Part of binutils 2.20 update
[cegcc.git] / cegcc / src / binutils / bfd / elflink.c
blob02f10ee3626634d743e24ceb8d641d3d2deab405
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
129 if (bed->want_got_plt)
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
155 return TRUE;
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
174 return TRUE;
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
260 if (info->emit_hash)
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
269 if (info->emit_gnu_hash)
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
293 return TRUE;
296 /* Create dynamic sections when linking against a dynamic object. */
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
351 if (bed->want_dynbss)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
388 return TRUE;
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
403 if (h->dynindx == -1)
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
426 default:
427 break;
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456 if (p != NULL)
457 *p = ELF_VER_CHR;
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
464 return TRUE;
467 /* Mark a symbol dynamic. */
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
512 switch (h->root.type)
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
569 h->def_regular = 1;
571 if (provide && hidden)
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
607 return TRUE;
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
629 return 0;
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
646 return 0;
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
652 asection *s;
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
696 return 1;
699 /* Return the dynindex of a local dynamic symbol. */
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
722 size_t *count = (size_t *) data;
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
727 if (h->forced_local)
728 return TRUE;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
733 return TRUE;
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
744 size_t *count = (size_t *) data;
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749 if (!h->forced_local)
750 return TRUE;
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
755 return TRUE;
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
765 struct elf_link_hash_table *htab;
767 switch (elf_section_data (p)->this_hdr.sh_type)
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
785 asection *ip;
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
793 return FALSE;
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
813 unsigned long dynsymcount = 0;
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
827 *section_sym_count = dynsymcount;
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
833 if (elf_hash_table (info)->dynlocal)
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
854 /* Merge st_other field. */
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
882 unsigned char hvis, symvis, other, nvis;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
898 h->other = other | nvis;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
937 *skip = FALSE;
938 *override = FALSE;
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
948 *skip = TRUE;
949 return TRUE;
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
961 bed = get_elf_backend_data (abfd);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
968 /* For merging, we only care about real symbols. */
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h->root.type == bfd_link_hash_new)
985 h->non_elf = 0;
986 return TRUE;
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
992 switch (h->root.type)
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1078 *skip = TRUE;
1079 return TRUE;
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1092 if (h->type == STT_TLS)
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1101 else
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1201 else
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1210 h = vh;
1212 else
1213 h = *sym_hash;
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1228 else
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1234 if (h->def_dynamic)
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1371 *size_change_ok = TRUE;
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1431 *skip = TRUE;
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec))
1482 if (oldfunc)
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1490 *type_change_ok = TRUE;
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1546 if (flip != NULL)
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1552 flip->root.type = h->root.type;
1553 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554 h->root.type = bfd_link_hash_indirect;
1555 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557 if (h->def_dynamic)
1559 h->def_dynamic = 0;
1560 flip->ref_dynamic = 1;
1564 return TRUE;
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1572 static bfd_boolean
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 struct bfd_link_info *info,
1575 struct elf_link_hash_entry *h,
1576 const char *name,
1577 Elf_Internal_Sym *sym,
1578 asection **psec,
1579 bfd_vma *value,
1580 bfd_boolean *dynsym,
1581 bfd_boolean override)
1583 bfd_boolean type_change_ok;
1584 bfd_boolean size_change_ok;
1585 bfd_boolean skip;
1586 char *shortname;
1587 struct elf_link_hash_entry *hi;
1588 struct bfd_link_hash_entry *bh;
1589 const struct elf_backend_data *bed;
1590 bfd_boolean collect;
1591 bfd_boolean dynamic;
1592 char *p;
1593 size_t len, shortlen;
1594 asection *sec;
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p = strchr (name, ELF_VER_CHR);
1601 if (p == NULL || p[1] != ELF_VER_CHR)
1602 return TRUE;
1604 if (override)
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 FALSE, FALSE);
1610 BFD_ASSERT (hi != NULL);
1611 if (hi == h)
1612 return TRUE;
1613 while (hi->root.type == bfd_link_hash_indirect
1614 || hi->root.type == bfd_link_hash_warning)
1616 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617 if (hi == h)
1618 return TRUE;
1622 bed = get_elf_backend_data (abfd);
1623 collect = bed->collect;
1624 dynamic = (abfd->flags & DYNAMIC) != 0;
1626 shortlen = p - name;
1627 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 shortname[shortlen] = '\0';
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok = FALSE;
1638 size_change_ok = FALSE;
1639 sec = *psec;
1640 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 NULL, &hi, &skip, &override,
1642 &type_change_ok, &size_change_ok))
1643 return FALSE;
1645 if (skip)
1646 goto nondefault;
1648 if (! override)
1650 bh = &hi->root;
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 0, name, FALSE, collect, &bh)))
1654 return FALSE;
1655 hi = (struct elf_link_hash_entry *) bh;
1657 else
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1677 while (hi->root.type == bfd_link_hash_indirect
1678 || hi->root.type == bfd_link_hash_warning)
1679 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683 if (h->def_dynamic)
1685 h->def_dynamic = 0;
1686 hi->ref_dynamic = 1;
1687 if (hi->ref_regular
1688 || hi->def_regular)
1690 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691 return FALSE;
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1697 hi = h;
1700 /* Check if HI is a warning symbol. */
1701 if (hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1708 if (hi->root.type == bfd_link_hash_indirect)
1710 struct elf_link_hash_entry *ht;
1712 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1715 /* See if the new flags lead us to realize that the symbol must
1716 be dynamic. */
1717 if (! *dynsym)
1719 if (! dynamic)
1721 if (info->shared
1722 || hi->ref_dynamic)
1723 *dynsym = TRUE;
1725 else
1727 if (hi->ref_regular)
1728 *dynsym = TRUE;
1733 /* We also need to define an indirection from the nondefault version
1734 of the symbol. */
1736 nondefault:
1737 len = strlen (name);
1738 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739 if (shortname == NULL)
1740 return FALSE;
1741 memcpy (shortname, name, shortlen);
1742 memcpy (shortname + shortlen, p + 1, len - shortlen);
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok = FALSE;
1746 size_change_ok = FALSE;
1747 sec = *psec;
1748 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 NULL, &hi, &skip, &override,
1750 &type_change_ok, &size_change_ok))
1751 return FALSE;
1753 if (skip)
1754 return TRUE;
1756 if (override)
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi->root.type != bfd_link_hash_defined
1762 && hi->root.type != bfd_link_hash_defweak)
1763 (*_bfd_error_handler)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 abfd, shortname);
1767 else
1769 bh = &hi->root;
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info, abfd, shortname, BSF_INDIRECT,
1772 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 return FALSE;
1774 hi = (struct elf_link_hash_entry *) bh;
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1780 if (hi->root.type == bfd_link_hash_indirect)
1782 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1784 /* See if the new flags lead us to realize that the symbol
1785 must be dynamic. */
1786 if (! *dynsym)
1788 if (! dynamic)
1790 if (info->shared
1791 || hi->ref_dynamic)
1792 *dynsym = TRUE;
1794 else
1796 if (hi->ref_regular)
1797 *dynsym = TRUE;
1803 return TRUE;
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1812 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1814 /* Ignore this if we won't export it. */
1815 if (!eif->info->export_dynamic && !h->dynamic)
1816 return TRUE;
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h->root.type == bfd_link_hash_indirect)
1820 return TRUE;
1822 if (h->root.type == bfd_link_hash_warning)
1823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1825 if (h->dynindx == -1
1826 && (h->def_regular
1827 || h->ref_regular))
1829 bfd_boolean hide;
1831 if (eif->verdefs == NULL
1832 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1833 && !hide))
1835 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1837 eif->failed = TRUE;
1838 return FALSE;
1843 return TRUE;
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1851 static bfd_boolean
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1853 void *data)
1855 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1856 Elf_Internal_Verneed *t;
1857 Elf_Internal_Vernaux *a;
1858 bfd_size_type amt;
1860 if (h->root.type == bfd_link_hash_warning)
1861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1863 /* We only care about symbols defined in shared objects with version
1864 information. */
1865 if (!h->def_dynamic
1866 || h->def_regular
1867 || h->dynindx == -1
1868 || h->verinfo.verdef == NULL)
1869 return TRUE;
1871 /* See if we already know about this version. */
1872 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873 t != NULL;
1874 t = t->vn_nextref)
1876 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877 continue;
1879 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1881 return TRUE;
1883 break;
1886 /* This is a new version. Add it to tree we are building. */
1888 if (t == NULL)
1890 amt = sizeof *t;
1891 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892 if (t == NULL)
1894 rinfo->failed = TRUE;
1895 return FALSE;
1898 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900 elf_tdata (rinfo->info->output_bfd)->verref = t;
1903 amt = sizeof *a;
1904 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1905 if (a == NULL)
1907 rinfo->failed = TRUE;
1908 return FALSE;
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1914 fixed. */
1915 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1917 a->vna_flags = h->verinfo.verdef->vd_flags;
1918 a->vna_nextptr = t->vn_auxptr;
1920 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921 ++rinfo->vers;
1923 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1925 t->vn_auxptr = a;
1927 return TRUE;
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1935 static bfd_boolean
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1938 struct elf_info_failed *sinfo;
1939 struct bfd_link_info *info;
1940 const struct elf_backend_data *bed;
1941 struct elf_info_failed eif;
1942 char *p;
1943 bfd_size_type amt;
1945 sinfo = (struct elf_info_failed *) data;
1946 info = sinfo->info;
1948 if (h->root.type == bfd_link_hash_warning)
1949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1951 /* Fix the symbol flags. */
1952 eif.failed = FALSE;
1953 eif.info = info;
1954 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1956 if (eif.failed)
1957 sinfo->failed = TRUE;
1958 return FALSE;
1961 /* We only need version numbers for symbols defined in regular
1962 objects. */
1963 if (!h->def_regular)
1964 return TRUE;
1966 bed = get_elf_backend_data (info->output_bfd);
1967 p = strchr (h->root.root.string, ELF_VER_CHR);
1968 if (p != NULL && h->verinfo.vertree == NULL)
1970 struct bfd_elf_version_tree *t;
1971 bfd_boolean hidden;
1973 hidden = TRUE;
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1977 ++p;
1978 if (*p == ELF_VER_CHR)
1980 hidden = FALSE;
1981 ++p;
1984 /* If there is no version string, we can just return out. */
1985 if (*p == '\0')
1987 if (hidden)
1988 h->hidden = 1;
1989 return TRUE;
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t = sinfo->verdefs; t != NULL; t = t->next)
1995 if (strcmp (t->name, p) == 0)
1997 size_t len;
1998 char *alc;
1999 struct bfd_elf_version_expr *d;
2001 len = p - h->root.root.string;
2002 alc = (char *) bfd_malloc (len);
2003 if (alc == NULL)
2005 sinfo->failed = TRUE;
2006 return FALSE;
2008 memcpy (alc, h->root.root.string, len - 1);
2009 alc[len - 1] = '\0';
2010 if (alc[len - 2] == ELF_VER_CHR)
2011 alc[len - 2] = '\0';
2013 h->verinfo.vertree = t;
2014 t->used = TRUE;
2015 d = NULL;
2017 if (t->globals.list != NULL)
2018 d = (*t->match) (&t->globals, NULL, alc);
2020 /* See if there is anything to force this symbol to
2021 local scope. */
2022 if (d == NULL && t->locals.list != NULL)
2024 d = (*t->match) (&t->locals, NULL, alc);
2025 if (d != NULL
2026 && h->dynindx != -1
2027 && ! info->export_dynamic)
2028 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2031 free (alc);
2032 break;
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t == NULL && info->executable)
2040 struct bfd_elf_version_tree **pp;
2041 int version_index;
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h->dynindx == -1)
2046 return TRUE;
2048 amt = sizeof *t;
2049 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2050 if (t == NULL)
2052 sinfo->failed = TRUE;
2053 return FALSE;
2056 t->name = p;
2057 t->name_indx = (unsigned int) -1;
2058 t->used = TRUE;
2060 version_index = 1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2063 version_index = 0;
2064 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2065 ++version_index;
2066 t->vernum = version_index;
2068 *pp = t;
2070 h->verinfo.vertree = t;
2072 else if (t == NULL)
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler)
2077 (_("%B: version node not found for symbol %s"),
2078 info->output_bfd, h->root.root.string);
2079 bfd_set_error (bfd_error_bad_value);
2080 sinfo->failed = TRUE;
2081 return FALSE;
2084 if (hidden)
2085 h->hidden = 1;
2088 /* If we don't have a version for this symbol, see if we can find
2089 something. */
2090 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2092 bfd_boolean hide;
2094 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095 h->root.root.string, &hide);
2096 if (h->verinfo.vertree != NULL && hide)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2100 return TRUE;
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2110 Returns FALSE if something goes wrong. */
2112 static bfd_boolean
2113 elf_link_read_relocs_from_section (bfd *abfd,
2114 asection *sec,
2115 Elf_Internal_Shdr *shdr,
2116 void *external_relocs,
2117 Elf_Internal_Rela *internal_relocs)
2119 const struct elf_backend_data *bed;
2120 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121 const bfd_byte *erela;
2122 const bfd_byte *erelaend;
2123 Elf_Internal_Rela *irela;
2124 Elf_Internal_Shdr *symtab_hdr;
2125 size_t nsyms;
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2129 return FALSE;
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2133 return FALSE;
2135 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2138 bed = get_elf_backend_data (abfd);
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr->sh_entsize == bed->s->sizeof_rel)
2142 swap_in = bed->s->swap_reloc_in;
2143 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144 swap_in = bed->s->swap_reloca_in;
