Provide image baselines for struct-image-07-t.svg
[chromium-blink-merge.git] / base / message_pump_win.cc
blobf40c8726e537736690798d19a1fc527f8d644997
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_pump_win.h"
7 #include <math.h>
9 #include "base/histogram.h"
10 #include "base/win_util.h"
12 using base::Time;
14 namespace base {
16 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
18 // Message sent to get an additional time slice for pumping (processing) another
19 // task (a series of such messages creates a continuous task pump).
20 static const int kMsgHaveWork = WM_USER + 1;
22 //-----------------------------------------------------------------------------
23 // MessagePumpWin public:
25 void MessagePumpWin::AddObserver(Observer* observer) {
26 observers_.AddObserver(observer);
29 void MessagePumpWin::RemoveObserver(Observer* observer) {
30 observers_.RemoveObserver(observer);
33 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
34 FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
37 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
38 FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
41 void MessagePumpWin::RunWithDispatcher(
42 Delegate* delegate, Dispatcher* dispatcher) {
43 RunState s;
44 s.delegate = delegate;
45 s.dispatcher = dispatcher;
46 s.should_quit = false;
47 s.run_depth = state_ ? state_->run_depth + 1 : 1;
49 RunState* previous_state = state_;
50 state_ = &s;
52 DoRunLoop();
54 state_ = previous_state;
57 void MessagePumpWin::Quit() {
58 DCHECK(state_);
59 state_->should_quit = true;
62 //-----------------------------------------------------------------------------
63 // MessagePumpWin protected:
65 int MessagePumpWin::GetCurrentDelay() const {
66 if (delayed_work_time_.is_null())
67 return -1;
69 // Be careful here. TimeDelta has a precision of microseconds, but we want a
70 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
71 // 6? It should be 6 to avoid executing delayed work too early.
72 double timeout = ceil((delayed_work_time_ - Time::Now()).InMillisecondsF());
74 // If this value is negative, then we need to run delayed work soon.
75 int delay = static_cast<int>(timeout);
76 if (delay < 0)
77 delay = 0;
79 return delay;
82 //-----------------------------------------------------------------------------
83 // MessagePumpForUI public:
85 MessagePumpForUI::MessagePumpForUI() {
86 InitMessageWnd();
89 MessagePumpForUI::~MessagePumpForUI() {
90 DestroyWindow(message_hwnd_);
91 UnregisterClass(kWndClass, GetModuleHandle(NULL));
94 void MessagePumpForUI::ScheduleWork() {
95 if (InterlockedExchange(&have_work_, 1))
96 return; // Someone else continued the pumping.
98 // Make sure the MessagePump does some work for us.
99 PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
102 void MessagePumpForUI::ScheduleDelayedWork(const Time& delayed_work_time) {
104 // We would *like* to provide high resolution timers. Windows timers using
105 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
106 // mechanism because the application can enter modal windows loops where it
107 // is not running our MessageLoop; the only way to have our timers fire in
108 // these cases is to post messages there.
110 // To provide sub-10ms timers, we process timers directly from our run loop.
111 // For the common case, timers will be processed there as the run loop does
112 // its normal work. However, we *also* set the system timer so that WM_TIMER
113 // events fire. This mops up the case of timers not being able to work in
114 // modal message loops. It is possible for the SetTimer to pop and have no
115 // pending timers, because they could have already been processed by the
116 // run loop itself.
118 // We use a single SetTimer corresponding to the timer that will expire
119 // soonest. As new timers are created and destroyed, we update SetTimer.
120 // Getting a spurrious SetTimer event firing is benign, as we'll just be
121 // processing an empty timer queue.
123 delayed_work_time_ = delayed_work_time;
125 int delay_msec = GetCurrentDelay();
126 DCHECK(delay_msec >= 0);
127 if (delay_msec < USER_TIMER_MINIMUM)
128 delay_msec = USER_TIMER_MINIMUM;
130 // Create a WM_TIMER event that will wake us up to check for any pending
131 // timers (in case we are running within a nested, external sub-pump).
132 SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
135 void MessagePumpForUI::PumpOutPendingPaintMessages() {
136 // If we are being called outside of the context of Run, then don't try to do
137 // any work.
