render_surface_sublayer_scale.y());
1650 render_surface->SetDrawTransform(combined_transform);
1652 // The owning layer's transform was re-parented by the surface, so the
1653 // layer's new draw_transform only needs to scale the layer to surface
1654 // space.
1655 layer_draw_properties.target_space_transform.MakeIdentity();
1656 layer_draw_properties.target_space_transform.
1657 Scale(render_surface_sublayer_scale.x() / layer->contents_scale_x(),
1658 render_surface_sublayer_scale.y() / layer->contents_scale_y());
1660 // Inside the surface's subtree, we scale everything to the owning layer's
1661 // scale. The sublayer matrix transforms layer rects into target surface
1662 // content space. Conceptually, all layers in the subtree inherit the
1663 // scale at the point of the render surface in the transform hierarchy,
1664 // but we apply it explicitly to the owning layer and the remainder of the
1665 // subtree independently.
1666 DCHECK(data_for_children.parent_matrix.IsIdentity());
1667 data_for_children.parent_matrix.Scale(render_surface_sublayer_scale.x(),
1668 render_surface_sublayer_scale.y());
1670 layer->render_surface()->set_contributes_to_drawn_surface(
1671 data_from_ancestor.subtree_is_visible_from_ancestor &&
1672 layer_is_visible);
1675 // The opacity value is moved from the layer to its surface, so that the
1676 // entire subtree properly inherits opacity.
1677 render_surface->SetDrawOpacity(accumulated_draw_opacity);
1678 render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target);
1679 animating_opacity_to_target = false;
1680 layer_draw_properties.opacity = 1.f;
1681 layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
1682 layer_draw_properties.screen_space_opacity_is_animating =
1683 animating_opacity_to_screen;
1685 render_surface->SetTargetSurfaceTransformsAreAnimating(
1686 animating_transform_to_target);
1687 render_surface->SetScreenSpaceTransformsAreAnimating(
1688 animating_transform_to_screen);
1689 animating_transform_to_target = false;
1690 layer_draw_properties.target_space_transform_is_animating =
1691 animating_transform_to_target;
1692 layer_draw_properties.screen_space_transform_is_animating =
1693 animating_transform_to_screen;
1695 // Update the aggregate hierarchy matrix to include the transform of the
1696 // newly created RenderSurfaceImpl.
1697 data_for_children.full_hierarchy_matrix.PreconcatTransform(
1698 render_surface->draw_transform());
1700 if (layer->mask_layer()) {
1701 DrawProperties<LayerType>& mask_layer_draw_properties =
1702 layer->mask_layer()->draw_properties();
1703 mask_layer_draw_properties.render_target = layer;
1704 mask_layer_draw_properties.visible_content_rect =
1705 gfx::Rect(layer->content_bounds());
1708 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
1709 DrawProperties<LayerType>& replica_mask_draw_properties =
1710 layer->replica_layer()->mask_layer()->draw_properties();
1711 replica_mask_draw_properties.render_target = layer;
1712 replica_mask_draw_properties.visible_content_rect =
1713 gfx::Rect(layer->content_bounds());
1716 // Ignore occlusion from outside the surface when surface contents need to
1717 // be fully drawn. Layers with copy-request need to be complete.
1718 // We could be smarter about layers with replica and exclude regions
1719 // where both layer and the replica are occluded, but this seems like an
1720 // overkill. The same is true for layers with filters that move pixels.
1721 // TODO(senorblanco): make this smarter for the SkImageFilter case (check
1722 // for pixel-moving filters)
1723 if (layer->HasCopyRequest() ||
1724 layer->has_replica() ||
1725 layer->filters().HasReferenceFilter() ||
1726 layer->filters().HasFilterThatMovesPixels()) {
1727 nearest_occlusion_immune_ancestor_surface = render_surface;
1729 render_surface->SetNearestOcclusionImmuneAncestor(
1730 nearest_occlusion_immune_ancestor_surface);
1732 layer_or_ancestor_clips_descendants = false;
1733 bool subtree_is_clipped_by_surface_bounds = false;
1734 if (ancestor_clips_subtree) {
1735 // It may be the layer or the surface doing the clipping of the subtree,
1736 // but in either case, we'll be clipping to the projected clip rect of our
1737 // ancestor.