2145 else
2147 bfd_set_error (bfd_error_wrong_format);
2148 return FALSE;
2151 erela = (const bfd_byte *) external_relocs;
2152 erelaend = erela + shdr->sh_size;
2153 irela = internal_relocs;
2154 while (erela < erelaend)
2156 bfd_vma r_symndx;
2158 (*swap_in) (abfd, erela, irela);
2159 r_symndx = ELF32_R_SYM (irela->r_info);
2160 if (bed->s->arch_size == 64)
2161 r_symndx >>= 24;
2162 if (nsyms > 0)
2164 if ((size_t) r_symndx >= nsyms)
2166 (*_bfd_error_handler)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2169 abfd, sec,
2170 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 bfd_set_error (bfd_error_bad_value);
2172 return FALSE;
2175 else if (r_symndx != 0)
2177 (*_bfd_error_handler)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2180 abfd, sec,
2181 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182 bfd_set_error (bfd_error_bad_value);
2183 return FALSE;
2185 irela += bed->s->int_rels_per_ext_rel;
2186 erela += shdr->sh_entsize;
2189 return TRUE;
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 REL_HDR2 relocations. */
2202 Elf_Internal_Rela *
2203 _bfd_elf_link_read_relocs (bfd *abfd,
2204 asection *o,
2205 void *external_relocs,
2206 Elf_Internal_Rela *internal_relocs,
2207 bfd_boolean keep_memory)
2209 Elf_Internal_Shdr *rel_hdr;
2210 void *alloc1 = NULL;
2211 Elf_Internal_Rela *alloc2 = NULL;
2212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2214 if (elf_section_data (o)->relocs != NULL)
2215 return elf_section_data (o)->relocs;
2217 if (o->reloc_count == 0)
2218 return NULL;
2220 rel_hdr = &elf_section_data (o)->rel_hdr;
2222 if (internal_relocs == NULL)
2224 bfd_size_type size;
2226 size = o->reloc_count;
2227 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228 if (keep_memory)
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2230 else
2231 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2232 if (internal_relocs == NULL)
2233 goto error_return;
2236 if (external_relocs == NULL)
2238 bfd_size_type size = rel_hdr->sh_size;
2240 if (elf_section_data (o)->rel_hdr2)
2241 size += elf_section_data (o)->rel_hdr2->sh_size;
2242 alloc1 = bfd_malloc (size);
2243 if (alloc1 == NULL)
2244 goto error_return;
2245 external_relocs = alloc1;
2248 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2249 external_relocs,
2250 internal_relocs))
2251 goto error_return;
2252 if (elf_section_data (o)->rel_hdr2
2253 && (!elf_link_read_relocs_from_section
2254 (abfd, o,
2255 elf_section_data (o)->rel_hdr2,
2256 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2257 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2258 * bed->s->int_rels_per_ext_rel))))
2259 goto error_return;
2261 /* Cache the results for next time, if we can. */
2262 if (keep_memory)
2263 elf_section_data (o)->relocs = internal_relocs;
2265 if (alloc1 != NULL)
2266 free (alloc1);
2268 /* Don't free alloc2, since if it was allocated we are passing it
2269 back (under the name of internal_relocs). */
2271 return internal_relocs;
2273 error_return:
2274 if (alloc1 != NULL)
2275 free (alloc1);
2276 if (alloc2 != NULL)
2278 if (keep_memory)
2279 bfd_release (abfd, alloc2);
2280 else
2281 free (alloc2);
2283 return NULL;
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287 section header for a section containing relocations for O. */
2289 static bfd_boolean
2290 _bfd_elf_link_size_reloc_section (bfd *abfd,
2291 Elf_Internal_Shdr *rel_hdr,
2292 asection *o)
2294 bfd_size_type reloc_count;
2295 bfd_size_type num_rel_hashes;
2297 /* Figure out how many relocations there will be. */
2298 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2299 reloc_count = elf_section_data (o)->rel_count;
2300 else
2301 reloc_count = elf_section_data (o)->rel_count2;
2303 num_rel_hashes = o->reloc_count;
2304 if (num_rel_hashes < reloc_count)
2305 num_rel_hashes = reloc_count;
2307 /* That allows us to calculate the size of the section. */
2308 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2310 /* The contents field must last into write_object_contents, so we
2311 allocate it with bfd_alloc rather than malloc. Also since we
2312 cannot be sure that the contents will actually be filled in,
2313 we zero the allocated space. */
2314 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2315 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2316 return FALSE;
2318 /* We only allocate one set of hash entries, so we only do it the
2319 first time we are called. */
2320 if (elf_section_data (o)->rel_hashes == NULL
2321 && num_rel_hashes)
2323 struct elf_link_hash_entry **p;
2325 p = (struct elf_link_hash_entry **)
2326 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2327 if (p == NULL)
2328 return FALSE;
2330 elf_section_data (o)->rel_hashes = p;
2333 return TRUE;
2336 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2337 originated from the section given by INPUT_REL_HDR) to the
2338 OUTPUT_BFD. */
2340 bfd_boolean
2341 _bfd_elf_link_output_relocs (bfd *output_bfd,
2342 asection *input_section,
2343 Elf_Internal_Shdr *input_rel_hdr,
2344 Elf_Internal_Rela *internal_relocs,
2345 struct elf_link_hash_entry **rel_hash
2346 ATTRIBUTE_UNUSED)
2348 Elf_Internal_Rela *irela;
2349 Elf_Internal_Rela *irelaend;
2350 bfd_byte *erel;
2351 Elf_Internal_Shdr *output_rel_hdr;
2352 asection *output_section;
2353 unsigned int *rel_countp = NULL;
2354 const struct elf_backend_data *bed;
2355 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2357 output_section = input_section->output_section;
2358 output_rel_hdr = NULL;
2360 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2361 == input_rel_hdr->sh_entsize)
2363 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2364 rel_countp = &elf_section_data (output_section)->rel_count;
2366 else if (elf_section_data (output_section)->rel_hdr2
2367 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2368 == input_rel_hdr->sh_entsize))
2370 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2371 rel_countp = &elf_section_data (output_section)->rel_count2;
2373 else
2375 (*_bfd_error_handler)
2376 (_("%B: relocation size mismatch in %B section %A"),
2377 output_bfd, input_section->owner, input_section);
2378 bfd_set_error (bfd_error_wrong_format);
2379 return FALSE;
2382 bed = get_elf_backend_data (output_bfd);
2383 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2384 swap_out = bed->s->swap_reloc_out;
2385 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2386 swap_out = bed->s->swap_reloca_out;
2387 else
2388 abort ();
2390 erel = output_rel_hdr->contents;
2391 erel += *rel_countp * input_rel_hdr->sh_entsize;
2392 irela = internal_relocs;
2393 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2394 * bed->s->int_rels_per_ext_rel);
2395 while (irela < irelaend)
2397 (*swap_out) (output_bfd, irela, erel);
2398 irela += bed->s->int_rels_per_ext_rel;
2399 erel += input_rel_hdr->sh_entsize;
2402 /* Bump the counter, so that we know where to add the next set of
2403 relocations. */
2404 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2406 return TRUE;
2409 /* Make weak undefined symbols in PIE dynamic. */
2411 bfd_boolean
2412 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2413 struct elf_link_hash_entry *h)
2415 if (info->pie
2416 && h->dynindx == -1
2417 && h->root.type == bfd_link_hash_undefweak)
2418 return bfd_elf_link_record_dynamic_symbol (info, h);
2420 return TRUE;
2423 /* Fix up the flags for a symbol. This handles various cases which
2424 can only be fixed after all the input files are seen. This is
2425 currently called by both adjust_dynamic_symbol and
2426 assign_sym_version, which is unnecessary but perhaps more robust in
2427 the face of future changes. */
2429 static bfd_boolean
2430 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2431 struct elf_info_failed *eif)
2433 const struct elf_backend_data *bed;
2435 /* If this symbol was mentioned in a non-ELF file, try to set
2436 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2437 permit a non-ELF file to correctly refer to a symbol defined in
2438 an ELF dynamic object. */
2439 if (h->non_elf)
2441 while (h->root.type == bfd_link_hash_indirect)
2442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2444 if (h->root.type != bfd_link_hash_defined
2445 && h->root.type != bfd_link_hash_defweak)
2447 h->ref_regular = 1;
2448 h->ref_regular_nonweak = 1;
2450 else
2452 if (h->root.u.def.section->owner != NULL
2453 && (bfd_get_flavour (h->root.u.def.section->owner)
2454 == bfd_target_elf_flavour))
2456 h->ref_regular = 1;
2457 h->ref_regular_nonweak = 1;
2459 else
2460 h->def_regular = 1;
2463 if (h->dynindx == -1
2464 && (h->def_dynamic
2465 || h->ref_dynamic))
2467 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2469 eif->failed = TRUE;
2470 return FALSE;
2474 else
2476 /* Unfortunately, NON_ELF is only correct if the symbol
2477 was first seen in a non-ELF file. Fortunately, if the symbol
2478 was first seen in an ELF file, we're probably OK unless the
2479 symbol was defined in a non-ELF file. Catch that case here.
2480 FIXME: We're still in trouble if the symbol was first seen in
2481 a dynamic object, and then later in a non-ELF regular object. */
2482 if ((h->root.type == bfd_link_hash_defined
2483 || h->root.type == bfd_link_hash_defweak)
2484 && !h->def_regular
2485 && (h->root.u.def.section->owner != NULL
2486 ? (bfd_get_flavour (h->root.u.def.section->owner)
2487 != bfd_target_elf_flavour)
2488 : (bfd_is_abs_section (h->root.u.def.section)
2489 && !h->def_dynamic)))
2490 h->def_regular = 1;
2493 /* Backend specific symbol fixup. */
2494 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2495 if (bed->elf_backend_fixup_symbol
2496 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2497 return FALSE;
2499 /* If this is a final link, and the symbol was defined as a common
2500 symbol in a regular object file, and there was no definition in
2501 any dynamic object, then the linker will have allocated space for
2502 the symbol in a common section but the DEF_REGULAR
2503 flag will not have been set. */
2504 if (h->root.type == bfd_link_hash_defined
2505 && !h->def_regular
2506 && h->ref_regular
2507 && !h->def_dynamic
2508 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2509 h->def_regular = 1;
2511 /* If -Bsymbolic was used (which means to bind references to global
2512 symbols to the definition within the shared object), and this
2513 symbol was defined in a regular object, then it actually doesn't
2514 need a PLT entry. Likewise, if the symbol has non-default
2515 visibility. If the symbol has hidden or internal visibility, we
2516 will force it local. */
2517 if (h->needs_plt
2518 && eif->info->shared
2519 && is_elf_hash_table (eif->info->hash)
2520 && (SYMBOLIC_BIND (eif->info, h)
2521 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2522 && h->def_regular)
2524 bfd_boolean force_local;
2526 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2527 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2528 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2531 /* If a weak undefined symbol has non-default visibility, we also
2532 hide it from the dynamic linker. */
2533 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2534 && h->root.type == bfd_link_hash_undefweak)
2535 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2537 /* If this is a weak defined symbol in a dynamic object, and we know
2538 the real definition in the dynamic object, copy interesting flags
2539 over to the real definition. */
2540 if (h->u.weakdef != NULL)
2542 struct elf_link_hash_entry *weakdef;
2544 weakdef = h->u.weakdef;
2545 if (h->root.type == bfd_link_hash_indirect)
2546 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2548 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2549 || h->root.type == bfd_link_hash_defweak);
2550 BFD_ASSERT (weakdef->def_dynamic);
2552 /* If the real definition is defined by a regular object file,
2553 don't do anything special. See the longer description in
2554 _bfd_elf_adjust_dynamic_symbol, below. */
2555 if (weakdef->def_regular)
2556 h->u.weakdef = NULL;
2557 else
2559 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2560 || weakdef->root.type == bfd_link_hash_defweak);
2561 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2565 return TRUE;
2568 /* Make the backend pick a good value for a dynamic symbol. This is
2569 called via elf_link_hash_traverse, and also calls itself
2570 recursively. */
2572 static bfd_boolean
2573 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2575 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2576 bfd *dynobj;
2577 const struct elf_backend_data *bed;
2579 if (! is_elf_hash_table (eif->info->hash))
2580 return FALSE;
2582 if (h->root.type == bfd_link_hash_warning)
2584 h->got = elf_hash_table (eif->info)->init_got_offset;
2585 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2587 /* When warning symbols are created, they **replace** the "real"
2588 entry in the hash table, thus we never get to see the real
2589 symbol in a hash traversal. So look at it now. */
2590 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2593 /* Ignore indirect symbols. These are added by the versioning code. */
2594 if (h->root.type == bfd_link_hash_indirect)
2595 return TRUE;
2597 /* Fix the symbol flags. */
2598 if (! _bfd_elf_fix_symbol_flags (h, eif))
2599 return FALSE;
2601 /* If this symbol does not require a PLT entry, and it is not
2602 defined by a dynamic object, or is not referenced by a regular
2603 object, ignore it. We do have to handle a weak defined symbol,
2604 even if no regular object refers to it, if we decided to add it
2605 to the dynamic symbol table. FIXME: Do we normally need to worry
2606 about symbols which are defined by one dynamic object and
2607 referenced by another one? */
2608 if (!h->needs_plt
2609 && h->type != STT_GNU_IFUNC
2610 && (h->def_regular
2611 || !h->def_dynamic
2612 || (!h->ref_regular
2613 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2615 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2616 return TRUE;
2619 /* If we've already adjusted this symbol, don't do it again. This
2620 can happen via a recursive call. */
2621 if (h->dynamic_adjusted)
2622 return TRUE;
2624 /* Don't look at this symbol again. Note that we must set this
2625 after checking the above conditions, because we may look at a
2626 symbol once, decide not to do anything, and then get called
2627 recursively later after REF_REGULAR is set below. */
2628 h->dynamic_adjusted = 1;
2630 /* If this is a weak definition, and we know a real definition, and
2631 the real symbol is not itself defined by a regular object file,
2632 then get a good value for the real definition. We handle the
2633 real symbol first, for the convenience of the backend routine.
2635 Note that there is a confusing case here. If the real definition
2636 is defined by a regular object file, we don't get the real symbol
2637 from the dynamic object, but we do get the weak symbol. If the
2638 processor backend uses a COPY reloc, then if some routine in the
2639 dynamic object changes the real symbol, we will not see that
2640 change in the corresponding weak symbol. This is the way other
2641 ELF linkers work as well, and seems to be a result of the shared
2642 library model.
2644 I will clarify this issue. Most SVR4 shared libraries define the
2645 variable _timezone and define timezone as a weak synonym. The
2646 tzset call changes _timezone. If you write
2647 extern int timezone;
2648 int _timezone = 5;
2649 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2650 you might expect that, since timezone is a synonym for _timezone,
2651 the same number will print both times. However, if the processor
2652 backend uses a COPY reloc, then actually timezone will be copied
2653 into your process image, and, since you define _timezone
2654 yourself, _timezone will not. Thus timezone and _timezone will
2655 wind up at different memory locations. The tzset call will set
2656 _timezone, leaving timezone unchanged. */
2658 if (h->u.weakdef != NULL)
2660 /* If we get to this point, we know there is an implicit
2661 reference by a regular object file via the weak symbol H.
2662 FIXME: Is this really true? What if the traversal finds
2663 H->U.WEAKDEF before it finds H? */
2664 h->u.weakdef->ref_regular = 1;
2666 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2667 return FALSE;
2670 /* If a symbol has no type and no size and does not require a PLT
2671 entry, then we are probably about to do the wrong thing here: we
2672 are probably going to create a COPY reloc for an empty object.
