Bug #647 follow-on: Avoid pure virtual methods in NDMeshStreamer definition
[charm.git] / src / ck-cp / arrayRedistributor.h
bloba6a2b3abd742bd86c97db5c03f2c6dc076c770ac
1 /**
3 A system for exposing application and runtime "control points"
4 to the dynamic optimization framework.
6 */
7 #ifndef __ARRAYREDISTRIBUTOR_H__
8 #define __ARRAYREDISTRIBUTOR_H__
10 #include <vector>
11 #include <list>
12 #include <map>
13 #include <cmath>
14 //#include "ControlPoints.decl.h"
16 #include<pup_stl.h>
19 #if CMK_WITH_CONTROLPOINT
22 /**
23 * \addtogroup ControlPointFramework
24 * @{
28 /// A message containing a chunk of a data array used when redistributing to a different set of active chares
29 class redistributor2DMsg : public CMessage_redistributor2DMsg {
30 public:
31 int top;
32 int left;
33 int height;
34 int width;
35 int new_chare_cols;
36 int new_chare_rows;
37 int which_array;
38 double *data;
39 };
43 /// Integer Maximum
44 static int maxi(int a, int b){
45 if(a>b)
46 return a;
47 else
48 return b;
51 /// Integer Minimum
52 static int mini(int a, int b){
53 if(a<b)
54 return a;
55 else
56 return b;
60 /// A chare group that can redistribute user data arrays. It is used by binding it to a user's Chare Array
61 class redistributor2D: public CBase_redistributor2D {
62 public:
64 std::map<int,double*> data_arrays;
65 std::map<int,int> data_arrays_sizes;
67 /// The array associated with this data redistribution
68 CProxyElement_ArrayElement associatedArray;
70 int incoming_count;
71 std::map<int,double*> data_arrays_incoming;
72 std::map<int,int> data_arrays_incoming_sizes;
74 /// Is this array element active
75 bool thisElemActive;
77 bool resizeGranulesHasBeenCalled;
79 CkVec<redistributor2DMsg *> bufferedMsgs;
81 private:
84 void *fakeMemoryUsage;
87 CkCallback dataRedistributedCallback;
89 int x_chares; // number of active chares in x dimension
90 int y_chares; // number of active chares in y dimension
92 int data_width; // The width of the global array, not the local piece
93 int data_height; // The height of the global array, not the local piece
95 int data_x_ghost; // The padding in the x dimension on each side of the data
96 int data_y_ghost; // The padding in the y dimension on each side of the data
99 public:
101 void pup(PUP::er &p) {
102 p | data_arrays_sizes;
103 p | data_arrays_incoming_sizes;
104 p | incoming_count;
105 p | associatedArray;
106 p | thisElemActive;
108 p | dataRedistributedCallback;
110 p | resizeGranulesHasBeenCalled;
112 p | x_chares;
113 p | y_chares;
114 p | data_width;
115 p | data_height;
116 p | data_x_ghost;
117 p | data_y_ghost;
119 if(p.isPacking() && fakeMemoryUsage!=NULL)
120 free(fakeMemoryUsage);
122 fakeMemoryUsage = NULL;
124 ////////////////////////////////
125 // when packing, iterate through data_arrays
126 // when unpacking
129 std::map<int,int>::iterator iter;
130 for(iter = data_arrays_sizes.begin(); iter != data_arrays_sizes.end(); iter++){
131 int whichArray = iter->first;
132 int arraySize = iter->second;
134 // CkPrintf("Pupping data array %d\n",whichArray);
135 p | whichArray;
137 if(p.isUnpacking())
138 data_arrays[whichArray] = new double[arraySize];
140 PUParray(p,data_arrays[whichArray] ,arraySize);
142 if(p.isPacking())
143 delete[] data_arrays[whichArray];
149 ///////////////////////////////
151 std::map<int,int>::iterator iter;
152 for(iter = data_arrays_incoming_sizes.begin(); iter != data_arrays_incoming_sizes.end(); iter++){
153 int whichArray = iter->first;
154 int arraySize = iter->second;
156 // CkPrintf("Pupping incoming array %d\n",whichArray);
157 p | whichArray;
159 if(p.isUnpacking() && data_arrays_incoming_sizes[whichArray] > 0)
160 data_arrays_incoming[whichArray] = new double[arraySize];
162 PUParray(p,data_arrays_incoming[whichArray],arraySize);
164 if(p.isPacking())
165 delete[] data_arrays_incoming[whichArray];
170 // CkPrintf("pup redistributor2D\n");
174 void ckJustMigrated(){
175 // CkPrintf("redistributor element %02d %02d migrated to %d", thisIndex.x, thisIndex.y, CkMyPe());