1738 gfx::Transform inverse_surface_draw_transform(
1739 gfx::Transform::kSkipInitialization);
1740 if (!render_surface->draw_transform().GetInverse(
1741 &inverse_surface_draw_transform)) {
1742 // TODO(shawnsingh): Either we need to handle uninvertible transforms
1743 // here, or DCHECK that the transform is invertible.
1746 gfx::Rect projected_surface_rect = gfx::ToEnclosingRect(
1747 MathUtil::ProjectClippedRect(inverse_surface_draw_transform,
1748 ancestor_clip_rect_in_target_space));
1750 if (layer_draw_properties.num_unclipped_descendants > 0) {
1751 // If we have unclipped descendants, we cannot count on the render
1752 // surface's bounds clipping our subtree: the unclipped descendants
1753 // could cause us to expand our bounds. In this case, we must rely on
1754 // layer clipping for correctess. NB: since we can only encounter
1755 // translations between a clip child and its clip parent, clipping is
1756 // guaranteed to be exact in this case.
1757 layer_or_ancestor_clips_descendants = true;
1758 clip_rect_in_target_space = projected_surface_rect;
1759 } else {
1760 // The new render_surface here will correctly clip the entire subtree.
1761 // So, we do not need to continue propagating the clipping state further
1762 // down the tree. This way, we can avoid transforming clip rects from
1763 // ancestor target surface space to current target surface space that
1764 // could cause more w < 0 headaches. The render surface clip rect is
1765 // expressed in the space where this surface draws, i.e. the same space
1766 // as clip_rect_from_ancestor_in_ancestor_target_space.
1767 render_surface->SetClipRect(ancestor_clip_rect_in_target_space);
1768 clip_rect_of_target_surface_in_target_space = projected_surface_rect;
1769 subtree_is_clipped_by_surface_bounds = true;
1773 DCHECK(layer->render_surface());
1774 DCHECK(!layer->parent() || layer->parent()->render_target() ==
1775 accumulated_surface_state->back().render_target);
1777 accumulated_surface_state->push_back(
1778 AccumulatedSurfaceState<LayerType>(layer));
1780 render_surface->SetIsClipped(subtree_is_clipped_by_surface_bounds);
1781 if (!subtree_is_clipped_by_surface_bounds) {
1782 render_surface->SetClipRect(gfx::Rect());
1783 clip_rect_of_target_surface_in_target_space =
1784 data_from_ancestor.clip_rect_of_target_surface_in_target_space;
1787 // If the new render surface is drawn translucent or with a non-integral
1788 // translation then the subtree that gets drawn on this render surface
1789 // cannot use LCD text.
1790 data_for_children.subtree_can_use_lcd_text = layer_can_use_lcd_text;
1792 render_surface_layer_list->push_back(layer);
1793 } else {
1794 DCHECK(layer->parent());
1796 // Note: layer_draw_properties.target_space_transform is computed above,
1797 // before this if-else statement.
1798 layer_draw_properties.target_space_transform_is_animating =
1799 animating_transform_to_target;
1800 layer_draw_properties.screen_space_transform_is_animating =
1801 animating_transform_to_screen;
1802 layer_draw_properties.opacity = accumulated_draw_opacity;
1803 layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
1804 layer_draw_properties.screen_space_opacity_is_animating =
1805 animating_opacity_to_screen;
1806 data_for_children.parent_matrix = combined_transform;
1808 layer->ClearRenderSurface();
1810 // Layers without render_surfaces directly inherit the ancestor's clip
1811 // status.
1812 layer_or_ancestor_clips_descendants = ancestor_clips_subtree;
1813 if (ancestor_clips_subtree) {
1814 clip_rect_in_target_space =
1815 ancestor_clip_rect_in_target_space;
1818 // The surface's cached clip rect value propagates regardless of what
1819 // clipping goes on between layers here.
1820 clip_rect_of_target_surface_in_target_space =
1821 data_from_ancestor.clip_rect_of_target_surface_in_target_space;
1823 // Layers that are not their own render_target will render into the target
1824 // of their nearest ancestor.
1825 layer_draw_properties.render_target = layer->parent()->render_target();
1828 if (adjust_text_aa)
1829 layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text;
1831 gfx::Rect rect_in_target_space = ToEnclosingRect(
1832 MathUtil::MapClippedRect(layer->draw_transform(), content_rect));
1834 if (LayerClipsSubtree(layer)) {
1835 layer_or_ancestor_clips_descendants = true;
1836 if (ancestor_clips_subtree && !layer->render_surface()) {
1837 // A layer without render surface shares the same target as its ancestor.