2673 This case can arise when a shared object is built with assembly
2674 code, and the assembly code fails to set the symbol type. */
2675 if (h->size == 0
2676 && h->type == STT_NOTYPE
2677 && !h->needs_plt)
2678 (*_bfd_error_handler)
2679 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2680 h->root.root.string);
2682 dynobj = elf_hash_table (eif->info)->dynobj;
2683 bed = get_elf_backend_data (dynobj);
2685 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2687 eif->failed = TRUE;
2688 return FALSE;
2691 return TRUE;
2694 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2695 DYNBSS. */
2697 bfd_boolean
2698 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2699 asection *dynbss)
2701 unsigned int power_of_two;
2702 bfd_vma mask;
2703 asection *sec = h->root.u.def.section;
2705 /* The section aligment of definition is the maximum alignment
2706 requirement of symbols defined in the section. Since we don't
2707 know the symbol alignment requirement, we start with the
2708 maximum alignment and check low bits of the symbol address
2709 for the minimum alignment. */
2710 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2711 mask = ((bfd_vma) 1 << power_of_two) - 1;
2712 while ((h->root.u.def.value & mask) != 0)
2714 mask >>= 1;
2715 --power_of_two;
2718 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2719 dynbss))
2721 /* Adjust the section alignment if needed. */
2722 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2723 power_of_two))
2724 return FALSE;
2727 /* We make sure that the symbol will be aligned properly. */
2728 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2730 /* Define the symbol as being at this point in DYNBSS. */
2731 h->root.u.def.section = dynbss;
2732 h->root.u.def.value = dynbss->size;
2734 /* Increment the size of DYNBSS to make room for the symbol. */
2735 dynbss->size += h->size;
2737 return TRUE;
2740 /* Adjust all external symbols pointing into SEC_MERGE sections
2741 to reflect the object merging within the sections. */
2743 static bfd_boolean
2744 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2746 asection *sec;
2748 if (h->root.type == bfd_link_hash_warning)
2749 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2751 if ((h->root.type == bfd_link_hash_defined
2752 || h->root.type == bfd_link_hash_defweak)
2753 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2754 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2756 bfd *output_bfd = (bfd *) data;
2758 h->root.u.def.value =
2759 _bfd_merged_section_offset (output_bfd,
2760 &h->root.u.def.section,
2761 elf_section_data (sec)->sec_info,
2762 h->root.u.def.value);
2765 return TRUE;
2768 /* Returns false if the symbol referred to by H should be considered
2769 to resolve local to the current module, and true if it should be
2770 considered to bind dynamically. */
2772 bfd_boolean
2773 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2774 struct bfd_link_info *info,
2775 bfd_boolean ignore_protected)
2777 bfd_boolean binding_stays_local_p;
2778 const struct elf_backend_data *bed;
2779 struct elf_link_hash_table *hash_table;
2781 if (h == NULL)
2782 return FALSE;
2784 while (h->root.type == bfd_link_hash_indirect
2785 || h->root.type == bfd_link_hash_warning)
2786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2788 /* If it was forced local, then clearly it's not dynamic. */
2789 if (h->dynindx == -1)
2790 return FALSE;
2791 if (h->forced_local)
2792 return FALSE;
2794 /* Identify the cases where name binding rules say that a
2795 visible symbol resolves locally. */
2796 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2798 switch (ELF_ST_VISIBILITY (h->other))
2800 case STV_INTERNAL:
2801 case STV_HIDDEN:
2802 return FALSE;
2804 case STV_PROTECTED:
2805 hash_table = elf_hash_table (info);
2806 if (!is_elf_hash_table (hash_table))
2807 return FALSE;
2809 bed = get_elf_backend_data (hash_table->dynobj);
2811 /* Proper resolution for function pointer equality may require
2812 that these symbols perhaps be resolved dynamically, even though
2813 we should be resolving them to the current module. */
2814 if (!ignore_protected || !bed->is_function_type (h->type))
2815 binding_stays_local_p = TRUE;
2816 break;
2818 default:
2819 break;
2822 /* If it isn't defined locally, then clearly it's dynamic. */
2823 if (!h->def_regular)
2824 return TRUE;
2826 /* Otherwise, the symbol is dynamic if binding rules don't tell
2827 us that it remains local. */
2828 return !binding_stays_local_p;
2831 /* Return true if the symbol referred to by H should be considered
2832 to resolve local to the current module, and false otherwise. Differs
2833 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2834 undefined symbols and weak symbols. */
2836 bfd_boolean
2837 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2838 struct bfd_link_info *info,
2839 bfd_boolean local_protected)
2841 const struct elf_backend_data *bed;
2842 struct elf_link_hash_table *hash_table;
2844 /* If it's a local sym, of course we resolve locally. */
2845 if (h == NULL)
2846 return TRUE;
2848 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2849 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2850 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2851 return TRUE;
2853 /* Common symbols that become definitions don't get the DEF_REGULAR
2854 flag set, so test it first, and don't bail out. */
2855 if (ELF_COMMON_DEF_P (h))
2856 /* Do nothing. */;
2857 /* If we don't have a definition in a regular file, then we can't
2858 resolve locally. The sym is either undefined or dynamic. */
2859 else if (!h->def_regular)
2860 return FALSE;
2862 /* Forced local symbols resolve locally. */
2863 if (h->forced_local)
2864 return TRUE;
2866 /* As do non-dynamic symbols. */
2867 if (h->dynindx == -1)
2868 return TRUE;
2870 /* At this point, we know the symbol is defined and dynamic. In an
2871 executable it must resolve locally, likewise when building symbolic
2872 shared libraries. */
2873 if (info->executable || SYMBOLIC_BIND (info, h))
2874 return TRUE;
2876 /* Now deal with defined dynamic symbols in shared libraries. Ones
2877 with default visibility might not resolve locally. */
2878 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2879 return FALSE;
2881 hash_table = elf_hash_table (info);
2882 if (!is_elf_hash_table (hash_table))
2883 return TRUE;
2885 bed = get_elf_backend_data (hash_table->dynobj);
2887 /* STV_PROTECTED non-function symbols are local. */
2888 if (!bed->is_function_type (h->type))
2889 return TRUE;
2891 /* Function pointer equality tests may require that STV_PROTECTED
2892 symbols be treated as dynamic symbols, even when we know that the
2893 dynamic linker will resolve them locally. */
2894 return local_protected;
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2900 struct bfd_section *
2901 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2903 struct bfd_section *sec, *tls;
2904 unsigned int align = 0;
2906 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2907 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2908 break;
2909 tls = sec;
2911 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2912 if (sec->alignment_power > align)
2913 align = sec->alignment_power;
2915 elf_hash_table (info)->tls_sec = tls;
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2919 if (tls != NULL)
2920 tls->alignment_power = align;
2922 return tls;
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2926 static bfd_boolean
2927 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2928 Elf_Internal_Sym *sym)
2930 const struct elf_backend_data *bed;
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2934 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 return FALSE;
2937 bed = get_elf_backend_data (abfd);
2938 /* Function symbols do not count. */
2939 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 return FALSE;
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym->st_shndx == SHN_UNDEF)
2944 return FALSE;
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed->common_definition (sym))
2949 return FALSE;
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2954 /* FIXME - this function is not coded yet:
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2961 return FALSE;
2963 return TRUE;
2966 /* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2969 static bfd_boolean
2970 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2972 Elf_Internal_Shdr * hdr;
2973 bfd_size_type symcount;
2974 bfd_size_type extsymcount;
2975 bfd_size_type extsymoff;
2976 Elf_Internal_Sym *isymbuf;
2977 Elf_Internal_Sym *isym;
2978 Elf_Internal_Sym *isymend;
2979 bfd_boolean result;
2981 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2982 if (abfd == NULL)
2983 return FALSE;
2985 if (! bfd_check_format (abfd, bfd_object))
2986 return FALSE;
2988 /* If we have already included the element containing this symbol in the
2989 link then we do not need to include it again. Just claim that any symbol
2990 it contains is not a definition, so that our caller will not decide to
2991 (re)include this element. */
2992 if (abfd->archive_pass)
2993 return FALSE;
2995 /* Select the appropriate symbol table. */
2996 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2997 hdr = &elf_tdata (abfd)->symtab_hdr;
2998 else
2999 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3001 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3003 /* The sh_info field of the symtab header tells us where the
3004 external symbols start. We don't care about the local symbols. */
3005 if (elf_bad_symtab (abfd))
3007 extsymcount = symcount;
3008 extsymoff = 0;
3010 else
3012 extsymcount = symcount - hdr->sh_info;
3013 extsymoff = hdr->sh_info;
3016 if (extsymcount == 0)
3017 return FALSE;
3019 /* Read in the symbol table. */
3020 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3021 NULL, NULL, NULL);
3022 if (isymbuf == NULL)
3023 return FALSE;
3025 /* Scan the symbol table looking for SYMDEF. */
3026 result = FALSE;
3027 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3029 const char *name;
3031 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3032 isym->st_name);
3033 if (name == NULL)
3034 break;
3036 if (strcmp (name, symdef->name) == 0)
3038 result = is_global_data_symbol_definition (abfd, isym);
3039 break;
3043 free (isymbuf);
3045 return result;
3048 /* Add an entry to the .dynamic table. */
3050 bfd_boolean
3051 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3052 bfd_vma tag,
3053 bfd_vma val)
3055 struct elf_link_hash_table *hash_table;
3056 const struct elf_backend_data *bed;
3057 asection *s;
3058 bfd_size_type newsize;
3059 bfd_byte *newcontents;
3060 Elf_Internal_Dyn dyn;
3062 hash_table = elf_hash_table (info);
3063 if (! is_elf_hash_table (hash_table))
3064 return FALSE;
3066 bed = get_elf_backend_data (hash_table->dynobj);
3067 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3068 BFD_ASSERT (s != NULL);
3070 newsize = s->size + bed->s->sizeof_dyn;
3071 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3072 if (newcontents == NULL)
3073 return FALSE;
3075 dyn.d_tag = tag;
3076 dyn.d_un.d_val = val;
3077 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3079 s->size = newsize;
3080 s->contents = newcontents;
3082 return TRUE;
3085 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3086 otherwise just check whether one already exists. Returns -1 on error,
3087 1 if a DT_NEEDED tag already exists, and 0 on success. */
3089 static int
3090 elf_add_dt_needed_tag (bfd *abfd,
3091 struct bfd_link_info *info,
3092 const char *soname,
3093 bfd_boolean do_it)
3095 struct elf_link_hash_table *hash_table;
3096 bfd_size_type oldsize;
3097 bfd_size_type strindex;
3099 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3100 return -1;
3102 hash_table = elf_hash_table (info);
3103 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3104 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3105 if (strindex == (bfd_size_type) -1)
3106 return -1;
3108 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3110 asection *sdyn;
3111 const struct elf_backend_data *bed;
3112 bfd_byte *extdyn;
3114 bed = get_elf_backend_data (hash_table->dynobj);
3115 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3116 if (sdyn != NULL)
3117 for (extdyn = sdyn->contents;
3118 extdyn < sdyn->contents + sdyn->size;
3119 extdyn += bed->s->sizeof_dyn)
3121 Elf_Internal_Dyn dyn;
3123 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3124 if (dyn.d_tag == DT_NEEDED
3125 && dyn.d_un.d_val == strindex)
3127 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3128 return 1;
3133 if (do_it)
3135 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3136 return -1;
3138 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3139 return -1;
3141 else
3142 /* We were just checking for existence of the tag. */
3143 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3145 return 0;
3148 static bfd_boolean
3149 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3151 for (; needed != NULL; needed = needed->next)
3152 if (strcmp (soname, needed->name) == 0)
3153 return TRUE;
3155 return FALSE;
3158 /* Sort symbol by value and section. */
3159 static int
3160 elf_sort_symbol (const void *arg1, const void *arg2)
3162 const struct elf_link_hash_entry *h1;
3163 const struct elf_link_hash_entry *h2;
3164 bfd_signed_vma vdiff;
3166 h1 = *(const struct elf_link_hash_entry **) arg1;
3167 h2 = *(const struct elf_link_hash_entry **) arg2;
3168 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3169 if (vdiff != 0)
3170 return vdiff > 0 ? 1 : -1;
3171 else
3173 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3174 if (sdiff != 0)
3175 return sdiff > 0 ? 1 : -1;
3177 return 0;
3180 /* This function is used to adjust offsets into .dynstr for
3181 dynamic symbols. This is called via elf_link_hash_traverse. */
3183 static bfd_boolean
3184 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3186 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3188 if (h->root.type == bfd_link_hash_warning)
3189 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3191 if (h->dynindx != -1)
3192 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3193 return TRUE;
3196 /* Assign string offsets in .dynstr, update all structures referencing
3197 them. */
3199 static bfd_boolean
3200 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3202 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3203 struct elf_link_local_dynamic_entry *entry;
3204 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3205 bfd *dynobj = hash_table->dynobj;
3206 asection *sdyn;
3207 bfd_size_type size;
3208 const struct elf_backend_data *bed;
3209 bfd_byte *extdyn;
3211 _bfd_elf_strtab_finalize (dynstr);
3212 size = _bfd_elf_strtab_size (dynstr);
3214 bed = get_elf_backend_data (dynobj);
3215 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3216 BFD_ASSERT (sdyn != NULL);
3218 /* Update all .dynamic entries referencing .dynstr strings. */
3219 for (extdyn = sdyn->contents;
3220 extdyn < sdyn->contents + sdyn->size;
3221 extdyn += bed->s->sizeof_dyn)
3223 Elf_Internal_Dyn dyn;
3225 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3226 switch (dyn.d_tag)
3228 case DT_STRSZ:
3229 dyn.d_un.d_val = size;
3230 break;
3231 case DT_NEEDED:
3232 case DT_SONAME:
3233 case DT_RPATH:
3234 case DT_RUNPATH:
3235 case DT_FILTER:
3236 case DT_AUXILIARY:
3237 case DT_AUDIT:
3238 case DT_DEPAUDIT:
3239 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3240 break;
3241 default:
3242 continue;
3244 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3247 /* Now update local dynamic symbols. */
3248 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3249 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3250 entry->isym.st_name);
3252 /* And the rest of dynamic symbols. */
3253 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3255 /* Adjust version definitions. */
3256 if (elf_tdata (output_bfd)->cverdefs)
3258 asection *s;
3259 bfd_byte *p;
3260 bfd_size_type i;
3261 Elf_Internal_Verdef def;
3262 Elf_Internal_Verdaux defaux;
3264 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3265 p = s->contents;
3268 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3269 &def);
3270 p += sizeof (Elf_External_Verdef);
3271 if (def.vd_aux != sizeof (Elf_External_Verdef))
3272 continue;
3273 for (i = 0; i < def.vd_cnt; ++i)
3275 _bfd_elf_swap_verdaux_in (output_bfd,
3276 (Elf_External_Verdaux *) p, &defaux);
3277 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3278 defaux.vda_name);
3279 _bfd_elf_swap_verdaux_out (output_bfd,
3280 &defaux, (Elf_External_Verdaux *) p);
3281 p += sizeof (Elf_External_Verdaux);
3284 while (def.vd_next);
3287 /* Adjust version references. */
3288 if (elf_tdata (output_bfd)->verref)
3290 asection *s;
3291 bfd_byte *p;
3292 bfd_size_type i;
3293 Elf_Internal_Verneed need;
3294 Elf_Internal_Vernaux needaux;
3296 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3297 p = s->contents;
3300 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3301 &need);
3302 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3303 _bfd_elf_swap_verneed_out (output_bfd, &need,
3304 (Elf_External_Verneed *) p);
3305 p += sizeof (Elf_External_Verneed);
3306 for (i = 0; i < need.vn_cnt; ++i)
3308 _bfd_elf_swap_vernaux_in (output_bfd,
3309 (Elf_External_Vernaux *) p, &needaux);
3310 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3311 needaux.vna_name);
3312 _bfd_elf_swap_vernaux_out (output_bfd,
3313 &needaux,
3314 (Elf_External_Vernaux *) p);
3315 p += sizeof (Elf_External_Vernaux);
3318 while (need.vn_next);
3321 return TRUE;
3324 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3325 The default is to only match when the INPUT and OUTPUT are exactly
3326 the same target. */
3328 bfd_boolean
3329 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3330 const bfd_target *output)
3332 return input == output;
3335 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3336 This version is used when different targets for the same architecture
3337 are virtually identical. */
3339 bfd_boolean
3340 _bfd_elf_relocs_compatible (const bfd_target *input,
3341 const bfd_target *output)
3343 const struct elf_backend_data *obed, *ibed;
3345 if (input == output)
3346 return TRUE;
3348 ibed = xvec_get_elf_backend_data (input);
3349 obed = xvec_get_elf_backend_data (output);
3351 if (ibed->arch != obed->arch)
3352 return FALSE;
3354 /* If both backends are using this function, deem them compatible. */
3355 return ibed->relocs_compatible == obed->relocs_compatible;
3358 /* Add symbols from an ELF object file to the linker hash table. */
3360 static bfd_boolean
3361 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3363 Elf_Internal_Ehdr *ehdr;
3364 Elf_Internal_Shdr *hdr;
3365 bfd_size_type symcount;
3366 bfd_size_type extsymcount;
3367 bfd_size_type extsymoff;
3368 struct elf_link_hash_entry **sym_hash;
3369 bfd_boolean dynamic;
3370 Elf_External_Versym *extversym = NULL;
3371 Elf_External_Versym *ever;
3372 struct elf_link_hash_entry *weaks;
3373 struct elf_link_hash_entry **nondeflt_vers = NULL;
3374 bfd_size_type nondeflt_vers_cnt = 0;
3375 Elf_Internal_Sym *isymbuf = NULL;
3376 Elf_Internal_Sym *isym;
3377 Elf_Internal_Sym *isymend;
3378 const struct elf_backend_data *bed;
3379 bfd_boolean add_needed;
3380 struct elf_link_hash_table *htab;
3381 bfd_size_type amt;
3382 void *alloc_mark = NULL;
3383 struct bfd_hash_entry **old_table = NULL;
3384 unsigned int old_size = 0;
3385 unsigned int old_count = 0;
3386 void *old_tab = NULL;
3387 void *old_hash;
3388 void *old_ent;
3389 struct bfd_link_hash_entry *old_undefs = NULL;
3390 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3391 long old_dynsymcount = 0;
3392 size_t tabsize = 0;
3393 size_t hashsize = 0;
3395 htab = elf_hash_table (info);
3396 bed = get_elf_backend_data (abfd);
3398 if ((abfd->flags & DYNAMIC) == 0)
3399 dynamic = FALSE;
3400 else
3402 dynamic = TRUE;
3404 /* You can't use -r against a dynamic object. Also, there's no
3405 hope of using a dynamic object which does not exactly match
3406 the format of the output file. */
3407 if (info->relocatable
3408 || !is_elf_hash_table (htab)
3409 || info->output_bfd->xvec != abfd->xvec)
3411 if (info->relocatable)
3412 bfd_set_error (bfd_error_invalid_operation);
3413 else
3414 bfd_set_error (bfd_error_wrong_format);
3415 goto error_return;
3419 ehdr = elf_elfheader (abfd);
3420 if (info->warn_alternate_em
3421 && bed->elf_machine_code != ehdr->e_machine
3422 && ((bed->elf_machine_alt1 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt1)
3424 || (bed->elf_machine_alt2 != 0
3425 && ehdr->e_machine == bed->elf_machine_alt2)))
3426 info->callbacks->einfo
3427 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3428 ehdr->e_machine, abfd, bed->elf_machine_code);
3430 /* As a GNU extension, any input sections which are named
3431 .gnu.warning.SYMBOL are treated as warning symbols for the given
3432 symbol. This differs from .gnu.warning sections, which generate
3433 warnings when they are included in an output file. */
3434 if (info->executable)
3436 asection *s;
3438 for (s = abfd->sections; s != NULL; s = s->next)
3440 const char *name;
3442 name = bfd_get_section_name (abfd, s);
3443 if (CONST_STRNEQ (name, ".gnu.warning."))