138 if (!state_)
139 return;
141 // Create a mini-message-pump to force immediate processing of only Windows
142 // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
143 // to get the job done. Actual common max is 4 peeks, but we'll be a little
144 // safe here.
145 const int kMaxPeekCount = 20;
146 bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000;
147 int peek_count;
148 for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
149 MSG msg;
150 if (win2k) {
151 if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE))
152 break;
153 } else {
154 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
155 break;
157 ProcessMessageHelper(msg);
158 if (state_->should_quit) // Handle WM_QUIT.
159 break;
161 // Histogram what was really being used, to help to adjust kMaxPeekCount.
162 DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
165 //-----------------------------------------------------------------------------
166 // MessagePumpForUI private:
168 // static
169 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
170 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
171 switch (message) {
172 case kMsgHaveWork:
173 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
174 break;
175 case WM_TIMER:
176 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
177 break;
179 return DefWindowProc(hwnd, message, wparam, lparam);
182 void MessagePumpForUI::DoRunLoop() {
183 // IF this was just a simple PeekMessage() loop (servicing all possible work
184 // queues), then Windows would try to achieve the following order according
185 // to MSDN documentation about PeekMessage with no filter):
186 // * Sent messages
187 // * Posted messages
188 // * Sent messages (again)
189 // * WM_PAINT messages
190 // * WM_TIMER messages
192 // Summary: none of the above classes is starved, and sent messages has twice
193 // the chance of being processed (i.e., reduced service time).
195 for (;;) {
196 // If we do any work, we may create more messages etc., and more work may
197 // possibly be waiting in another task group. When we (for example)
198 // ProcessNextWindowsMessage(), there is a good chance there are still more
199 // messages waiting. On the other hand, when any of these methods return
200 // having done no work, then it is pretty unlikely that calling them again
201 // quickly will find any work to do. Finally, if they all say they had no
202 // work, then it is a good time to consider sleeping (waiting) for more
203 // work.
205 bool more_work_is_plausible = ProcessNextWindowsMessage();
206 if (state_->should_quit)
207 break;
209 more_work_is_plausible |= state_->delegate->DoWork();
210 if (state_->should_quit)
211 break;
213 more_work_is_plausible |=
214 state_->delegate->DoDelayedWork(&delayed_work_time_);
215 // If we did not process any delayed work, then we can assume that our
216 // existing WM_TIMER if any will fire when delayed work should run. We
217 // don't want to disturb that timer if it is already in flight. However,
218 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
219 if (more_work_is_plausible && delayed_work_time_.is_null())
220 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
221 if (state_->should_quit)
222 break;
224 if (more_work_is_plausible)
225 continue;
227 more_work_is_plausible = state_->delegate->DoIdleWork();
228 if (state_->should_quit)
229 break;
231 if (more_work_is_plausible)
232 continue;
234 WaitForWork(); // Wait (sleep) until we have work to do again.
238 void MessagePumpForUI::InitMessageWnd() {
239 HINSTANCE hinst = GetModuleHandle(NULL);
241 WNDCLASSEX wc = {0};
242 wc.cbSize = sizeof(wc);
243 wc.lpfnWndProc = WndProcThunk;
244 wc.hInstance = hinst;
245 wc.lpszClassName = kWndClass;
246 RegisterClassEx(&wc);
248 message_hwnd_ =
249 CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
250 DCHECK(message_hwnd_);
253 void MessagePumpForUI::WaitForWork() {
254 // Wait until a message is available, up to the time needed by the timer
255 // manager to fire the next set of timers.
256 int delay = GetCurrentDelay();
257 if (delay < 0) // Negative value means no timers waiting.
258 delay = INFINITE;
260 DWORD result;
261 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
262 MWMO_INPUTAVAILABLE);
264 if (WAIT_OBJECT_0 == result) {
265 // A WM_* message is available.
266 // If a parent child relationship exists between windows across threads
267 // then their thread inputs are implicitly attached.
268 // This causes the MsgWaitForMultipleObjectsEx API to return indicating
269 // that messages are ready for processing (specifically mouse messages
270 // intended for the child window. Occurs if the child window has capture)
271 // The subsequent PeekMessages call fails to return any messages thus
272 // causing us to enter a tight loop at times.
273 // The WaitMessage call below is a workaround to give the child window
274 // sometime to process its input messages.