179 // ------------ Some routines for computing the array bounds for this chare ------------
181 // The index in the global array for my top row
182 int top_data_idx();
184 int bottom_data_idx();
186 int left_data_idx();
188 int right_data_idx();
190 int top_neighbor();
192 int bottom_neighbor();
194 int left_neighbor();
196 int right_neighbor();
199 /// the width of the non-ghost part of the local partition
200 int mywidth();
203 // the height of the non-ghost part of the local partition
204 int myheight();
208 // ------------ Some routines for computing the array bounds for arbitrary chares ------------
210 int top_data_idx(int y, int y_total){
211 return (data_height * y) / y_total;
214 int bottom_data_idx(int y, int y_total){
215 return ((data_height * (y+1)) / y_total) - 1;
218 int left_data_idx(int x, int x_total){
219 return (data_width * x) / x_total;
222 int right_data_idx(int x, int x_total){
223 return ((data_width * (x+1)) / x_total) - 1;
227 int top_data_idx(int y){
228 return (data_height * y) / y_chares;
231 int bottom_data_idx(int y){
232 return ((data_height * (y+1)) / y_chares) - 1;
235 int left_data_idx(int x){
236 return (data_width * x) / x_chares;
239 int right_data_idx(int x){
240 return ((data_width * (x+1)) / x_chares) - 1;
243 /// Return which chare array element(x index) owns the global data item i
244 int who_owns_idx_x(int i){
245 int w=0;
246 while(1){
247 if( i >= left_data_idx(w) && i <= right_data_idx(w) ){
248 return w;
250 w++;
254 /// Return which chare array element(y index) owns the global data item i
255 int who_owns_idx_y(int i){
256 int w=0;
257 while(1){
258 if( i >= top_data_idx(w) && i <= bottom_data_idx(w) ){
259 return w;
261 w++;
269 // Convert a local column,row id (0 to mywidth()-1, 0 to myheight()-1) to the index in the padded array
270 int local_to_padded(int x, int y){
271 CkAssert(thisElemActive);
272 CkAssert(x < (mywidth()+data_x_ghost) && x >= (0-data_x_ghost) && y < (myheight()+data_y_ghost) && y >= (0-data_y_ghost) );
273 return (mywidth()+2*data_x_ghost)*(y+data_y_ghost)+x+data_x_ghost;
276 // get a data value
277 double data_local(int which, int x, int y){
278 CkAssert(local_to_padded(x,y) < data_arrays_sizes[which]);
279 return data_arrays[which][local_to_padded(x,y)];
283 // Convert a local column id (0 to mywidth-1) to the global column id (0 to data_width-1)
284 int local_to_global_x(int x){
285 return left_data_idx() + x;
288 // Convert a local row id (0 to myheight-1) to the global row id (0 to data_height-1)
289 int local_to_global_y(int y){
290 return top_data_idx() + y;
293 int global_array_width(){
294 return data_width;
297 int global_array_height(){
298 return data_height;
301 int global_array_size(){
302 return global_array_width() * global_array_height();
305 int my_array_width(){
306 return mywidth()+2*data_x_ghost;
309 int my_array_height(){
310 return myheight()+2*data_y_ghost;
313 // Total size of arrays including ghost layers
314 int my_array_size(){
315 return my_array_width() * my_array_height();
318 /// Create an array. If multiple arrays are needed, each should have its own index
319 template <typename t> t* createDataArray(int which=0) {
320 t* data = new t[my_array_size()];
321 data_arrays[which] = data;
322 data_arrays_sizes[which] = my_array_size();
324 if(thisIndex.x==0 && thisIndex.y==0)
325 CkPrintf("data_arrays_sizes[which] set to %d\n", data_arrays_sizes[which] );
328 CkAssert(data_arrays[which] != NULL);
329 #if DEBUG > 2
330 CkPrintf("Allocated array of size %d at %p\n", my_array_size(), data_arrays[which] );
331 #endif
332 return data;
335 template <typename t> t* getDataArray(int which=0) {
336 return data_arrays[which];
339 /// Constructor takes in the dimensions of the array, including any desired ghost layers
340 /// The local part of the arrays will have (mywidth+x_ghosts*2)*(myheight+y_ghosts*2) elements
341 void setInitialDimensions(int width, int height, int x_chares_, int y_chares_, int x_ghosts=0, int y_ghosts=0){
342 data_width = width; // These values cannot change after this method is called.