3445 char *msg;
3446 bfd_size_type sz;
3448 name += sizeof ".gnu.warning." - 1;
3450 /* If this is a shared object, then look up the symbol
3451 in the hash table. If it is there, and it is already
3452 been defined, then we will not be using the entry
3453 from this shared object, so we don't need to warn.
3454 FIXME: If we see the definition in a regular object
3455 later on, we will warn, but we shouldn't. The only
3456 fix is to keep track of what warnings we are supposed
3457 to emit, and then handle them all at the end of the
3458 link. */
3459 if (dynamic)
3461 struct elf_link_hash_entry *h;
3463 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3465 /* FIXME: What about bfd_link_hash_common? */
3466 if (h != NULL
3467 && (h->root.type == bfd_link_hash_defined
3468 || h->root.type == bfd_link_hash_defweak))
3470 /* We don't want to issue this warning. Clobber
3471 the section size so that the warning does not
3472 get copied into the output file. */
3473 s->size = 0;
3474 continue;
3478 sz = s->size;
3479 msg = (char *) bfd_alloc (abfd, sz + 1);
3480 if (msg == NULL)
3481 goto error_return;
3483 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3484 goto error_return;
3486 msg[sz] = '\0';
3488 if (! (_bfd_generic_link_add_one_symbol
3489 (info, abfd, name, BSF_WARNING, s, 0, msg,
3490 FALSE, bed->collect, NULL)))
3491 goto error_return;
3493 if (! info->relocatable)
3495 /* Clobber the section size so that the warning does
3496 not get copied into the output file. */
3497 s->size = 0;
3499 /* Also set SEC_EXCLUDE, so that symbols defined in
3500 the warning section don't get copied to the output. */
3501 s->flags |= SEC_EXCLUDE;
3507 add_needed = TRUE;
3508 if (! dynamic)
3510 /* If we are creating a shared library, create all the dynamic
3511 sections immediately. We need to attach them to something,
3512 so we attach them to this BFD, provided it is the right
3513 format. FIXME: If there are no input BFD's of the same
3514 format as the output, we can't make a shared library. */
3515 if (info->shared
3516 && is_elf_hash_table (htab)
3517 && info->output_bfd->xvec == abfd->xvec
3518 && !htab->dynamic_sections_created)
3520 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3521 goto error_return;
3524 else if (!is_elf_hash_table (htab))
3525 goto error_return;
3526 else
3528 asection *s;
3529 const char *soname = NULL;
3530 char *audit = NULL;
3531 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3532 int ret;
3534 /* ld --just-symbols and dynamic objects don't mix very well.
3535 ld shouldn't allow it. */
3536 if ((s = abfd->sections) != NULL
3537 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3538 abort ();
3540 /* If this dynamic lib was specified on the command line with
3541 --as-needed in effect, then we don't want to add a DT_NEEDED
3542 tag unless the lib is actually used. Similary for libs brought
3543 in by another lib's DT_NEEDED. When --no-add-needed is used
3544 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3545 any dynamic library in DT_NEEDED tags in the dynamic lib at
3546 all. */
3547 add_needed = (elf_dyn_lib_class (abfd)
3548 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3549 | DYN_NO_NEEDED)) == 0;
3551 s = bfd_get_section_by_name (abfd, ".dynamic");
3552 if (s != NULL)
3554 bfd_byte *dynbuf;
3555 bfd_byte *extdyn;
3556 unsigned int elfsec;
3557 unsigned long shlink;
3559 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3561 error_free_dyn:
3562 free (dynbuf);
3563 goto error_return;
3566 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3567 if (elfsec == SHN_BAD)
3568 goto error_free_dyn;
3569 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3571 for (extdyn = dynbuf;
3572 extdyn < dynbuf + s->size;
3573 extdyn += bed->s->sizeof_dyn)
3575 Elf_Internal_Dyn dyn;
3577 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3578 if (dyn.d_tag == DT_SONAME)
3580 unsigned int tagv = dyn.d_un.d_val;
3581 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (soname == NULL)
3583 goto error_free_dyn;
3585 if (dyn.d_tag == DT_NEEDED)
3587 struct bfd_link_needed_list *n, **pn;
3588 char *fnm, *anm;
3589 unsigned int tagv = dyn.d_un.d_val;
3591 amt = sizeof (struct bfd_link_needed_list);
3592 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3593 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3594 if (n == NULL || fnm == NULL)
3595 goto error_free_dyn;
3596 amt = strlen (fnm) + 1;
3597 anm = (char *) bfd_alloc (abfd, amt);
3598 if (anm == NULL)
3599 goto error_free_dyn;
3600 memcpy (anm, fnm, amt);
3601 n->name = anm;
3602 n->by = abfd;
3603 n->next = NULL;
3604 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3606 *pn = n;
3608 if (dyn.d_tag == DT_RUNPATH)
3610 struct bfd_link_needed_list *n, **pn;
3611 char *fnm, *anm;
3612 unsigned int tagv = dyn.d_un.d_val;
3614 amt = sizeof (struct bfd_link_needed_list);
3615 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3616 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 if (n == NULL || fnm == NULL)
3618 goto error_free_dyn;
3619 amt = strlen (fnm) + 1;
3620 anm = (char *) bfd_alloc (abfd, amt);
3621 if (anm == NULL)
3622 goto error_free_dyn;
3623 memcpy (anm, fnm, amt);
3624 n->name = anm;
3625 n->by = abfd;
3626 n->next = NULL;
3627 for (pn = & runpath;
3628 *pn != NULL;
3629 pn = &(*pn)->next)
3631 *pn = n;
3633 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3634 if (!runpath && dyn.d_tag == DT_RPATH)
3636 struct bfd_link_needed_list *n, **pn;
3637 char *fnm, *anm;
3638 unsigned int tagv = dyn.d_un.d_val;
3640 amt = sizeof (struct bfd_link_needed_list);
3641 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3642 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3643 if (n == NULL || fnm == NULL)
3644 goto error_free_dyn;
3645 amt = strlen (fnm) + 1;
3646 anm = (char *) bfd_alloc (abfd, amt);
3647 if (anm == NULL)
3648 goto error_free_dyn;
3649 memcpy (anm, fnm, amt);
3650 n->name = anm;
3651 n->by = abfd;
3652 n->next = NULL;
3653 for (pn = & rpath;
3654 *pn != NULL;
3655 pn = &(*pn)->next)
3657 *pn = n;
3659 if (dyn.d_tag == DT_AUDIT)
3661 unsigned int tagv = dyn.d_un.d_val;
3662 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3666 free (dynbuf);
3669 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3670 frees all more recently bfd_alloc'd blocks as well. */
3671 if (runpath)
3672 rpath = runpath;
3674 if (rpath)
3676 struct bfd_link_needed_list **pn;
3677 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3679 *pn = rpath;
3682 /* We do not want to include any of the sections in a dynamic
3683 object in the output file. We hack by simply clobbering the
3684 list of sections in the BFD. This could be handled more
3685 cleanly by, say, a new section flag; the existing
3686 SEC_NEVER_LOAD flag is not the one we want, because that one
3687 still implies that the section takes up space in the output
3688 file. */
3689 bfd_section_list_clear (abfd);
3691 /* Find the name to use in a DT_NEEDED entry that refers to this
3692 object. If the object has a DT_SONAME entry, we use it.
3693 Otherwise, if the generic linker stuck something in
3694 elf_dt_name, we use that. Otherwise, we just use the file
3695 name. */
3696 if (soname == NULL || *soname == '\0')
3698 soname = elf_dt_name (abfd);
3699 if (soname == NULL || *soname == '\0')
3700 soname = bfd_get_filename (abfd);
3703 /* Save the SONAME because sometimes the linker emulation code
3704 will need to know it. */
3705 elf_dt_name (abfd) = soname;
3707 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3708 if (ret < 0)
3709 goto error_return;
3711 /* If we have already included this dynamic object in the
3712 link, just ignore it. There is no reason to include a
3713 particular dynamic object more than once. */
3714 if (ret > 0)
3715 return TRUE;
3717 /* Save the DT_AUDIT entry for the linker emulation code. */
3718 elf_dt_audit (abfd) = audit;
3721 /* If this is a dynamic object, we always link against the .dynsym
3722 symbol table, not the .symtab symbol table. The dynamic linker
3723 will only see the .dynsym symbol table, so there is no reason to
3724 look at .symtab for a dynamic object. */
3726 if (! dynamic || elf_dynsymtab (abfd) == 0)
3727 hdr = &elf_tdata (abfd)->symtab_hdr;
3728 else
3729 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3731 symcount = hdr->sh_size / bed->s->sizeof_sym;
3733 /* The sh_info field of the symtab header tells us where the
3734 external symbols start. We don't care about the local symbols at
3735 this point. */
3736 if (elf_bad_symtab (abfd))
3738 extsymcount = symcount;
3739 extsymoff = 0;
3741 else
3743 extsymcount = symcount - hdr->sh_info;
3744 extsymoff = hdr->sh_info;
3747 sym_hash = NULL;
3748 if (extsymcount != 0)
3750 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3751 NULL, NULL, NULL);
3752 if (isymbuf == NULL)
3753 goto error_return;
3755 /* We store a pointer to the hash table entry for each external
3756 symbol. */
3757 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3758 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3759 if (sym_hash == NULL)
3760 goto error_free_sym;
3761 elf_sym_hashes (abfd) = sym_hash;
3764 if (dynamic)
3766 /* Read in any version definitions. */
3767 if (!_bfd_elf_slurp_version_tables (abfd,
3768 info->default_imported_symver))
3769 goto error_free_sym;
3771 /* Read in the symbol versions, but don't bother to convert them
3772 to internal format. */
3773 if (elf_dynversym (abfd) != 0)
3775 Elf_Internal_Shdr *versymhdr;
3777 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3778 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3779 if (extversym == NULL)
3780 goto error_free_sym;
3781 amt = versymhdr->sh_size;
3782 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3783 || bfd_bread (extversym, amt, abfd) != amt)
3784 goto error_free_vers;
3788 /* If we are loading an as-needed shared lib, save the symbol table
3789 state before we start adding symbols. If the lib turns out
3790 to be unneeded, restore the state. */
3791 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3793 unsigned int i;
3794 size_t entsize;
3796 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3803 h = (struct elf_link_hash_entry *) p;
3804 entsize += htab->root.table.entsize;
3805 if (h->root.type == bfd_link_hash_warning)
3806 entsize += htab->root.table.entsize;
3810 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3811 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3812 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3813 if (old_tab == NULL)
3814 goto error_free_vers;
3816 /* Remember the current objalloc pointer, so that all mem for
3817 symbols added can later be reclaimed. */
3818 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3819 if (alloc_mark == NULL)
3820 goto error_free_vers;
3822 /* Make a special call to the linker "notice" function to
3823 tell it that we are about to handle an as-needed lib. */
3824 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3825 notice_as_needed))
3826 goto error_free_vers;
3828 /* Clone the symbol table and sym hashes. Remember some
3829 pointers into the symbol table, and dynamic symbol count. */
3830 old_hash = (char *) old_tab + tabsize;
3831 old_ent = (char *) old_hash + hashsize;
3832 memcpy (old_tab, htab->root.table.table, tabsize);
3833 memcpy (old_hash, sym_hash, hashsize);
3834 old_undefs = htab->root.undefs;
3835 old_undefs_tail = htab->root.undefs_tail;
3836 old_table = htab->root.table.table;
3837 old_size = htab->root.table.size;
3838 old_count = htab->root.table.count;
3839 old_dynsymcount = htab->dynsymcount;
3841 for (i = 0; i < htab->root.table.size; i++)
3843 struct bfd_hash_entry *p;
3844 struct elf_link_hash_entry *h;
3846 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3848 memcpy (old_ent, p, htab->root.table.entsize);
3849 old_ent = (char *) old_ent + htab->root.table.entsize;
3850 h = (struct elf_link_hash_entry *) p;
3851 if (h->root.type == bfd_link_hash_warning)
3853 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3854 old_ent = (char *) old_ent + htab->root.table.entsize;
3860 weaks = NULL;
3861 ever = extversym != NULL ? extversym + extsymoff : NULL;
3862 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3863 isym < isymend;
3864 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3866 int bind;
3867 bfd_vma value;
3868 asection *sec, *new_sec;
3869 flagword flags;
3870 const char *name;
3871 struct elf_link_hash_entry *h;
3872 bfd_boolean definition;
3873 bfd_boolean size_change_ok;
3874 bfd_boolean type_change_ok;
3875 bfd_boolean new_weakdef;
3876 bfd_boolean override;
3877 bfd_boolean common;
3878 unsigned int old_alignment;
3879 bfd *old_bfd;
3881 override = FALSE;
3883 flags = BSF_NO_FLAGS;
3884 sec = NULL;
3885 value = isym->st_value;
3886 *sym_hash = NULL;
3887 common = bed->common_definition (isym);
3889 bind = ELF_ST_BIND (isym->st_info);
3890 switch (bind)
3892 case STB_LOCAL:
3893 /* This should be impossible, since ELF requires that all
3894 global symbols follow all local symbols, and that sh_info
3895 point to the first global symbol. Unfortunately, Irix 5
3896 screws this up. */
3897 continue;
3899 case STB_GLOBAL:
3900 if (isym->st_shndx != SHN_UNDEF && !common)
3901 flags = BSF_GLOBAL;
3902 break;
3904 case STB_WEAK:
3905 flags = BSF_WEAK;
3906 break;
3908 case STB_GNU_UNIQUE:
3909 flags = BSF_GNU_UNIQUE;
3910 break;
3912 default:
3913 /* Leave it up to the processor backend. */
3914 break;
3917 if (isym->st_shndx == SHN_UNDEF)
3918 sec = bfd_und_section_ptr;
3919 else if (isym->st_shndx == SHN_ABS)
3920 sec = bfd_abs_section_ptr;
3921 else if (isym->st_shndx == SHN_COMMON)
3923 sec = bfd_com_section_ptr;
3924 /* What ELF calls the size we call the value. What ELF
3925 calls the value we call the alignment. */
3926 value = isym->st_size;
3928 else
3930 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3931 if (sec == NULL)
3932 sec = bfd_abs_section_ptr;
3933 else if (sec->kept_section)
3935 /* Symbols from discarded section are undefined. We keep
3936 its visibility. */
3937 sec = bfd_und_section_ptr;
3938 isym->st_shndx = SHN_UNDEF;
3940 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3941 value -= sec->vma;
3944 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3945 isym->st_name);
3946 if (name == NULL)
3947 goto error_free_vers;
3949 if (isym->st_shndx == SHN_COMMON
3950 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3951 && !info->relocatable)
3953 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3955 if (tcomm == NULL)
3957 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3958 (SEC_ALLOC
3959 | SEC_IS_COMMON
3960 | SEC_LINKER_CREATED
3961 | SEC_THREAD_LOCAL));
3962 if (tcomm == NULL)
3963 goto error_free_vers;
3965 sec = tcomm;
3967 else if (bed->elf_add_symbol_hook)
3969 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3970 &sec, &value))
3971 goto error_free_vers;
3973 /* The hook function sets the name to NULL if this symbol
3974 should be skipped for some reason. */
3975 if (name == NULL)
3976 continue;
3979 /* Sanity check that all possibilities were handled. */
3980 if (sec == NULL)
3982 bfd_set_error (bfd_error_bad_value);
3983 goto error_free_vers;
3986 if (bfd_is_und_section (sec)
3987 || bfd_is_com_section (sec))
3988 definition = FALSE;
3989 else
3990 definition = TRUE;
3992 size_change_ok = FALSE;
3993 type_change_ok = bed->type_change_ok;
3994 old_alignment = 0;
3995 old_bfd = NULL;
3996 new_sec = sec;
3998 if (is_elf_hash_table (htab))
4000 Elf_Internal_Versym iver;
4001 unsigned int vernum = 0;
4002 bfd_boolean skip;
4004 if (ever == NULL)
4006 if (info->default_imported_symver)
4007 /* Use the default symbol version created earlier. */
4008 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4009 else
4010 iver.vs_vers = 0;
4012 else
4013 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4015 vernum = iver.vs_vers & VERSYM_VERSION;
4017 /* If this is a hidden symbol, or if it is not version
4018 1, we append the version name to the symbol name.