275 MSG msg = {0};
276 DWORD queue_status = GetQueueStatus(QS_MOUSE);
277 if (HIWORD(queue_status) & QS_MOUSE &&
278 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
279 WaitMessage();
281 return;
284 DCHECK_NE(WAIT_FAILED, result) << GetLastError();
287 void MessagePumpForUI::HandleWorkMessage() {
288 // If we are being called outside of the context of Run, then don't try to do
289 // any work. This could correspond to a MessageBox call or something of that
290 // sort.
291 if (!state_) {
292 // Since we handled a kMsgHaveWork message, we must still update this flag.
293 InterlockedExchange(&have_work_, 0);
294 return;
297 // Let whatever would have run had we not been putting messages in the queue
298 // run now. This is an attempt to make our dummy message not starve other
299 // messages that may be in the Windows message queue.
300 ProcessPumpReplacementMessage();
302 // Now give the delegate a chance to do some work. He'll let us know if he
303 // needs to do more work.
304 if (state_->delegate->DoWork())
305 ScheduleWork();
308 void MessagePumpForUI::HandleTimerMessage() {
309 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
311 // If we are being called outside of the context of Run, then don't do
312 // anything. This could correspond to a MessageBox call or something of
313 // that sort.
314 if (!state_)
315 return;
317 state_->delegate->DoDelayedWork(&delayed_work_time_);
318 if (!delayed_work_time_.is_null()) {
319 // A bit gratuitous to set delayed_work_time_ again, but oh well.
320 ScheduleDelayedWork(delayed_work_time_);
324 bool MessagePumpForUI::ProcessNextWindowsMessage() {
325 // If there are sent messages in the queue then PeekMessage internally
326 // dispatches the message and returns false. We return true in this
327 // case to ensure that the message loop peeks again instead of calling
328 // MsgWaitForMultipleObjectsEx again.
329 bool sent_messages_in_queue = false;
330 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
331 if (HIWORD(queue_status) & QS_SENDMESSAGE)
332 sent_messages_in_queue = true;
334 MSG msg;
335 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
336 return ProcessMessageHelper(msg);
338 return sent_messages_in_queue;
341 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
342 if (WM_QUIT == msg.message) {
343 // Repost the QUIT message so that it will be retrieved by the primary
344 // GetMessage() loop.
345 state_->should_quit = true;
346 PostQuitMessage(static_cast<int>(msg.wParam));
347 return false;
350 // While running our main message pump, we discard kMsgHaveWork messages.
351 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
352 return ProcessPumpReplacementMessage();
354 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
355 return true;
357 WillProcessMessage(msg);
359 if (state_->dispatcher) {
360 if (!state_->dispatcher->Dispatch(msg))
361 state_->should_quit = true;
362 } else {
363 TranslateMessage(&msg);
364 DispatchMessage(&msg);
367 DidProcessMessage(msg);
368 return true;
371 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
372 // When we encounter a kMsgHaveWork message, this method is called to peek
373 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
374 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
375 // a continuous stream of such messages are posted. This method carefully
376 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
377 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
378 // possibly be posted), and finally dispatches that peeked replacement. Note
379 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
381 MSG msg;
382 bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
383 DCHECK(!have_message || kMsgHaveWork != msg.message ||
384 msg.hwnd != message_hwnd_);
386 // Since we discarded a kMsgHaveWork message, we must update the flag.
387 int old_have_work = InterlockedExchange(&have_work_, 0);
388 DCHECK(old_have_work);
390 // We don't need a special time slice if we didn't have_message to process.
391 if (!have_message)
392 return false;
394 // Guarantee we'll get another time slice in the case where we go into native
395 // windows code. This ScheduleWork() may hurt performance a tiny bit when
396 // tasks appear very infrequently, but when the event queue is busy, the
397 // kMsgHaveWork events get (percentage wise) rarer and rarer.
398 ScheduleWork();
399 return ProcessMessageHelper(msg);
402 //-----------------------------------------------------------------------------
403 // MessagePumpForIO public:
405 MessagePumpForIO::MessagePumpForIO() {
406 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
407 DCHECK(port_.IsValid());
410 void MessagePumpForIO::ScheduleWork() {
411 if (InterlockedExchange(&have_work_, 1))
412 return; // Someone else continued the pumping.