1838 clip_rect_in_target_space =
1839 ancestor_clip_rect_in_target_space;
1840 clip_rect_in_target_space.Intersect(rect_in_target_space);
1841 } else {
1842 clip_rect_in_target_space = rect_in_target_space;
1846 // Tell the layer the rect that it's clipped by. In theory we could use a
1847 // tighter clip rect here (drawable_content_rect), but that actually does not
1848 // reduce how much would be drawn, and instead it would create unnecessary
1849 // changes to scissor state affecting GPU performance. Our clip information
1850 // is used in the recursion below, so we must set it beforehand.
1851 layer_draw_properties.is_clipped = layer_or_ancestor_clips_descendants;
1852 if (layer_or_ancestor_clips_descendants) {
1853 layer_draw_properties.clip_rect = clip_rect_in_target_space;
1854 } else {
1855 // Initialize the clip rect to a safe value that will not clip the
1856 // layer, just in case clipping is still accidentally used.
1857 layer_draw_properties.clip_rect = rect_in_target_space;
1860 typename LayerType::RenderSurfaceListType& descendants =
1861 (layer->render_surface() ? layer->render_surface()->layer_list()
1862 : *layer_list);
1864 // Any layers that are appended after this point are in the layer's subtree
1865 // and should be included in the sorting process.
1866 size_t sorting_start_index = descendants.size();
1868 if (!LayerShouldBeSkipped(layer, layer_is_visible))
1869 descendants.push_back(layer);
1871 // Any layers that are appended after this point may need to be sorted if we
1872 // visit the children out of order.
1873 size_t render_surface_layer_list_child_sorting_start_index =
1874 render_surface_layer_list->size();
1875 size_t layer_list_child_sorting_start_index = descendants.size();
1877 if (!layer->children().empty()) {
1878 if (layer == globals.page_scale_application_layer) {
1879 data_for_children.parent_matrix.Scale(
1880 globals.page_scale_factor,
1881 globals.page_scale_factor);
1882 data_for_children.in_subtree_of_page_scale_application_layer = true;
1885 // Flatten to 2D if the layer doesn't preserve 3D.
1886 if (!layer->preserves_3d())
1887 data_for_children.parent_matrix.FlattenTo2d();
1889 // Apply the sublayer transform at the anchor point of the layer.
1890 if (!layer->sublayer_transform().IsIdentity()) {
1891 data_for_children.parent_matrix.Translate(
1892 layer->anchor_point().x() * bounds.width(),
1893 layer->anchor_point().y() * bounds.height());
1894 data_for_children.parent_matrix.PreconcatTransform(
1895 layer->sublayer_transform());
1896 data_for_children.parent_matrix.Translate(
1897 -layer->anchor_point().x() * bounds.width(),
1898 -layer->anchor_point().y() * bounds.height());
1901 data_for_children.scroll_compensation_matrix =
1902 ComputeScrollCompensationMatrixForChildren(
1903 layer,
1904 data_from_ancestor.parent_matrix,
1905 data_from_ancestor.scroll_compensation_matrix,
1906 effective_scroll_delta);
1907 data_for_children.fixed_container =
1908 layer->IsContainerForFixedPositionLayers() ?
1909 layer : data_from_ancestor.fixed_container;
1911 data_for_children.clip_rect_in_target_space = clip_rect_in_target_space;
1912 data_for_children.clip_rect_of_target_surface_in_target_space =
1913 clip_rect_of_target_surface_in_target_space;
1914 data_for_children.ancestor_clips_subtree =
1915 layer_or_ancestor_clips_descendants;
1916 data_for_children.nearest_occlusion_immune_ancestor_surface =
1917 nearest_occlusion_immune_ancestor_surface;
1918 data_for_children.subtree_is_visible_from_ancestor = layer_is_visible;
1921 std::vector<LayerType*> sorted_children;
1922 bool child_order_changed = false;
1923 if (layer_draw_properties.has_child_with_a_scroll_parent)
1924 child_order_changed = SortChildrenForRecursion(&sorted_children, *layer);
1926 for (size_t i = 0; i < layer->children().size(); ++i) {
1927 // If one of layer's children has a scroll parent, then we may have to
1928 // visit the children out of order. The new order is stored in
1929 // sorted_children. Otherwise, we'll grab the child directly from the
1930 // layer's list of children.