4019 However, we do not modify a non-hidden absolute symbol
4020 if it is not a function, because it might be the version
4021 symbol itself. FIXME: What if it isn't? */
4022 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4023 || (vernum > 1
4024 && (!bfd_is_abs_section (sec)
4025 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4027 const char *verstr;
4028 size_t namelen, verlen, newlen;
4029 char *newname, *p;
4031 if (isym->st_shndx != SHN_UNDEF)
4033 if (vernum > elf_tdata (abfd)->cverdefs)
4034 verstr = NULL;
4035 else if (vernum > 1)
4036 verstr =
4037 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4038 else
4039 verstr = "";
4041 if (verstr == NULL)
4043 (*_bfd_error_handler)
4044 (_("%B: %s: invalid version %u (max %d)"),
4045 abfd, name, vernum,
4046 elf_tdata (abfd)->cverdefs);
4047 bfd_set_error (bfd_error_bad_value);
4048 goto error_free_vers;
4051 else
4053 /* We cannot simply test for the number of
4054 entries in the VERNEED section since the
4055 numbers for the needed versions do not start
4056 at 0. */
4057 Elf_Internal_Verneed *t;
4059 verstr = NULL;
4060 for (t = elf_tdata (abfd)->verref;
4061 t != NULL;
4062 t = t->vn_nextref)
4064 Elf_Internal_Vernaux *a;
4066 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4068 if (a->vna_other == vernum)
4070 verstr = a->vna_nodename;
4071 break;
4074 if (a != NULL)
4075 break;
4077 if (verstr == NULL)
4079 (*_bfd_error_handler)
4080 (_("%B: %s: invalid needed version %d"),
4081 abfd, name, vernum);
4082 bfd_set_error (bfd_error_bad_value);
4083 goto error_free_vers;
4087 namelen = strlen (name);
4088 verlen = strlen (verstr);
4089 newlen = namelen + verlen + 2;
4090 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4091 && isym->st_shndx != SHN_UNDEF)
4092 ++newlen;
4094 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4095 if (newname == NULL)
4096 goto error_free_vers;
4097 memcpy (newname, name, namelen);
4098 p = newname + namelen;
4099 *p++ = ELF_VER_CHR;
4100 /* If this is a defined non-hidden version symbol,
4101 we add another @ to the name. This indicates the
4102 default version of the symbol. */
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 *p++ = ELF_VER_CHR;
4106 memcpy (p, verstr, verlen + 1);
4108 name = newname;
4111 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4112 &value, &old_alignment,
4113 sym_hash, &skip, &override,
4114 &type_change_ok, &size_change_ok))
4115 goto error_free_vers;
4117 if (skip)
4118 continue;
4120 if (override)
4121 definition = FALSE;
4123 h = *sym_hash;
4124 while (h->root.type == bfd_link_hash_indirect
4125 || h->root.type == bfd_link_hash_warning)
4126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4128 /* Remember the old alignment if this is a common symbol, so
4129 that we don't reduce the alignment later on. We can't
4130 check later, because _bfd_generic_link_add_one_symbol
4131 will set a default for the alignment which we want to
4132 override. We also remember the old bfd where the existing
4133 definition comes from. */
4134 switch (h->root.type)
4136 default:
4137 break;
4139 case bfd_link_hash_defined:
4140 case bfd_link_hash_defweak:
4141 old_bfd = h->root.u.def.section->owner;
4142 break;
4144 case bfd_link_hash_common:
4145 old_bfd = h->root.u.c.p->section->owner;
4146 old_alignment = h->root.u.c.p->alignment_power;
4147 break;
4150 if (elf_tdata (abfd)->verdef != NULL
4151 && ! override
4152 && vernum > 1
4153 && definition)
4154 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4157 if (! (_bfd_generic_link_add_one_symbol
4158 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4159 (struct bfd_link_hash_entry **) sym_hash)))
4160 goto error_free_vers;
4162 h = *sym_hash;
4163 while (h->root.type == bfd_link_hash_indirect
4164 || h->root.type == bfd_link_hash_warning)
4165 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4167 *sym_hash = h;
4168 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4170 new_weakdef = FALSE;
4171 if (dynamic
4172 && definition
4173 && (flags & BSF_WEAK) != 0
4174 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4175 && is_elf_hash_table (htab)
4176 && h->u.weakdef == NULL)
4178 /* Keep a list of all weak defined non function symbols from
4179 a dynamic object, using the weakdef field. Later in this
4180 function we will set the weakdef field to the correct
4181 value. We only put non-function symbols from dynamic
4182 objects on this list, because that happens to be the only
4183 time we need to know the normal symbol corresponding to a
4184 weak symbol, and the information is time consuming to
4185 figure out. If the weakdef field is not already NULL,
4186 then this symbol was already defined by some previous
4187 dynamic object, and we will be using that previous
4188 definition anyhow. */
4190 h->u.weakdef = weaks;
4191 weaks = h;
4192 new_weakdef = TRUE;
4195 /* Set the alignment of a common symbol. */
4196 if ((common || bfd_is_com_section (sec))
4197 && h->root.type == bfd_link_hash_common)
4199 unsigned int align;
4201 if (common)
4202 align = bfd_log2 (isym->st_value);
4203 else
4205 /* The new symbol is a common symbol in a shared object.
4206 We need to get the alignment from the section. */
4207 align = new_sec->alignment_power;
4209 if (align > old_alignment
4210 /* Permit an alignment power of zero if an alignment of one
4211 is specified and no other alignments have been specified. */
4212 || (isym->st_value == 1 && old_alignment == 0))
4213 h->root.u.c.p->alignment_power = align;
4214 else
4215 h->root.u.c.p->alignment_power = old_alignment;
4218 if (is_elf_hash_table (htab))
4220 bfd_boolean dynsym;
4222 /* Check the alignment when a common symbol is involved. This
4223 can change when a common symbol is overridden by a normal
4224 definition or a common symbol is ignored due to the old
4225 normal definition. We need to make sure the maximum
4226 alignment is maintained. */
4227 if ((old_alignment || common)
4228 && h->root.type != bfd_link_hash_common)
4230 unsigned int common_align;
4231 unsigned int normal_align;
4232 unsigned int symbol_align;
4233 bfd *normal_bfd;
4234 bfd *common_bfd;
4236 symbol_align = ffs (h->root.u.def.value) - 1;
4237 if (h->root.u.def.section->owner != NULL
4238 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4240 normal_align = h->root.u.def.section->alignment_power;
4241 if (normal_align > symbol_align)
4242 normal_align = symbol_align;
4244 else
4245 normal_align = symbol_align;
4247 if (old_alignment)
4249 common_align = old_alignment;
4250 common_bfd = old_bfd;
4251 normal_bfd = abfd;
4253 else
4255 common_align = bfd_log2 (isym->st_value);
4256 common_bfd = abfd;
4257 normal_bfd = old_bfd;
4260 if (normal_align < common_align)
4262 /* PR binutils/2735 */
4263 if (normal_bfd == NULL)
4264 (*_bfd_error_handler)
4265 (_("Warning: alignment %u of common symbol `%s' in %B"
4266 " is greater than the alignment (%u) of its section %A"),
4267 common_bfd, h->root.u.def.section,
4268 1 << common_align, name, 1 << normal_align);
4269 else
4270 (*_bfd_error_handler)
4271 (_("Warning: alignment %u of symbol `%s' in %B"
4272 " is smaller than %u in %B"),
4273 normal_bfd, common_bfd,
4274 1 << normal_align, name, 1 << common_align);
4278 /* Remember the symbol size if it isn't undefined. */
4279 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4280 && (definition || h->size == 0))
4282 if (h->size != 0
4283 && h->size != isym->st_size
4284 && ! size_change_ok)
4285 (*_bfd_error_handler)
4286 (_("Warning: size of symbol `%s' changed"
4287 " from %lu in %B to %lu in %B"),
4288 old_bfd, abfd,
4289 name, (unsigned long) h->size,
4290 (unsigned long) isym->st_size);
4292 h->size = isym->st_size;
4295 /* If this is a common symbol, then we always want H->SIZE
4296 to be the size of the common symbol. The code just above
4297 won't fix the size if a common symbol becomes larger. We
4298 don't warn about a size change here, because that is
4299 covered by --warn-common. Allow changed between different
4300 function types. */
4301 if (h->root.type == bfd_link_hash_common)
4302 h->size = h->root.u.c.size;
4304 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4305 && (definition || h->type == STT_NOTYPE))
4307 unsigned int type = ELF_ST_TYPE (isym->st_info);
4309 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4310 symbol. */
4311 if (type == STT_GNU_IFUNC
4312 && (abfd->flags & DYNAMIC) != 0)
4313 type = STT_FUNC;
4315 if (h->type != type)
4317 if (h->type != STT_NOTYPE && ! type_change_ok)
4318 (*_bfd_error_handler)
4319 (_("Warning: type of symbol `%s' changed"
4320 " from %d to %d in %B"),
4321 abfd, name, h->type, type);
4323 h->type = type;
4327 /* Merge st_other field. */
4328 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4330 /* Set a flag in the hash table entry indicating the type of
4331 reference or definition we just found. Keep a count of
4332 the number of dynamic symbols we find. A dynamic symbol
4333 is one which is referenced or defined by both a regular
4334 object and a shared object. */
4335 dynsym = FALSE;
4336 if (! dynamic)
4338 if (! definition)
4340 h->ref_regular = 1;
4341 if (bind != STB_WEAK)
4342 h->ref_regular_nonweak = 1;
4344 else
4346 h->def_regular = 1;
4347 if (h->def_dynamic)
4349 h->def_dynamic = 0;
4350 h->ref_dynamic = 1;
4351 h->dynamic_def = 1;
4354 if (! info->executable
4355 || h->def_dynamic
4356 || h->ref_dynamic)
4357 dynsym = TRUE;
4359 else
4361 if (! definition)
4362 h->ref_dynamic = 1;
4363 else
4364 h->def_dynamic = 1;
4365 if (h->def_regular
4366 || h->ref_regular
4367 || (h->u.weakdef != NULL
4368 && ! new_weakdef
4369 && h->u.weakdef->dynindx != -1))
4370 dynsym = TRUE;
4373 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4375 /* We don't want to make debug symbol dynamic. */
4376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4377 dynsym = FALSE;
4380 /* Check to see if we need to add an indirect symbol for
4381 the default name. */
4382 if (definition || h->root.type == bfd_link_hash_common)
4383 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4384 &sec, &value, &dynsym,
4385 override))
4386 goto error_free_vers;
4388 if (definition && !dynamic)
4390 char *p = strchr (name, ELF_VER_CHR);
4391 if (p != NULL && p[1] != ELF_VER_CHR)
4393 /* Queue non-default versions so that .symver x, x@FOO
4394 aliases can be checked. */
4395 if (!nondeflt_vers)
4397 amt = ((isymend - isym + 1)
4398 * sizeof (struct elf_link_hash_entry *));
4399 nondeflt_vers =
4400 (struct elf_link_hash_entry **) bfd_malloc (amt);
4401 if (!nondeflt_vers)
4402 goto error_free_vers;
4404 nondeflt_vers[nondeflt_vers_cnt++] = h;
4408 if (dynsym && h->dynindx == -1)
4410 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4411 goto error_free_vers;
4412 if (h->u.weakdef != NULL
4413 && ! new_weakdef
4414 && h->u.weakdef->dynindx == -1)
4416 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4417 goto error_free_vers;
4420 else if (dynsym && h->dynindx != -1)
4421 /* If the symbol already has a dynamic index, but
4422 visibility says it should not be visible, turn it into
4423 a local symbol. */
4424 switch (ELF_ST_VISIBILITY (h->other))
4426 case STV_INTERNAL:
4427 case STV_HIDDEN:
4428 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4429 dynsym = FALSE;
4430 break;
4433 if (!add_needed
4434 && definition
4435 && ((dynsym
4436 && h->ref_regular)
4437 || (h->ref_dynamic
4438 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4439 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4441 int ret;
4442 const char *soname = elf_dt_name (abfd);
4444 /* A symbol from a library loaded via DT_NEEDED of some
4445 other library is referenced by a regular object.