343 data_height = height;
344 data_x_ghost = x_ghosts;
345 data_y_ghost = y_ghosts;
347 setDimensions(x_chares_, y_chares_);
352 void setDimensions( int x_chares_, int y_chares_){
353 x_chares = x_chares_;
354 y_chares = y_chares_;
357 if( thisIndex.x < x_chares && thisIndex.y < y_chares ){
358 thisElemActive = true;
359 } else {
360 thisElemActive = false;
366 redistributor2D(){
367 incoming_count = 0;
368 fakeMemoryUsage = NULL;
369 CkAssert(bufferedMsgs.size() == 0);
373 redistributor2D(CkMigrateMessage*){
374 CkAssert(bufferedMsgs.size() == 0);
378 void startup(){
379 #if DEBUG > 3
380 CkPrintf("redistributor 2D startup %03d,%03d\n", thisIndex.x, thisIndex.y);
381 #endif
383 contribute();
387 void printArrays(){
388 #if DEBUG > 2
389 CkAssert(data_arrays.size()==2);
390 for(std::map<int,double*>::iterator diter = data_arrays.begin(); diter != data_arrays.end(); diter++){
391 int which_array = diter->first;
392 double *data = diter->second;
393 CkPrintf("%d,%d data_arrays[%d] = %p\n", thisIndex.x, thisIndex.y, which_array, data);
395 #endif
399 // Called on all elements involved with the new granularity or containing part of the old data
400 void resizeGranules(int new_active_chare_cols, int new_active_chare_rows){
401 #if DEBUG>1
402 CkPrintf("Resize Granules called for elem %d,%d\n", thisIndex.x, thisIndex.y);
403 #endif
405 resizeGranulesHasBeenCalled = true;
407 const bool previouslyActive = thisElemActive;
408 const int old_top = top_data_idx();
409 const int old_left = left_data_idx();
410 const int old_bottom = top_data_idx()+myheight()-1;
411 const int old_right = left_data_idx()+mywidth()-1;
412 const int old_myheight = myheight();
413 const int old_mywidth = mywidth();
415 setDimensions(new_active_chare_cols, new_active_chare_rows); // update dimensions & thisElemActive
417 const int new_mywidth = mywidth();
418 const int new_myheight = myheight();
420 // Transpose Data
421 // Assume only one new owner of my data
423 if(previouslyActive){
425 // Send all my data to any blocks that will need it
427 int newOwnerXmin = who_owns_idx_x(old_left);
428 int newOwnerXmax = who_owns_idx_x(old_right);
429 int newOwnerYmin = who_owns_idx_y(old_top);
430 int newOwnerYmax = who_owns_idx_y(old_bottom);
432 for(int newx=newOwnerXmin; newx<=newOwnerXmax; newx++){
433 for(int newy=newOwnerYmin; newy<=newOwnerYmax; newy++){
435 // Determine overlapping region between my data and this destination
436 #if DEBUG > 2
437 CkPrintf("newy(%d)*new_myheight(%d)=%d, old_top=%d\n",newy,new_myheight,newy*new_myheight,old_top);
438 #endif
439 // global range for overlapping area
440 int global_top = maxi(top_data_idx(newy),old_top);
441 int global_left = maxi(left_data_idx(newx),old_left);
442 int global_bottom = mini(bottom_data_idx(newy),old_bottom);
443 int global_right = mini(right_data_idx(newx),old_right);
444 int w = global_right-global_left+1;
445 int h = global_bottom-global_top+1;
447 CkAssert(w*h>0);
449 int x_offset = global_left - old_left;
450 int y_offset = global_top - old_top;
452 #if DEBUG > 2
453 CkPrintf("w=%d h=%d x_offset=%d y_offset=%d\n", w, h, x_offset, y_offset);
454 #endif
456 std::map<int,double*>::iterator diter;
457 for(diter =data_arrays.begin(); diter != data_arrays.end(); diter++){