1931 LayerType* child =
1932 layer_draw_properties.has_child_with_a_scroll_parent
1933 ? sorted_children[i]
1934 : LayerTreeHostCommon::get_child_as_raw_ptr(layer->children(), i);
1936 child->draw_properties().index_of_first_descendants_addition =
1937 descendants.size();
1938 child->draw_properties().index_of_first_render_surface_layer_list_addition =
1939 render_surface_layer_list->size();
1941 CalculateDrawPropertiesInternal<LayerType>(child,
1942 globals,
1943 data_for_children,
1944 render_surface_layer_list,
1945 &descendants,
1946 accumulated_surface_state);
1947 if (child->render_surface() &&
1948 !child->render_surface()->content_rect().IsEmpty()) {
1949 descendants.push_back(child);
1952 child->draw_properties().num_descendants_added =
1953 descendants.size() -
1954 child->draw_properties().index_of_first_descendants_addition;
1955 child->draw_properties().num_render_surfaces_added =
1956 render_surface_layer_list->size() -
1957 child->draw_properties()
1958 .index_of_first_render_surface_layer_list_addition;
1961 // Add the unsorted layer list contributions, if necessary.
1962 if (child_order_changed) {
1963 SortLayerListContributions(
1964 *layer,
1965 render_surface_layer_list,
1966 render_surface_layer_list_child_sorting_start_index,
1967 &GetNewRenderSurfacesStartIndexAndCount<LayerType>);
1969 SortLayerListContributions(
1970 *layer,
1971 &descendants,
1972 layer_list_child_sorting_start_index,
1973 &GetNewDescendantsStartIndexAndCount<LayerType>);
1976 // Compute the total drawable_content_rect for this subtree (the rect is in
1977 // target surface space).
1978 gfx::Rect local_drawable_content_rect_of_subtree =
1979 accumulated_surface_state->back().drawable_content_rect;
1980 if (layer->render_surface()) {
1981 DCHECK(accumulated_surface_state->back().render_target == layer);
1982 accumulated_surface_state->pop_back();
1985 if (layer->render_surface() && !IsRootLayer(layer) &&
1986 layer->render_surface()->layer_list().empty()) {
1987 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
1988 return;
1991 // Compute the layer's drawable content rect (the rect is in target surface
1992 // space).
1993 layer_draw_properties.drawable_content_rect = rect_in_target_space;
1994 if (layer_or_ancestor_clips_descendants) {
1995 layer_draw_properties.drawable_content_rect.Intersect(
1996 clip_rect_in_target_space);
1998 if (layer->DrawsContent()) {
1999 local_drawable_content_rect_of_subtree.Union(
2000 layer_draw_properties.drawable_content_rect);
2003 // Compute the layer's visible content rect (the rect is in content space).
2004 layer_draw_properties.visible_content_rect = CalculateVisibleContentRect(
2005 layer, clip_rect_of_target_surface_in_target_space, rect_in_target_space);
2007 // Compute the remaining properties for the render surface, if the layer has
2008 // one.
2009 if (IsRootLayer(layer)) {
2010 // The root layer's surface's content_rect is always the entire viewport.
2011 DCHECK(layer->render_surface());
2012 layer->render_surface()->SetContentRect(
2013 ancestor_clip_rect_in_target_space);
2014 } else if (layer->render_surface()) {
2015 typename LayerType::RenderSurfaceType* render_surface =
2016 layer->render_surface();
2017 gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree;
2019 // Don't clip if the layer is reflected as the reflection shouldn't be
2020 // clipped. If the layer is animating, then the surface's transform to
2021 // its target is not known on the main thread, and we should not use it
2022 // to clip.
2023 if (!layer->replica_layer() && TransformToParentIsKnown(layer)) {
2024 // Note, it is correct to use data_from_ancestor.ancestor_clips_subtree
2025 // here, because we are looking at this layer's render_surface, not the
2026 // layer itself.
2027 if (render_surface->is_clipped() && !clipped_content_rect.IsEmpty()) {
2028 gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect(
2029 render_surface->clip_rect(),
2030 clipped_content_rect,
2031 render_surface->draw_transform());
2032 clipped_content_rect.Intersect(surface_clip_rect);
2036 // The RenderSurfaceImpl backing texture cannot exceed the maximum supported
2037 // texture size.