4446 Add a DT_NEEDED entry for it. Issue an error if
4447 --no-add-needed is used. */
4448 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4450 (*_bfd_error_handler)
4451 (_("%B: invalid DSO for symbol `%s' definition"),
4452 abfd, name);
4453 bfd_set_error (bfd_error_bad_value);
4454 goto error_free_vers;
4457 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4458 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4460 add_needed = TRUE;
4461 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4462 if (ret < 0)
4463 goto error_free_vers;
4465 BFD_ASSERT (ret == 0);
4470 if (extversym != NULL)
4472 free (extversym);
4473 extversym = NULL;
4476 if (isymbuf != NULL)
4478 free (isymbuf);
4479 isymbuf = NULL;
4482 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4484 unsigned int i;
4486 /* Restore the symbol table. */
4487 if (bed->as_needed_cleanup)
4488 (*bed->as_needed_cleanup) (abfd, info);
4489 old_hash = (char *) old_tab + tabsize;
4490 old_ent = (char *) old_hash + hashsize;
4491 sym_hash = elf_sym_hashes (abfd);
4492 htab->root.table.table = old_table;
4493 htab->root.table.size = old_size;
4494 htab->root.table.count = old_count;
4495 memcpy (htab->root.table.table, old_tab, tabsize);
4496 memcpy (sym_hash, old_hash, hashsize);
4497 htab->root.undefs = old_undefs;
4498 htab->root.undefs_tail = old_undefs_tail;
4499 for (i = 0; i < htab->root.table.size; i++)
4501 struct bfd_hash_entry *p;
4502 struct elf_link_hash_entry *h;
4504 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4506 h = (struct elf_link_hash_entry *) p;
4507 if (h->root.type == bfd_link_hash_warning)
4508 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4509 if (h->dynindx >= old_dynsymcount)
4510 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4512 memcpy (p, old_ent, htab->root.table.entsize);
4513 old_ent = (char *) old_ent + htab->root.table.entsize;
4514 h = (struct elf_link_hash_entry *) p;
4515 if (h->root.type == bfd_link_hash_warning)
4517 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4518 old_ent = (char *) old_ent + htab->root.table.entsize;
4523 /* Make a special call to the linker "notice" function to
4524 tell it that symbols added for crefs may need to be removed. */
4525 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4526 notice_not_needed))
4527 goto error_free_vers;
4529 free (old_tab);
4530 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4531 alloc_mark);
4532 if (nondeflt_vers != NULL)
4533 free (nondeflt_vers);
4534 return TRUE;
4537 if (old_tab != NULL)
4539 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4540 notice_needed))
4541 goto error_free_vers;
4542 free (old_tab);
4543 old_tab = NULL;
4546 /* Now that all the symbols from this input file are created, handle
4547 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4548 if (nondeflt_vers != NULL)
4550 bfd_size_type cnt, symidx;
4552 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4554 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4555 char *shortname, *p;
4557 p = strchr (h->root.root.string, ELF_VER_CHR);
4558 if (p == NULL
4559 || (h->root.type != bfd_link_hash_defined
4560 && h->root.type != bfd_link_hash_defweak))
4561 continue;
4563 amt = p - h->root.root.string;
4564 shortname = (char *) bfd_malloc (amt + 1);
4565 if (!shortname)
4566 goto error_free_vers;
4567 memcpy (shortname, h->root.root.string, amt);
4568 shortname[amt] = '\0';
4570 hi = (struct elf_link_hash_entry *)
4571 bfd_link_hash_lookup (&htab->root, shortname,
4572 FALSE, FALSE, FALSE);
4573 if (hi != NULL
4574 && hi->root.type == h->root.type
4575 && hi->root.u.def.value == h->root.u.def.value
4576 && hi->root.u.def.section == h->root.u.def.section)
4578 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4579 hi->root.type = bfd_link_hash_indirect;
4580 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4581 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4582 sym_hash = elf_sym_hashes (abfd);
4583 if (sym_hash)
4584 for (symidx = 0; symidx < extsymcount; ++symidx)
4585 if (sym_hash[symidx] == hi)
4587 sym_hash[symidx] = h;
4588 break;
4591 free (shortname);
4593 free (nondeflt_vers);
4594 nondeflt_vers = NULL;
4597 /* Now set the weakdefs field correctly for all the weak defined
4598 symbols we found. The only way to do this is to search all the
4599 symbols. Since we only need the information for non functions in
4600 dynamic objects, that's the only time we actually put anything on
4601 the list WEAKS. We need this information so that if a regular
4602 object refers to a symbol defined weakly in a dynamic object, the
4603 real symbol in the dynamic object is also put in the dynamic
4604 symbols; we also must arrange for both symbols to point to the
4605 same memory location. We could handle the general case of symbol
4606 aliasing, but a general symbol alias can only be generated in
4607 assembler code, handling it correctly would be very time
4608 consuming, and other ELF linkers don't handle general aliasing
4609 either. */
4610 if (weaks != NULL)
4612 struct elf_link_hash_entry **hpp;
4613 struct elf_link_hash_entry **hppend;
4614 struct elf_link_hash_entry **sorted_sym_hash;
4615 struct elf_link_hash_entry *h;
4616 size_t sym_count;
4618 /* Since we have to search the whole symbol list for each weak
4619 defined symbol, search time for N weak defined symbols will be
4620 O(N^2). Binary search will cut it down to O(NlogN). */
4621 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4622 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4623 if (sorted_sym_hash == NULL)
4624 goto error_return;
4625 sym_hash = sorted_sym_hash;
4626 hpp = elf_sym_hashes (abfd);
4627 hppend = hpp + extsymcount;
4628 sym_count = 0;
4629 for (; hpp < hppend; hpp++)
4631 h = *hpp;
4632 if (h != NULL
4633 && h->root.type == bfd_link_hash_defined
4634 && !bed->is_function_type (h->type))
4636 *sym_hash = h;
4637 sym_hash++;
4638 sym_count++;
4642 qsort (sorted_sym_hash, sym_count,
4643 sizeof (struct elf_link_hash_entry *),
4644 elf_sort_symbol);
4646 while (weaks != NULL)
4648 struct elf_link_hash_entry *hlook;
4649 asection *slook;
4650 bfd_vma vlook;
4651 long ilook;
4652 size_t i, j, idx;
4654 hlook = weaks;
4655 weaks = hlook->u.weakdef;
4656 hlook->u.weakdef = NULL;
4658 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4659 || hlook->root.type == bfd_link_hash_defweak
4660 || hlook->root.type == bfd_link_hash_common
4661 || hlook->root.type == bfd_link_hash_indirect);
4662 slook = hlook->root.u.def.section;
4663 vlook = hlook->root.u.def.value;
4665 ilook = -1;
4666 i = 0;
4667 j = sym_count;
4668 while (i < j)
4670 bfd_signed_vma vdiff;
4671 idx = (i + j) / 2;
4672 h = sorted_sym_hash [idx];
4673 vdiff = vlook - h->root.u.def.value;
4674 if (vdiff < 0)
4675 j = idx;
4676 else if (vdiff > 0)
4677 i = idx + 1;
4678 else
4680 long sdiff = slook->id - h->root.u.def.section->id;
4681 if (sdiff < 0)
4682 j = idx;
4683 else if (sdiff > 0)
4684 i = idx + 1;
4685 else
4687 ilook = idx;
4688 break;
4693 /* We didn't find a value/section match. */
4694 if (ilook == -1)
4695 continue;
4697 for (i = ilook; i < sym_count; i++)
4699 h = sorted_sym_hash [i];
4701 /* Stop if value or section doesn't match. */
4702 if (h->root.u.def.value != vlook
4703 || h->root.u.def.section != slook)
4704 break;
4705 else if (h != hlook)
4707 hlook->u.weakdef = h;
4709 /* If the weak definition is in the list of dynamic
4710 symbols, make sure the real definition is put
4711 there as well. */
4712 if (hlook->dynindx != -1 && h->dynindx == -1)
4714 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4716 err_free_sym_hash:
4717 free (sorted_sym_hash);
4718 goto error_return;
4722 /* If the real definition is in the list of dynamic
4723 symbols, make sure the weak definition is put
4724 there as well. If we don't do this, then the
4725 dynamic loader might not merge the entries for the
4726 real definition and the weak definition. */
4727 if (h->dynindx != -1 && hlook->dynindx == -1)
4729 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4730 goto err_free_sym_hash;
4732 break;
4737 free (sorted_sym_hash);
4740 if (bed->check_directives
4741 && !(*bed->check_directives) (abfd, info))
4742 return FALSE;
4744 /* If this object is the same format as the output object, and it is
4745 not a shared library, then let the backend look through the
4746 relocs.
4748 This is required to build global offset table entries and to
4749 arrange for dynamic relocs. It is not required for the
4750 particular common case of linking non PIC code, even when linking
4751 against shared libraries, but unfortunately there is no way of
4752 knowing whether an object file has been compiled PIC or not.
4753 Looking through the relocs is not particularly time consuming.
4754 The problem is that we must either (1) keep the relocs in memory,
4755 which causes the linker to require additional runtime memory or
4756 (2) read the relocs twice from the input file, which wastes time.
4757 This would be a good case for using mmap.
4759 I have no idea how to handle linking PIC code into a file of a
4760 different format. It probably can't be done. */
4761 if (! dynamic
4762 && is_elf_hash_table (htab)
4763 && bed->check_relocs != NULL
4764 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4766 asection *o;
4768 for (o = abfd->sections; o != NULL; o = o->next)
4770 Elf_Internal_Rela *internal_relocs;
4771 bfd_boolean ok;
4773 if ((o->flags & SEC_RELOC) == 0
4774 || o->reloc_count == 0
4775 || ((info->strip == strip_all || info->strip == strip_debugger)
4776 && (o->flags & SEC_DEBUGGING) != 0)
4777 || bfd_is_abs_section (o->output_section))
4778 continue;
4780 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4781 info->keep_memory);
4782 if (internal_relocs == NULL)
4783 goto error_return;
4785 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4787 if (elf_section_data (o)->relocs != internal_relocs)
4788 free (internal_relocs);
4790 if (! ok)
4791 goto error_return;
4795 /* If this is a non-traditional link, try to optimize the handling
4796 of the .stab/.stabstr sections. */
4797 if (! dynamic
4798 && ! info->traditional_format
4799 && is_elf_hash_table (htab)
4800 && (info->strip != strip_all && info->strip != strip_debugger))
4802 asection *stabstr;
4804 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4805 if (stabstr != NULL)
4807 bfd_size_type string_offset = 0;
4808 asection *stab;
4810 for (stab = abfd->sections; stab; stab = stab->next)
4811 if (CONST_STRNEQ (stab->name, ".stab")
4812 && (!stab->name[5] ||
4813 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4814 && (stab->flags & SEC_MERGE) == 0
4815 && !bfd_is_abs_section (stab->output_section))
4817 struct bfd_elf_section_data *secdata;
4819 secdata = elf_section_data (stab);
4820 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4821 stabstr, &secdata->sec_info,
4822 &string_offset))
4823 goto error_return;
4824 if (secdata->sec_info)
4825 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4830 if (is_elf_hash_table (htab) && add_needed)
4832 /* Add this bfd to the loaded list. */
4833 struct elf_link_loaded_list *n;
4835 n = (struct elf_link_loaded_list *)
4836 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4837 if (n == NULL)
4838 goto error_return;
4839 n->abfd = abfd;
4840 n->next = htab->loaded;
4841 htab->loaded = n;
4844 return TRUE;
4846 error_free_vers:
4847 if (old_tab != NULL)
4848 free (old_tab);
4849 if (nondeflt_vers != NULL)
4850 free (nondeflt_vers);
4851 if (extversym != NULL)
4852 free (extversym);
4853 error_free_sym:
4854 if (isymbuf != NULL)
4855 free (isymbuf);
4856 error_return:
4857 return FALSE;
4860 /* Return the linker hash table entry of a symbol that might be
4861 satisfied by an archive symbol. Return -1 on error. */
4863 struct elf_link_hash_entry *
4864 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4865 struct bfd_link_info *info,
4866 const char *name)
4868 struct elf_link_hash_entry *h;
4869 char *p, *copy;
4870 size_t len, first;
4872 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4873 if (h != NULL)
4874 return h;
4876 /* If this is a default version (the name contains @@), look up the
4877 symbol again with only one `@' as well as without the version.
4878 The effect is that references to the symbol with and without the
4879 version will be matched by the default symbol in the archive. */
4881 p = strchr (name, ELF_VER_CHR);
4882 if (p == NULL || p[1] != ELF_VER_CHR)
4883 return h;
4885 /* First check with only one `@'. */
4886 len = strlen (name);
4887 copy = (char *) bfd_alloc (abfd, len);
4888 if (copy == NULL)
4889 return (struct elf_link_hash_entry *) 0 - 1;
4891 first = p - name + 1;
4892 memcpy (copy, name, first);
4893 memcpy (copy + first, name + first + 1, len - first);
4895 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4896 if (h == NULL)
4898 /* We also need to check references to the symbol without the
4899 version. */
4900 copy[first - 1] = '\0';
4901 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4902 FALSE, FALSE, FALSE);
4905 bfd_release (abfd, copy);
4906 return h;
4909 /* Add symbols from an ELF archive file to the linker hash table. We
4910 don't use _bfd_generic_link_add_archive_symbols because of a
4911 problem which arises on UnixWare. The UnixWare libc.so is an
4912 archive which includes an entry libc.so.1 which defines a bunch of
4913 symbols. The libc.so archive also includes a number of other
4914 object files, which also define symbols, some of which are the same
4915 as those defined in libc.so.1. Correct linking requires that we
4916 consider each object file in turn, and include it if it defines any
4917 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4918 this; it looks through the list of undefined symbols, and includes
4919 any object file which defines them. When this algorithm is used on
4920 UnixWare, it winds up pulling in libc.so.1 early and defining a
4921 bunch of symbols. This means that some of the other objects in the
4922 archive are not included in the link, which is incorrect since they
4923 precede libc.so.1 in the archive.
4925 Fortunately, ELF archive handling is simpler than that done by
4926 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4927 oddities. In ELF, if we find a symbol in the archive map, and the
4928 symbol is currently undefined, we know that we must pull in that
4929 object file.