459 redistributor2DMsg* msg = new(w*h) redistributor2DMsg;
460 // CkPrintf("Created message msg %p\n", msg);
462 int which_array = diter->first;
463 double *t = diter->second;
464 int s = data_arrays_sizes[which_array];
466 for(int j=0; j<h; j++){
467 for(int i=0; i<w; i++){
468 CkAssert(j*w+i < w*h);
469 CkAssert((data_x_ghost*2+old_mywidth)*(j+y_offset+data_y_ghost)+(i+ x_offset+data_x_ghost) < s);
470 msg->data[j*w+i] = t[(data_x_ghost*2+old_mywidth)*(j+y_offset+data_y_ghost)+(i+ x_offset+data_x_ghost)];
474 msg->top = global_top;
475 msg->left = global_left;
476 msg->height = h;
477 msg->width = w;
478 msg->new_chare_cols = new_active_chare_cols;
479 msg->new_chare_rows = new_active_chare_rows;
480 msg->which_array = which_array;
482 // CkPrintf("Sending message msg %p\n", msg);
483 thisProxy(newx, newy).receiveTransposeData(msg);
493 if(!thisElemActive){
494 #if DEBUG > 2
495 CkPrintf("Element %d,%d is no longer active\n", thisIndex.x, thisIndex.y);
496 #endif
498 // Free my arrays
499 for(std::map<int,double*>::iterator diter = data_arrays.begin(); diter != data_arrays.end(); diter++){
500 int which_array = diter->first;
501 delete data_arrays[which_array];
502 data_arrays[which_array] = NULL;
503 data_arrays_sizes[which_array] = 0;
505 continueToNextStep();
510 // Call receiveTransposeData for any buffered messages.
511 int size = bufferedMsgs.size();
512 for(int i=0;i<size;i++){
513 redistributor2DMsg *msg = bufferedMsgs[i];
514 // CkPrintf("Delivering buffered receiveTransposeData(msg=%p) i=%d\n", msg, i);
515 receiveTransposeData(msg); // this will delete the message
517 bufferedMsgs.removeAll();
519 int newPe = (thisIndex.y * new_active_chare_cols + thisIndex.x) % CkNumPes();
520 if(newPe == CkMyPe()){
521 // CkPrintf("Keeping %02d , %02d on PE %d\n", thisIndex.x, thisIndex.y, newPe);
523 else{
524 // CkPrintf("Migrating %02d , %02d to PE %d\n", thisIndex.x, thisIndex.y, newPe);
525 migrateMe(newPe);
527 // CANNOT CALL ANYTHING AFTER MIGRATE ME
531 void continueToNextStep(){
532 #if DEBUG > 2
533 CkPrintf("Elem %d,%d is ready to continue\n", thisIndex.x, thisIndex.y);
534 #endif
536 resizeGranulesHasBeenCalled = false;
538 for(std::map<int,double*>::iterator diter =data_arrays.begin(); diter != data_arrays.end(); diter++){
539 int which_array = diter->first;
540 double *data = diter->second;
541 if( ! ((data==NULL && !thisElemActive) || (data!=NULL && thisElemActive) )){
542 CkPrintf("[%d] ERROR: ! ((data==NULL && !thisElemActive) || (data!=NULL && thisElemActive) )",CkMyPe());
543 CkPrintf("[%d] ERROR: data=%p thisElemActive=%d (perhaps continueToNextStep was called too soon)\n",CkMyPe(), data, (int)thisElemActive );
545 CkAbort("ERROR");
550 #if USE_EXTRAMEMORY
551 #error NO USE_EXTRAMEMORY ALLOWED YET
552 if(thisElemActive){
554 long totalArtificialMemory = controlPoint("Artificial Memory Usage", 100, 500);
555 long artificialMemoryPerChare = totalArtificialMemory *1024*1024 / x_chares / y_chares;
557 CkPrintf("Allocating fake memory of %d MB (of the total %d MB) (xchares=%d y_chares=%d)\n", artificialMemoryPerChare/1024/1024, totalArtificialMemory, x_chares, y_chares);
558 free(fakeMemoryUsage);
559 fakeMemoryUsage = malloc(artificialMemoryPerChare);
560 CkAssert(fakeMemoryUsage != NULL);
561 } else {
562 free(fakeMemoryUsage);