2038 clipped_content_rect.set_width(
2039 std::min(clipped_content_rect.width(), globals.max_texture_size));
2040 clipped_content_rect.set_height(
2041 std::min(clipped_content_rect.height(), globals.max_texture_size));
2043 if (clipped_content_rect.IsEmpty()) {
2044 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
2045 return;
2048 // Layers having a non-default blend mode will blend with the content
2049 // inside its parent's render target. This render target should be
2050 // either root_for_isolated_group, or the root of the layer tree.
2051 // Otherwise, this layer will use an incomplete backdrop, limited to its
2052 // render target and the blending result will be incorrect.
2053 DCHECK(layer->uses_default_blend_mode() || IsRootLayer(layer) ||
2054 !layer->parent()->render_target() ||
2055 IsRootLayer(layer->parent()->render_target()) ||
2056 layer->parent()->render_target()->is_root_for_isolated_group());
2058 render_surface->SetContentRect(clipped_content_rect);
2060 // The owning layer's screen_space_transform has a scale from content to
2061 // layer space which we need to undo and replace with a scale from the
2062 // surface's subtree into layer space.
2063 gfx::Transform screen_space_transform = layer->screen_space_transform();
2064 screen_space_transform.Scale(
2065 layer->contents_scale_x() / render_surface_sublayer_scale.x(),
2066 layer->contents_scale_y() / render_surface_sublayer_scale.y());
2067 render_surface->SetScreenSpaceTransform(screen_space_transform);
2069 if (layer->replica_layer()) {
2070 gfx::Transform surface_origin_to_replica_origin_transform;
2071 surface_origin_to_replica_origin_transform.Scale(
2072 render_surface_sublayer_scale.x(), render_surface_sublayer_scale.y());
2073 surface_origin_to_replica_origin_transform.Translate(
2074 layer->replica_layer()->position().x() +
2075 layer->replica_layer()->anchor_point().x() * bounds.width(),
2076 layer->replica_layer()->position().y() +
2077 layer->replica_layer()->anchor_point().y() * bounds.height());
2078 surface_origin_to_replica_origin_transform.PreconcatTransform(
2079 layer->replica_layer()->transform());
2080 surface_origin_to_replica_origin_transform.Translate(
2081 -layer->replica_layer()->anchor_point().x() * bounds.width(),
2082 -layer->replica_layer()->anchor_point().y() * bounds.height());
2083 surface_origin_to_replica_origin_transform.Scale(
2084 1.0 / render_surface_sublayer_scale.x(),
2085 1.0 / render_surface_sublayer_scale.y());
2087 // Compute the replica's "originTransform" that maps from the replica's
2088 // origin space to the target surface origin space.
2089 gfx::Transform replica_origin_transform =
2090 layer->render_surface()->draw_transform() *
2091 surface_origin_to_replica_origin_transform;
2092 render_surface->SetReplicaDrawTransform(replica_origin_transform);
2094 // Compute the replica's "screen_space_transform" that maps from the
2095 // replica's origin space to the screen's origin space.
2096 gfx::Transform replica_screen_space_transform =
2097 layer->render_surface()->screen_space_transform() *
2098 surface_origin_to_replica_origin_transform;
2099 render_surface->SetReplicaScreenSpaceTransform(
2100 replica_screen_space_transform);
2104 SavePaintPropertiesLayer(layer);
2106 // If neither this layer nor any of its children were added, early out.
2107 if (sorting_start_index == descendants.size()) {
2108 DCHECK(!layer->render_surface() || IsRootLayer(layer));
2109 return;
2112 // If preserves-3d then sort all the descendants in 3D so that they can be
2113 // drawn from back to front. If the preserves-3d property is also set on the
2114 // parent then skip the sorting as the parent will sort all the descendants
2115 // anyway.