4931 Unfortunately, we do have to make multiple passes over the symbol
4932 table until nothing further is resolved. */
4934 static bfd_boolean
4935 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4937 symindex c;
4938 bfd_boolean *defined = NULL;
4939 bfd_boolean *included = NULL;
4940 carsym *symdefs;
4941 bfd_boolean loop;
4942 bfd_size_type amt;
4943 const struct elf_backend_data *bed;
4944 struct elf_link_hash_entry * (*archive_symbol_lookup)
4945 (bfd *, struct bfd_link_info *, const char *);
4947 if (! bfd_has_map (abfd))
4949 /* An empty archive is a special case. */
4950 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4951 return TRUE;
4952 bfd_set_error (bfd_error_no_armap);
4953 return FALSE;
4956 /* Keep track of all symbols we know to be already defined, and all
4957 files we know to be already included. This is to speed up the
4958 second and subsequent passes. */
4959 c = bfd_ardata (abfd)->symdef_count;
4960 if (c == 0)
4961 return TRUE;
4962 amt = c;
4963 amt *= sizeof (bfd_boolean);
4964 defined = (bfd_boolean *) bfd_zmalloc (amt);
4965 included = (bfd_boolean *) bfd_zmalloc (amt);
4966 if (defined == NULL || included == NULL)
4967 goto error_return;
4969 symdefs = bfd_ardata (abfd)->symdefs;
4970 bed = get_elf_backend_data (abfd);
4971 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4975 file_ptr last;
4976 symindex i;
4977 carsym *symdef;
4978 carsym *symdefend;
4980 loop = FALSE;
4981 last = -1;
4983 symdef = symdefs;
4984 symdefend = symdef + c;
4985 for (i = 0; symdef < symdefend; symdef++, i++)
4987 struct elf_link_hash_entry *h;
4988 bfd *element;
4989 struct bfd_link_hash_entry *undefs_tail;
4990 symindex mark;
4992 if (defined[i] || included[i])
4993 continue;
4994 if (symdef->file_offset == last)
4996 included[i] = TRUE;
4997 continue;
5000 h = archive_symbol_lookup (abfd, info, symdef->name);
5001 if (h == (struct elf_link_hash_entry *) 0 - 1)
5002 goto error_return;
5004 if (h == NULL)
5005 continue;
5007 if (h->root.type == bfd_link_hash_common)
5009 /* We currently have a common symbol. The archive map contains
5010 a reference to this symbol, so we may want to include it. We
5011 only want to include it however, if this archive element
5012 contains a definition of the symbol, not just another common
5013 declaration of it.
5015 Unfortunately some archivers (including GNU ar) will put
5016 declarations of common symbols into their archive maps, as
5017 well as real definitions, so we cannot just go by the archive
5018 map alone. Instead we must read in the element's symbol
5019 table and check that to see what kind of symbol definition
5020 this is. */
5021 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5022 continue;
5024 else if (h->root.type != bfd_link_hash_undefined)
5026 if (h->root.type != bfd_link_hash_undefweak)
5027 defined[i] = TRUE;
5028 continue;
5031 /* We need to include this archive member. */
5032 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5033 if (element == NULL)
5034 goto error_return;
5036 if (! bfd_check_format (element, bfd_object))
5037 goto error_return;
5039 /* Doublecheck that we have not included this object
5040 already--it should be impossible, but there may be
5041 something wrong with the archive. */
5042 if (element->archive_pass != 0)
5044 bfd_set_error (bfd_error_bad_value);
5045 goto error_return;
5047 element->archive_pass = 1;
5049 undefs_tail = info->hash->undefs_tail;
5051 if (! (*info->callbacks->add_archive_element) (info, element,
5052 symdef->name))
5053 goto error_return;
5054 if (! bfd_link_add_symbols (element, info))
5055 goto error_return;
5057 /* If there are any new undefined symbols, we need to make
5058 another pass through the archive in order to see whether
5059 they can be defined. FIXME: This isn't perfect, because
5060 common symbols wind up on undefs_tail and because an
5061 undefined symbol which is defined later on in this pass
5062 does not require another pass. This isn't a bug, but it
5063 does make the code less efficient than it could be. */
5064 if (undefs_tail != info->hash->undefs_tail)
5065 loop = TRUE;
5067 /* Look backward to mark all symbols from this object file
5068 which we have already seen in this pass. */
5069 mark = i;
5072 included[mark] = TRUE;
5073 if (mark == 0)
5074 break;
5075 --mark;
5077 while (symdefs[mark].file_offset == symdef->file_offset);
5079 /* We mark subsequent symbols from this object file as we go
5080 on through the loop. */
5081 last = symdef->file_offset;
5084 while (loop);
5086 free (defined);
5087 free (included);
5089 return TRUE;
5091 error_return:
5092 if (defined != NULL)
5093 free (defined);
5094 if (included != NULL)
5095 free (included);
5096 return FALSE;
5099 /* Given an ELF BFD, add symbols to the global hash table as
5100 appropriate. */
5102 bfd_boolean
5103 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5105 switch (bfd_get_format (abfd))
5107 case bfd_object:
5108 return elf_link_add_object_symbols (abfd, info);
5109 case bfd_archive:
5110 return elf_link_add_archive_symbols (abfd, info);
5111 default:
5112 bfd_set_error (bfd_error_wrong_format);
5113 return FALSE;
5117 struct hash_codes_info
5119 unsigned long *hashcodes;
5120 bfd_boolean error;
5123 /* This function will be called though elf_link_hash_traverse to store
5124 all hash value of the exported symbols in an array. */
5126 static bfd_boolean
5127 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5129 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5130 const char *name;
5131 char *p;
5132 unsigned long ha;
5133 char *alc = NULL;
5135 if (h->root.type == bfd_link_hash_warning)
5136 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5138 /* Ignore indirect symbols. These are added by the versioning code. */
5139 if (h->dynindx == -1)
5140 return TRUE;
5142 name = h->root.root.string;
5143 p = strchr (name, ELF_VER_CHR);
5144 if (p != NULL)
5146 alc = (char *) bfd_malloc (p - name + 1);
5147 if (alc == NULL)
5149 inf->error = TRUE;
5150 return FALSE;
5152 memcpy (alc, name, p - name);
5153 alc[p - name] = '\0';
5154 name = alc;
5157 /* Compute the hash value. */
5158 ha = bfd_elf_hash (name);
5160 /* Store the found hash value in the array given as the argument. */
5161 *(inf->hashcodes)++ = ha;
5163 /* And store it in the struct so that we can put it in the hash table
5164 later. */
5165 h->u.elf_hash_value = ha;
5167 if (alc != NULL)
5168 free (alc);
5170 return TRUE;
5173 struct collect_gnu_hash_codes
5175 bfd *output_bfd;
5176 const struct elf_backend_data *bed;
5177 unsigned long int nsyms;
5178 unsigned long int maskbits;
5179 unsigned long int *hashcodes;
5180 unsigned long int *hashval;
5181 unsigned long int *indx;
5182 unsigned long int *counts;
5183 bfd_vma *bitmask;
5184 bfd_byte *contents;
5185 long int min_dynindx;
5186 unsigned long int bucketcount;
5187 unsigned long int symindx;
5188 long int local_indx;
5189 long int shift1, shift2;
5190 unsigned long int mask;
5191 bfd_boolean error;
5194 /* This function will be called though elf_link_hash_traverse to store
5195 all hash value of the exported symbols in an array. */
5197 static bfd_boolean
5198 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5200 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5201 const char *name;
5202 char *p;
5203 unsigned long ha;
5204 char *alc = NULL;
5206 if (h->root.type == bfd_link_hash_warning)
5207 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5209 /* Ignore indirect symbols. These are added by the versioning code. */
5210 if (h->dynindx == -1)
5211 return TRUE;
5213 /* Ignore also local symbols and undefined symbols. */
5214 if (! (*s->bed->elf_hash_symbol) (h))
5215 return TRUE;
5217 name = h->root.root.string;
5218 p = strchr (name, ELF_VER_CHR);
5219 if (p != NULL)
5221 alc = (char *) bfd_malloc (p - name + 1);
5222 if (alc == NULL)
5224 s->error = TRUE;
5225 return FALSE;
5227 memcpy (alc, name, p - name);
5228 alc[p - name] = '\0';
5229 name = alc;
5232 /* Compute the hash value. */
5233 ha = bfd_elf_gnu_hash (name);
5235 /* Store the found hash value in the array for compute_bucket_count,
5236 and also for .dynsym reordering purposes. */
5237 s->hashcodes[s->nsyms] = ha;
5238 s->hashval[h->dynindx] = ha;
5239 ++s->nsyms;
5240 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5241 s->min_dynindx = h->dynindx;
5243 if (alc != NULL)
5244 free (alc);
5246 return TRUE;
5249 /* This function will be called though elf_link_hash_traverse to do
5250 final dynaminc symbol renumbering. */
5252 static bfd_boolean
5253 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5255 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5256 unsigned long int bucket;
5257 unsigned long int val;
5259 if (h->root.type == bfd_link_hash_warning)
5260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5262 /* Ignore indirect symbols. */
5263 if (h->dynindx == -1)
5264 return TRUE;
5266 /* Ignore also local symbols and undefined symbols. */
5267 if (! (*s->bed->elf_hash_symbol) (h))
5269 if (h->dynindx >= s->min_dynindx)
5270 h->dynindx = s->local_indx++;
5271 return TRUE;
5274 bucket = s->hashval[h->dynindx] % s->bucketcount;
5275 val = (s->hashval[h->dynindx] >> s->shift1)
5276 & ((s->maskbits >> s->shift1) - 1);
5277 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5278 s->bitmask[val]
5279 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5280 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5281 if (s->counts[bucket] == 1)
5282 /* Last element terminates the chain. */
5283 val |= 1;
5284 bfd_put_32 (s->output_bfd, val,
5285 s->contents + (s->indx[bucket] - s->symindx) * 4);
5286 --s->counts[bucket];
5287 h->dynindx = s->indx[bucket]++;
5288 return TRUE;
5291 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5293 bfd_boolean
5294 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5296 return !(h->forced_local
5297 || h->root.type == bfd_link_hash_undefined
5298 || h->root.type == bfd_link_hash_undefweak
5299 || ((h->root.type == bfd_link_hash_defined
5300 || h->root.type == bfd_link_hash_defweak)
5301 && h->root.u.def.section->output_section == NULL));
5304 /* Array used to determine the number of hash table buckets to use
5305 based on the number of symbols there are. If there are fewer than
5306 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5307 fewer than 37 we use 17 buckets, and so forth. We never use more
5308 than 32771 buckets. */
5310 static const size_t elf_buckets[] =
5312 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5313 16411, 32771, 0
5316 /* Compute bucket count for hashing table. We do not use a static set
5317 of possible tables sizes anymore. Instead we determine for all
5318 possible reasonable sizes of the table the outcome (i.e., the
5319 number of collisions etc) and choose the best solution. The
5320 weighting functions are not too simple to allow the table to grow
5321 without bounds. Instead one of the weighting factors is the size.
5322 Therefore the result is always a good payoff between few collisions
5323 (= short chain lengths) and table size. */
5324 static size_t
5325 compute_bucket_count (struct bfd_link_info *info,
5326 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5327 unsigned long int nsyms,
5328 int gnu_hash)
5330 size_t best_size = 0;
5331 unsigned long int i;
5333 /* We have a problem here. The following code to optimize the table
5334 size requires an integer type with more the 32 bits. If
5335 BFD_HOST_U_64_BIT is set we know about such a type. */
5336 #ifdef BFD_HOST_U_64_BIT
5337 if (info->optimize)
5339 size_t minsize;
5340 size_t maxsize;
5341 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5342 bfd *dynobj = elf_hash_table (info)->dynobj;
5343 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5344 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5345 unsigned long int *counts;
5346 bfd_size_type amt;
5348 /* Possible optimization parameters: if we have NSYMS symbols we say
5349 that the hashing table must at least have NSYMS/4 and at most
5350 2*NSYMS buckets. */
5351 minsize = nsyms / 4;
5352 if (minsize == 0)
5353 minsize = 1;
5354 best_size = maxsize = nsyms * 2;
5355 if (gnu_hash)
5357 if (minsize < 2)
5358 minsize = 2;
5359 if ((best_size & 31) == 0)
5360 ++best_size;
5363 /* Create array where we count the collisions in. We must use bfd_malloc
5364 since the size could be large. */
5365 amt = maxsize;
5366 amt *= sizeof (unsigned long int);
5367 counts = (unsigned long int *) bfd_malloc (amt);
5368 if (counts == NULL)
5369 return 0;
5371 /* Compute the "optimal" size for the hash table. The criteria is a
5372 minimal chain length. The minor criteria is (of course) the size
5373 of the table. */
5374 for (i = minsize; i < maxsize; ++i)
5376 /* Walk through the array of hashcodes and count the collisions. */
5377 BFD_HOST_U_64_BIT max;
5378 unsigned long int j;
5379 unsigned long int fact;
5381 if (gnu_hash && (i & 31) == 0)
5382 continue;
5384 memset (counts, '\0', i * sizeof (unsigned long int));
5386 /* Determine how often each hash bucket is used. */
5387 for (j = 0; j < nsyms; ++j)
5388 ++counts[hashcodes[j] % i];
5390 /* For the weight function we need some information about the
5391 pagesize on the target. This is information need not be 100%
5392 accurate. Since this information is not available (so far) we
5393 define it here to a reasonable default value. If it is crucial
5394 to have a better value some day simply define this value. */
5395 # ifndef BFD_TARGET_PAGESIZE
5396 # define BFD_TARGET_PAGESIZE (4096)
5397 # endif
5399 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5400 and the chains. */
5401 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5403 # if 1
5404 /* Variant 1: optimize for short chains. We add the squares
5405 of all the chain lengths (which favors many small chain
5406 over a few long chains). */
5407 for (j = 0; j < i; ++j)
5408 max += counts[j] * counts[j];
5410 /* This adds penalties for the overall size of the table. */
5411 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5412 max *= fact * fact;
5413 # else
5414 /* Variant 2: Optimize a lot more for small table. Here we
5415 also add squares of the size but we also add penalties for
5416 empty slots (the +1 term). */
5417 for (j = 0; j < i; ++j)
5418 max += (1 + counts[j]) * (1 + counts[j]);
5420 /* The overall size of the table is considered, but not as
5421 strong as in variant 1, where it is squared. */
5422 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5423 max *= fact;
5424 # endif
5426 /* Compare with current best results. */
5427 if (max < best_chlen)
5429 best_chlen = max;
5430 best_size = i;
5434 free (counts);
5436 else
5437 #endif /* defined (BFD_HOST_U_64_BIT) */
5439 /* This is the fallback solution if no 64bit type is available or if we
5440 are not supposed to spend much time on optimizations. We select the
5441 bucket count using a fixed set of numbers. */
5442 for (i = 0; elf_buckets[i] != 0; i++)
5444 best_size = elf_buckets[i];
5445 if (nsyms < elf_buckets[i + 1])
5446 break;
5448 if (gnu_hash && best_size < 2)
5449 best_size = 2;
5452 return best_size;
5455 /* Set up the sizes and contents of the ELF dynamic sections. This is
5456 called by the ELF linker emulation before_allocation routine. We
5457 must set the sizes of the sections before the linker sets the
5458 addresses of the various sections. */
5460 bfd_boolean
5461 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5462 const char *soname,
5463 const char *rpath,
5464 const char *filter_shlib,
5465 const char *audit,
5466 const char *depaudit,
5467 const char * const *auxiliary_filters,