563 fakeMemoryUsage = NULL;
565 #endif
569 incoming_count = 0; // prepare for future granularity change
570 contribute();
579 void receiveTransposeData(redistributor2DMsg *msg){
581 // buffer this message until resizeGranules Has Been Called
582 if(!resizeGranulesHasBeenCalled){
583 bufferedMsgs.push_back(msg);
584 // CkPrintf("Buffering receiveTransposeData(msg=%p)\n", msg);
585 return;
588 CkAssert(resizeGranulesHasBeenCalled);
590 int top_new = top_data_idx(thisIndex.y, msg->new_chare_rows);
591 int bottom_new = bottom_data_idx(thisIndex.y, msg->new_chare_rows);
592 int left_new = left_data_idx(thisIndex.x, msg->new_chare_cols);
593 int right_new = right_data_idx(thisIndex.x, msg->new_chare_cols);
595 int new_height = bottom_new - top_new + 1;
596 int new_width = right_new - left_new + 1;
598 if(incoming_count == 0){
599 // Allocate new arrays
600 std::map<int,double*>::iterator diter;
601 for(diter =data_arrays.begin(); diter != data_arrays.end(); diter++){
602 int w = diter->first;
603 data_arrays_incoming[w] = new double[(new_width+2*data_x_ghost)*(new_height+2*data_y_ghost)];
604 data_arrays_incoming_sizes[w] = (new_width+2*data_x_ghost)*(new_height+2*data_y_ghost);
606 // CkPrintf("data_arrays_incoming_sizes[%d] set to %d\n", w, data_arrays_incoming_sizes[w] );
612 // Copy values from the incoming array to the appropriate place in data_arrays_incoming
613 // Current top left of my new array
616 double *localData = data_arrays_incoming[msg->which_array];
617 int s = data_arrays_incoming_sizes[msg->which_array];
619 // CkPrintf("%d,%d data_arrays_incoming.size() = %d\n", thisIndex.x, thisIndex.y, data_arrays_incoming.size() );
620 // CkPrintf("msg->which_array=%d localData=%p s=%d\n", msg->which_array, localData, s);
621 CkAssert(localData != NULL);
623 for(int j=0; j<msg->height; j++){
624 for(int i=0; i<msg->width; i++){
626 if( (msg->top+j >= top_new) && (msg->top+j <= bottom_new) && (msg->left+i >= left_new) && (msg->left+i <= right_new) ) {
627 CkAssert(j*msg->width+i<msg->height*msg->width);
628 CkAssert((msg->top+j-top_new)*new_width+(msg->left+i-left_new) < new_width*new_height);
629 CkAssert((msg->top+j-top_new)*new_width+(msg->left+i-left_new) >= 0);
631 CkAssert((msg->top+j-top_new+data_y_ghost)*(new_width+2*data_x_ghost)+(msg->left+i-left_new+data_x_ghost) < s);
632 localData[(msg->top+j-top_new+data_y_ghost)*(new_width+2*data_x_ghost)+(msg->left+i-left_new+data_x_ghost)] = msg->data[j*msg->width+i];
633 incoming_count++;
640 // CkPrintf("Deleting message msg %p\n", msg);
641 delete msg;
644 if(incoming_count == new_height*new_width*data_arrays.size()){
646 std::map<int,double*>::iterator diter;
647 for(diter =data_arrays.begin(); diter != data_arrays.end(); diter++){
648 int w = diter->first;
649 delete[] data_arrays[w];
650 data_arrays[w] = data_arrays_incoming[w];
651 data_arrays_sizes[w] = data_arrays_incoming_sizes[w];
652 data_arrays_incoming[w] = NULL;
653 data_arrays_incoming_sizes[w] = 0;
655 // if(thisIndex.x==0 && thisIndex.y==0)
656 // CkPrintf("data_arrays_incoming_sizes[%d] set to %d\n",w, data_arrays_incoming_sizes[w] );
658 // if(thisIndex.x==0 && thisIndex.y==0)
659 // CkPrintf("data_arrays_sizes[%d] set to %d\n",w, data_arrays_sizes[w] );
663 continueToNextStep();
669 /** @} */
670 #endif
671 #endif