2116 if (globals.layer_sorter && descendants.size() && layer->preserves_3d() &&
2117 (!layer->parent() || !layer->parent()->preserves_3d())) {
2118 SortLayers(descendants.begin() + sorting_start_index,
2119 descendants.end(),
2120 globals.layer_sorter);
2123 UpdateAccumulatedSurfaceState<LayerType>(
2124 layer, local_drawable_content_rect_of_subtree, accumulated_surface_state);
2126 if (layer->HasContributingDelegatedRenderPasses()) {
2127 layer->render_target()->render_surface()->
2128 AddContributingDelegatedRenderPassLayer(layer);
2132 void LayerTreeHostCommon::CalculateDrawProperties(
2133 CalcDrawPropsMainInputs* inputs) {
2134 DCHECK(inputs->root_layer);
2135 DCHECK(IsRootLayer(inputs->root_layer));
2136 DCHECK(inputs->render_surface_layer_list);
2137 gfx::Transform identity_matrix;
2138 gfx::Transform scaled_device_transform = inputs->device_transform;
2139 scaled_device_transform.Scale(inputs->device_scale_factor,
2140 inputs->device_scale_factor);
2141 RenderSurfaceLayerList dummy_layer_list;
2143 // The root layer's render_surface should receive the device viewport as the
2144 // initial clip rect.
2145 gfx::Rect device_viewport_rect(inputs->device_viewport_size);
2147 SubtreeGlobals<Layer> globals;
2148 globals.layer_sorter = NULL;
2149 globals.max_texture_size = inputs->max_texture_size;
2150 globals.device_scale_factor = inputs->device_scale_factor;
2151 globals.page_scale_factor = inputs->page_scale_factor;
2152 globals.page_scale_application_layer = inputs->page_scale_application_layer;
2153 globals.can_render_to_separate_surface =
2154 inputs->can_render_to_separate_surface;
2155 globals.can_adjust_raster_scales = inputs->can_adjust_raster_scales;
2157 DataForRecursion<Layer> data_for_recursion;
2158 data_for_recursion.parent_matrix = scaled_device_transform;
2159 data_for_recursion.full_hierarchy_matrix = identity_matrix;
2160 data_for_recursion.scroll_compensation_matrix = identity_matrix;
2161 data_for_recursion.fixed_container = inputs->root_layer;
2162 data_for_recursion.clip_rect_in_target_space = device_viewport_rect;
2163 data_for_recursion.clip_rect_of_target_surface_in_target_space =
2164 device_viewport_rect;
2165 data_for_recursion.ancestor_clips_subtree = true;
2166 data_for_recursion.nearest_occlusion_immune_ancestor_surface = NULL;
2167 data_for_recursion.in_subtree_of_page_scale_application_layer = false;
2168 data_for_recursion.subtree_can_use_lcd_text = inputs->can_use_lcd_text;
2169 data_for_recursion.subtree_is_visible_from_ancestor = true;
2171 PreCalculateMetaInformationRecursiveData recursive_data;
2172 PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
2173 std::vector<AccumulatedSurfaceState<Layer> > accumulated_surface_state;
2174 CalculateDrawPropertiesInternal<Layer>(inputs->root_layer,
2175 globals,
2176 data_for_recursion,
2177 inputs->render_surface_layer_list,
2178 &dummy_layer_list,
2179 &accumulated_surface_state);
2181 // The dummy layer list should not have been used.
2182 DCHECK_EQ(0u, dummy_layer_list.size());
2183 // A root layer render_surface should always exist after
2184 // CalculateDrawProperties.
2185 DCHECK(inputs->root_layer->render_surface());
2188 void LayerTreeHostCommon::CalculateDrawProperties(
2189 CalcDrawPropsImplInputs* inputs) {
2190 DCHECK(inputs->root_layer);
2191 DCHECK(IsRootLayer(inputs->root_layer));
2192 DCHECK(inputs->render_surface_layer_list);
2194 gfx::Transform identity_matrix;
2195 gfx::Transform scaled_device_transform = inputs->device_transform;
2196 scaled_device_transform.Scale(inputs->device_scale_factor,
2197 inputs->device_scale_factor);
2198 LayerImplList dummy_layer_list;
2199 LayerSorter layer_sorter;
2201 // The root layer's render_surface should receive the device viewport as the
2202 // initial clip rect.