414 // Make sure the MessagePump does some work for us.
415 BOOL ret = PostQueuedCompletionStatus(port_, 0,
416 reinterpret_cast<ULONG_PTR>(this),
417 reinterpret_cast<OVERLAPPED*>(this));
418 DCHECK(ret);
421 void MessagePumpForIO::ScheduleDelayedWork(const Time& delayed_work_time) {
422 // We know that we can't be blocked right now since this method can only be
423 // called on the same thread as Run, so we only need to update our record of
424 // how long to sleep when we do sleep.
425 delayed_work_time_ = delayed_work_time;
428 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
429 IOHandler* handler) {
430 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
431 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
432 DCHECK(port == port_.Get());
435 //-----------------------------------------------------------------------------
436 // MessagePumpForIO private:
438 void MessagePumpForIO::DoRunLoop() {
439 for (;;) {
440 // If we do any work, we may create more messages etc., and more work may
441 // possibly be waiting in another task group. When we (for example)
442 // WaitForIOCompletion(), there is a good chance there are still more
443 // messages waiting. On the other hand, when any of these methods return
444 // having done no work, then it is pretty unlikely that calling them
445 // again quickly will find any work to do. Finally, if they all say they
446 // had no work, then it is a good time to consider sleeping (waiting) for
447 // more work.
449 bool more_work_is_plausible = state_->delegate->DoWork();
450 if (state_->should_quit)
451 break;
453 more_work_is_plausible |= WaitForIOCompletion(0, NULL);
454 if (state_->should_quit)
455 break;
457 more_work_is_plausible |=
458 state_->delegate->DoDelayedWork(&delayed_work_time_);
459 if (state_->should_quit)
460 break;
462 if (more_work_is_plausible)
463 continue;
465 more_work_is_plausible = state_->delegate->DoIdleWork();
466 if (state_->should_quit)
467 break;
469 if (more_work_is_plausible)
470 continue;
472 WaitForWork(); // Wait (sleep) until we have work to do again.
476 // Wait until IO completes, up to the time needed by the timer manager to fire
477 // the next set of timers.
478 void MessagePumpForIO::WaitForWork() {
479 // We do not support nested IO message loops. This is to avoid messy
480 // recursion problems.
481 DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";
483 int timeout = GetCurrentDelay();
484 if (timeout < 0) // Negative value means no timers waiting.
485 timeout = INFINITE;
487 WaitForIOCompletion(timeout, NULL);
490 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
491 IOItem item;
492 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
493 // We have to ask the system for another IO completion.
494 if (!GetIOItem(timeout, &item))
495 return false;
497 if (ProcessInternalIOItem(item))
498 return true;
501 if (item.context->handler) {
502 if (filter && item.handler != filter) {
503 // Save this item for later
504 completed_io_.push_back(item);
505 } else {
506 DCHECK(item.context->handler == item.handler);
507 item.handler->OnIOCompleted(item.context, item.bytes_transfered,
508 item.error);
510 } else {
511 // The handler must be gone by now, just cleanup the mess.
512 delete item.context;
514 return true;
517 // Asks the OS for another IO completion result.
518 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
519 memset(item, 0, sizeof(*item));
520 ULONG_PTR key = NULL;
521 OVERLAPPED* overlapped = NULL;
522 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
523 &overlapped, timeout)) {
524 if (!overlapped)
525 return false; // Nothing in the queue.
526 item->error = GetLastError();
527 item->bytes_transfered = 0;
530 item->handler = reinterpret_cast<IOHandler*>(key);
531 item->context = reinterpret_cast<IOContext*>(overlapped);
532 return true;
535 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
536 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
537 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
538 // This is our internal completion.
539 DCHECK(!item.bytes_transfered);
540 InterlockedExchange(&have_work_, 0);
541 return true;
543 return false;
546 // Returns a completion item that was previously received.
547 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
548 DCHECK(!completed_io_.empty());
549 for (std::list<IOItem>::iterator it = completed_io_.begin();
550 it != completed_io_.end(); ++it) {
551 if (!filter || it->handler == filter) {
552 *item = *it;
553 completed_io_.erase(it);
554 return true;
557 return false;
560 } // namespace base