2203 gfx::Rect device_viewport_rect(inputs->device_viewport_size);
2205 SubtreeGlobals<LayerImpl> globals;
2206 globals.layer_sorter = &layer_sorter;
2207 globals.max_texture_size = inputs->max_texture_size;
2208 globals.device_scale_factor = inputs->device_scale_factor;
2209 globals.page_scale_factor = inputs->page_scale_factor;
2210 globals.page_scale_application_layer = inputs->page_scale_application_layer;
2211 globals.can_render_to_separate_surface =
2212 inputs->can_render_to_separate_surface;
2213 globals.can_adjust_raster_scales = inputs->can_adjust_raster_scales;
2215 DataForRecursion<LayerImpl> data_for_recursion;
2216 data_for_recursion.parent_matrix = scaled_device_transform;
2217 data_for_recursion.full_hierarchy_matrix = identity_matrix;
2218 data_for_recursion.scroll_compensation_matrix = identity_matrix;
2219 data_for_recursion.fixed_container = inputs->root_layer;
2220 data_for_recursion.clip_rect_in_target_space = device_viewport_rect;
2221 data_for_recursion.clip_rect_of_target_surface_in_target_space =
2222 device_viewport_rect;
2223 data_for_recursion.ancestor_clips_subtree = true;
2224 data_for_recursion.nearest_occlusion_immune_ancestor_surface = NULL;
2225 data_for_recursion.in_subtree_of_page_scale_application_layer = false;
2226 data_for_recursion.subtree_can_use_lcd_text = inputs->can_use_lcd_text;
2227 data_for_recursion.subtree_is_visible_from_ancestor = true;
2229 PreCalculateMetaInformationRecursiveData recursive_data;
2230 PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
2231 std::vector<AccumulatedSurfaceState<LayerImpl> >
2232 accumulated_surface_state;
2233 CalculateDrawPropertiesInternal<LayerImpl>(inputs->root_layer,
2234 globals,
2235 data_for_recursion,
2236 inputs->render_surface_layer_list,
2237 &dummy_layer_list,
2238 &accumulated_surface_state);
2240 // The dummy layer list should not have been used.
2241 DCHECK_EQ(0u, dummy_layer_list.size());
2242 // A root layer render_surface should always exist after
2243 // CalculateDrawProperties.
2244 DCHECK(inputs->root_layer->render_surface());
2247 static bool PointHitsRect(
2248 const gfx::PointF& screen_space_point,
2249 const gfx::Transform& local_space_to_screen_space_transform,
2250 const gfx::RectF& local_space_rect) {
2251 // If the transform is not invertible, then assume that this point doesn't hit
2252 // this rect.
2253 gfx::Transform inverse_local_space_to_screen_space(
2254 gfx::Transform::kSkipInitialization);
2255 if (!local_space_to_screen_space_transform.GetInverse(
2256 &inverse_local_space_to_screen_space))
2257 return false;
2259 // Transform the hit test point from screen space to the local space of the
2260 // given rect.
2261 bool clipped = false;
2262 gfx::PointF hit_test_point_in_local_space = MathUtil::ProjectPoint(
2263 inverse_local_space_to_screen_space, screen_space_point, &clipped);
2265 // If ProjectPoint could not project to a valid value, then we assume that
2266 // this point doesn't hit this rect.
2267 if (clipped)
2268 return false;
2270 return local_space_rect.Contains(hit_test_point_in_local_space);
2273 static bool PointHitsRegion(const gfx::PointF& screen_space_point,
2274 const gfx::Transform& screen_space_transform,
2275 const Region& layer_space_region,
2276 float layer_content_scale_x,
2277 float layer_content_scale_y) {
2278 // If the transform is not invertible, then assume that this point doesn't hit
2279 // this region.
2280 gfx::Transform inverse_screen_space_transform(
2281 gfx::Transform::kSkipInitialization);
2282 if (!screen_space_transform.GetInverse(&inverse_screen_space_transform))
2283 return false;
2285 // Transform the hit test point from screen space to the local space of the
2286 // given region.
2287 bool clipped = false;
2288 gfx::PointF hit_test_point_in_content_space = MathUtil::ProjectPoint(
2289 inverse_screen_space_transform, screen_space_point, &clipped);
2290 gfx::PointF hit_test_point_in_layer_space =
2291 gfx::ScalePoint(hit_test_point_in_content_space,
2292 1.f / layer_content_scale_x,
2293 1.f / layer_content_scale_y);
2295 // If ProjectPoint could not project to a valid value, then we assume that
2296 // this point doesn't hit this region.
2297 if (clipped)
2298 return false;
2300 return layer_space_region.Contains(
2301 gfx::ToRoundedPoint(hit_test_point_in_layer_space));
2304 static bool PointIsClippedBySurfaceOrClipRect(
2305 const gfx::PointF& screen_space_point,
2306 LayerImpl* layer) {
2307 LayerImpl* current_layer = layer;
2309 // Walk up the layer tree and hit-test any render_surfaces and any layer
2310 // clip rects that are active.
2311 while (current_layer) {
2312 if (current_layer->render_surface() &&
2313 !PointHitsRect(
2314 screen_space_point,
2315 current_layer->render_surface()->screen_space_transform(),
2316 current_layer->render_surface()->content_rect()))
2317 return true;
2319 // Note that drawable content rects are actually in target surface space, so
2320 // the transform we have to provide is the target surface's
2321 // screen_space_transform.
2322 LayerImpl* render_target = current_layer->render_target();
2323 if (LayerClipsSubtree(current_layer) &&
2324 !PointHitsRect(
2325 screen_space_point,
2326 render_target->render_surface()->screen_space_transform(),
2327 current_layer->drawable_content_rect()))
2328 return true;
2330 current_layer = current_layer->parent();
2333 // If we have finished walking all ancestors without having already exited,
2334 // then the point is not clipped by any ancestors.
2335 return false;
2338 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPoint(
2339 const gfx::PointF& screen_space_point,
2340 const LayerImplList& render_surface_layer_list) {
2341 LayerImpl* found_layer = NULL;
2343 typedef LayerIterator<LayerImpl,
2344 LayerImplList,
2345 RenderSurfaceImpl,
2346 LayerIteratorActions::FrontToBack> LayerIteratorType;
2347 LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
2349 for (LayerIteratorType
2350 it = LayerIteratorType::Begin(&render_surface_layer_list);
2351 it != end;
2352 ++it) {
2353 // We don't want to consider render_surfaces for hit testing.
2354 if (!it.represents_itself())
2355 continue;
2357 LayerImpl* current_layer = (*it);
2359 gfx::RectF content_rect(current_layer->content_bounds());
2360 if (!PointHitsRect(screen_space_point,
2361 current_layer->screen_space_transform(),
2362 content_rect))
2363 continue;
2365 // At this point, we think the point does hit the layer, but we need to walk
2366 // up the parents to ensure that the layer was not clipped in such a way
2367 // that the hit point actually should not hit the layer.
2368 if (PointIsClippedBySurfaceOrClipRect(screen_space_point, current_layer))
2369 continue;
2371 // Skip the HUD layer.
2372 if (current_layer == current_layer->layer_tree_impl()->hud_layer())
2373 continue;
2375 found_layer = current_layer;
2376 break;
2379 // This can potentially return NULL, which means the screen_space_point did
2380 // not successfully hit test any layers, not even the root layer.
2381 return found_layer;
2384 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPointInTouchHandlerRegion(
2385 const gfx::PointF& screen_space_point,
2386 const LayerImplList& render_surface_layer_list) {
2387 // First find out which layer was hit from the saved list of visible layers
2388 // in the most recent frame.
2389 LayerImpl* layer_impl = LayerTreeHostCommon::FindLayerThatIsHitByPoint(
2390 screen_space_point,
2391 render_surface_layer_list);
2393 // Walk up the hierarchy and look for a layer with a touch event handler
2394 // region that the given point hits.
2395 // This walk may not be necessary anymore: http://crbug.com/310817
2396 for (; layer_impl; layer_impl = layer_impl->parent()) {
2397 if (LayerTreeHostCommon::LayerHasTouchEventHandlersAt(screen_space_point,
2398 layer_impl))
2399 break;
2401 return layer_impl;
2404 bool LayerTreeHostCommon::LayerHasTouchEventHandlersAt(
2405 const gfx::PointF& screen_space_point,
2406 LayerImpl* layer_impl) {
2407 if (layer_impl->touch_event_handler_region().IsEmpty())
2408 return false;
2410 if (!PointHitsRegion(screen_space_point,
2411 layer_impl->screen_space_transform(),
2412 layer_impl->touch_event_handler_region(),
2413 layer_impl->contents_scale_x(),
2414 layer_impl->contents_scale_y()))
2415 return false;
2417 // At this point, we think the point does hit the touch event handler region
2418 // on the layer, but we need to walk up the parents to ensure that the layer
2419 // was not clipped in such a way that the hit point actually should not hit
2420 // the layer.
2421 if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer_impl))
2422 return false;
2424 return true;
2426 } // namespace cc