5468 struct bfd_link_info *info,
5469 asection **sinterpptr,
5470 struct bfd_elf_version_tree *verdefs)
5472 bfd_size_type soname_indx;
5473 bfd *dynobj;
5474 const struct elf_backend_data *bed;
5475 struct elf_info_failed asvinfo;
5477 *sinterpptr = NULL;
5479 soname_indx = (bfd_size_type) -1;
5481 if (!is_elf_hash_table (info->hash))
5482 return TRUE;
5484 bed = get_elf_backend_data (output_bfd);
5485 if (info->execstack)
5486 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5487 else if (info->noexecstack)
5488 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5489 else
5491 bfd *inputobj;
5492 asection *notesec = NULL;
5493 int exec = 0;
5495 for (inputobj = info->input_bfds;
5496 inputobj;
5497 inputobj = inputobj->link_next)
5499 asection *s;
5501 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5502 continue;
5503 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5504 if (s)
5506 if (s->flags & SEC_CODE)
5507 exec = PF_X;
5508 notesec = s;
5510 else if (bed->default_execstack)
5511 exec = PF_X;
5513 if (notesec)
5515 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5516 if (exec && info->relocatable
5517 && notesec->output_section != bfd_abs_section_ptr)
5518 notesec->output_section->flags |= SEC_CODE;
5522 /* Any syms created from now on start with -1 in
5523 got.refcount/offset and plt.refcount/offset. */
5524 elf_hash_table (info)->init_got_refcount
5525 = elf_hash_table (info)->init_got_offset;
5526 elf_hash_table (info)->init_plt_refcount
5527 = elf_hash_table (info)->init_plt_offset;
5529 /* The backend may have to create some sections regardless of whether
5530 we're dynamic or not. */
5531 if (bed->elf_backend_always_size_sections
5532 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5533 return FALSE;
5535 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5536 return FALSE;
5538 dynobj = elf_hash_table (info)->dynobj;
5540 /* If there were no dynamic objects in the link, there is nothing to
5541 do here. */
5542 if (dynobj == NULL)
5543 return TRUE;
5545 if (elf_hash_table (info)->dynamic_sections_created)
5547 struct elf_info_failed eif;
5548 struct elf_link_hash_entry *h;
5549 asection *dynstr;
5550 struct bfd_elf_version_tree *t;
5551 struct bfd_elf_version_expr *d;
5552 asection *s;
5553 bfd_boolean all_defined;
5555 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5556 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5558 if (soname != NULL)
5560 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5561 soname, TRUE);
5562 if (soname_indx == (bfd_size_type) -1
5563 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5564 return FALSE;
5567 if (info->symbolic)
5569 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5570 return FALSE;
5571 info->flags |= DF_SYMBOLIC;
5574 if (rpath != NULL)
5576 bfd_size_type indx;
5578 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5579 TRUE);
5580 if (indx == (bfd_size_type) -1
5581 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5582 return FALSE;
5584 if (info->new_dtags)
5586 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5587 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5588 return FALSE;
5592 if (filter_shlib != NULL)
5594 bfd_size_type indx;
5596 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5597 filter_shlib, TRUE);
5598 if (indx == (bfd_size_type) -1
5599 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5600 return FALSE;
5603 if (auxiliary_filters != NULL)
5605 const char * const *p;
5607 for (p = auxiliary_filters; *p != NULL; p++)
5609 bfd_size_type indx;
5611 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5612 *p, TRUE);
5613 if (indx == (bfd_size_type) -1
5614 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5615 return FALSE;
5619 if (audit != NULL)
5621 bfd_size_type indx;
5623 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5624 TRUE);
5625 if (indx == (bfd_size_type) -1
5626 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5627 return FALSE;
5630 if (depaudit != NULL)
5632 bfd_size_type indx;
5634 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5635 TRUE);
5636 if (indx == (bfd_size_type) -1
5637 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5638 return FALSE;
5641 eif.info = info;
5642 eif.verdefs = verdefs;
5643 eif.failed = FALSE;
5645 /* If we are supposed to export all symbols into the dynamic symbol
5646 table (this is not the normal case), then do so. */
5647 if (info->export_dynamic
5648 || (info->executable && info->dynamic))
5650 elf_link_hash_traverse (elf_hash_table (info),
5651 _bfd_elf_export_symbol,
5652 &eif);
5653 if (eif.failed)
5654 return FALSE;
5657 /* Make all global versions with definition. */
5658 for (t = verdefs; t != NULL; t = t->next)
5659 for (d = t->globals.list; d != NULL; d = d->next)
5660 if (!d->symver && d->literal)
5662 const char *verstr, *name;
5663 size_t namelen, verlen, newlen;
5664 char *newname, *p;
5665 struct elf_link_hash_entry *newh;
5667 name = d->pattern;
5668 namelen = strlen (name);
5669 verstr = t->name;
5670 verlen = strlen (verstr);
5671 newlen = namelen + verlen + 3;
5673 newname = (char *) bfd_malloc (newlen);
5674 if (newname == NULL)
5675 return FALSE;
5676 memcpy (newname, name, namelen);
5678 /* Check the hidden versioned definition. */
5679 p = newname + namelen;
5680 *p++ = ELF_VER_CHR;
5681 memcpy (p, verstr, verlen + 1);
5682 newh = elf_link_hash_lookup (elf_hash_table (info),
5683 newname, FALSE, FALSE,
5684 FALSE);
5685 if (newh == NULL
5686 || (newh->root.type != bfd_link_hash_defined
5687 && newh->root.type != bfd_link_hash_defweak))
5689 /* Check the default versioned definition. */
5690 *p++ = ELF_VER_CHR;
5691 memcpy (p, verstr, verlen + 1);
5692 newh = elf_link_hash_lookup (elf_hash_table (info),
5693 newname, FALSE, FALSE,
5694 FALSE);
5696 free (newname);
5698 /* Mark this version if there is a definition and it is
5699 not defined in a shared object. */
5700 if (newh != NULL
5701 && !newh->def_dynamic
5702 && (newh->root.type == bfd_link_hash_defined
5703 || newh->root.type == bfd_link_hash_defweak))
5704 d->symver = 1;
5707 /* Attach all the symbols to their version information. */
5708 asvinfo.info = info;
5709 asvinfo.verdefs = verdefs;
5710 asvinfo.failed = FALSE;
5712 elf_link_hash_traverse (elf_hash_table (info),
5713 _bfd_elf_link_assign_sym_version,
5714 &asvinfo);
5715 if (asvinfo.failed)
5716 return FALSE;
5718 if (!info->allow_undefined_version)
5720 /* Check if all global versions have a definition. */
5721 all_defined = TRUE;
5722 for (t = verdefs; t != NULL; t = t->next)
5723 for (d = t->globals.list; d != NULL; d = d->next)
5724 if (d->literal && !d->symver && !d->script)
5726 (*_bfd_error_handler)
5727 (_("%s: undefined version: %s"),
5728 d->pattern, t->name);
5729 all_defined = FALSE;
5732 if (!all_defined)
5734 bfd_set_error (bfd_error_bad_value);
5735 return FALSE;
5739 /* Find all symbols which were defined in a dynamic object and make
5740 the backend pick a reasonable value for them. */
5741 elf_link_hash_traverse (elf_hash_table (info),
5742 _bfd_elf_adjust_dynamic_symbol,
5743 &eif);
5744 if (eif.failed)
5745 return FALSE;
5747 /* Add some entries to the .dynamic section. We fill in some of the
5748 values later, in bfd_elf_final_link, but we must add the entries
5749 now so that we know the final size of the .dynamic section. */
5751 /* If there are initialization and/or finalization functions to
5752 call then add the corresponding DT_INIT/DT_FINI entries. */
5753 h = (info->init_function
5754 ? elf_link_hash_lookup (elf_hash_table (info),
5755 info->init_function, FALSE,
5756 FALSE, FALSE)
5757 : NULL);
5758 if (h != NULL
5759 && (h->ref_regular
5760 || h->def_regular))
5762 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5763 return FALSE;
5765 h = (info->fini_function
5766 ? elf_link_hash_lookup (elf_hash_table (info),
5767 info->fini_function, FALSE,
5768 FALSE, FALSE)
5769 : NULL);
5770 if (h != NULL
5771 && (h->ref_regular
5772 || h->def_regular))
5774 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5775 return FALSE;
5778 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5779 if (s != NULL && s->linker_has_input)
5781 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5782 if (! info->executable)
5784 bfd *sub;
5785 asection *o;
5787 for (sub = info->input_bfds; sub != NULL;
5788 sub = sub->link_next)
5789 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5790 for (o = sub->sections; o != NULL; o = o->next)
5791 if (elf_section_data (o)->this_hdr.sh_type
5792 == SHT_PREINIT_ARRAY)
5794 (*_bfd_error_handler)
5795 (_("%B: .preinit_array section is not allowed in DSO"),
5796 sub);
5797 break;
5800 bfd_set_error (bfd_error_nonrepresentable_section);
5801 return FALSE;
5804 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5805 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5806 return FALSE;
5808 s = bfd_get_section_by_name (output_bfd, ".init_array");
5809 if (s != NULL && s->linker_has_input)
5811 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5812 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5813 return FALSE;
5815 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5816 if (s != NULL && s->linker_has_input)
5818 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5819 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5820 return FALSE;
5823 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5824 /* If .dynstr is excluded from the link, we don't want any of
5825 these tags. Strictly, we should be checking each section
5826 individually; This quick check covers for the case where
5827 someone does a /DISCARD/ : { *(*) }. */
5828 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5830 bfd_size_type strsize;
5832 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5833 if ((info->emit_hash
5834 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5835 || (info->emit_gnu_hash
5836 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5837 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5838 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5839 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5840 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5841 bed->s->sizeof_sym))
5842 return FALSE;
5846 /* The backend must work out the sizes of all the other dynamic
5847 sections. */
5848 if (bed->elf_backend_size_dynamic_sections
5849 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5850 return FALSE;
5852 if (elf_hash_table (info)->dynamic_sections_created)
5854 unsigned long section_sym_count;
5855 asection *s;
5857 /* Set up the version definition section. */
5858 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5859 BFD_ASSERT (s != NULL);
5861 /* We may have created additional version definitions if we are
5862 just linking a regular application. */
5863 verdefs = asvinfo.verdefs;
5865 /* Skip anonymous version tag. */
5866 if (verdefs != NULL && verdefs->vernum == 0)
5867 verdefs = verdefs->next;
5869 if (verdefs == NULL && !info->create_default_symver)
5870 s->flags |= SEC_EXCLUDE;
5871 else
5873 unsigned int cdefs;
5874 bfd_size_type size;
5875 struct bfd_elf_version_tree *t;
5876 bfd_byte *p;
5877 Elf_Internal_Verdef def;
5878 Elf_Internal_Verdaux defaux;
5879 struct bfd_link_hash_entry *bh;
5880 struct elf_link_hash_entry *h;
5881 const char *name;
5883 cdefs = 0;
5884 size = 0;
5886 /* Make space for the base version. */
5887 size += sizeof (Elf_External_Verdef);
5888 size += sizeof (Elf_External_Verdaux);
5889 ++cdefs;
5891 /* Make space for the default version. */
5892 if (info->create_default_symver)
5894 size += sizeof (Elf_External_Verdef);
5895 ++cdefs;
5898 for (t = verdefs; t != NULL; t = t->next)
5900 struct bfd_elf_version_deps *n;
5902 size += sizeof (Elf_External_Verdef);
5903 size += sizeof (Elf_External_Verdaux);
5904 ++cdefs;
5906 for (n = t->deps; n != NULL; n = n->next)
5907 size += sizeof (Elf_External_Verdaux);
5910 s->size = size;
5911 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5912 if (s->contents == NULL && s->size != 0)
5913 return FALSE;
5915 /* Fill in the version definition section. */
5917 p = s->contents;
5919 def.vd_version = VER_DEF_CURRENT;
5920 def.vd_flags = VER_FLG_BASE;
5921 def.vd_ndx = 1;
5922 def.vd_cnt = 1;
5923 if (info->create_default_symver)
5925 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5926 def.vd_next = sizeof (Elf_External_Verdef);
5928 else
5930 def.vd_aux = sizeof (Elf_External_Verdef);
5931 def.vd_next = (sizeof (Elf_External_Verdef)
5932 + sizeof (Elf_External_Verdaux));
5935 if (soname_indx != (bfd_size_type) -1)
5937 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5938 soname_indx);
5939 def.vd_hash = bfd_elf_hash (soname);
5940 defaux.vda_name = soname_indx;
5941 name = soname;
5943 else
5945 bfd_size_type indx;
5947 name = lbasename (output_bfd->filename);
5948 def.vd_hash = bfd_elf_hash (name);
5949 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5950 name, FALSE);
5951 if (indx == (bfd_size_type) -1)
5952 return FALSE;
5953 defaux.vda_name = indx;
5955 defaux.vda_next = 0;
5957 _bfd_elf_swap_verdef_out (output_bfd, &def,
5958 (Elf_External_Verdef *) p);
5959 p += sizeof (Elf_External_Verdef);
5960 if (info->create_default_symver)
5962 /* Add a symbol representing this version. */
5963 bh = NULL;
5964 if (! (_bfd_generic_link_add_one_symbol
5965 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5966 0, NULL, FALSE,
5967 get_elf_backend_data (dynobj)->collect, &bh)))
5968 return FALSE;
5969 h = (struct elf_link_hash_entry *) bh;
5970 h->non_elf = 0;
5971 h->def_regular = 1;
5972 h->type = STT_OBJECT;
5973 h->verinfo.vertree = NULL;
5975 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5976 return FALSE;
5978 /* Create a duplicate of the base version with the same
5979 aux block, but different flags. */
5980 def.vd_flags = 0;
5981 def.vd_ndx = 2;
5982 def.vd_aux = sizeof (Elf_External_Verdef);
5983 if (verdefs)
5984 def.vd_next = (sizeof (Elf_External_Verdef)
5985 + sizeof (Elf_External_Verdaux));
5986 else
5987 def.vd_next = 0;
5988 _bfd_elf_swap_verdef_out (output_bfd, &def,
5989 (Elf_External_Verdef *) p);
5990 p += sizeof (Elf_External_Verdef);
5992 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5993 (Elf_External_Verdaux *) p);
5994 p += sizeof (Elf_External_Verdaux);
5996 for (t = verdefs; t != NULL; t = t->next)
5998 unsigned int cdeps;
5999 struct bfd_elf_version_deps *n;
6001 cdeps = 0;
6002 for (n = t->deps; n != NULL; n = n->next)
6003 ++cdeps;
6005 /* Add a symbol representing this version. */
6006 bh = NULL;
6007 if (! (_bfd_generic_link_add_one_symbol
6008 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6009 0, NULL, FALSE,
6010 get_elf_backend_data (dynobj)->collect, &bh)))
6011 return FALSE;
6012 h = (struct elf_link_hash_entry *) bh;
6013 h->non_elf = 0;
6014 h->def_regular = 1;
6015 h->type = STT_OBJECT;
6016 h->verinfo.vertree = t;
6018 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6019 return FALSE;
6021 def.vd_version = VER_DEF_CURRENT;
6022 def.vd_flags = 0;
6023 if (t->globals.list == NULL
6024 && t->locals.list == NULL
6025 && ! t->used)
6026 def.vd_flags |= VER_FLG_WEAK;
6027 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6028 def.vd_cnt = cdeps + 1;
6029 def.vd_hash = bfd_elf_hash (t->name);
6030 def.vd_aux = sizeof (Elf_External_Verdef);
6031 def.vd_next = 0;
6032 if (t->next != NULL)
6033 def.vd_next = (sizeof (Elf_External_Verdef)
6034 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6036 _bfd_elf_swap_verdef_out (output_bfd, &def,
6037 (Elf_External_Verdef *) p);
6038 p += sizeof (Elf_External_Verdef);
6040 defaux.vda_name = h->dynstr_index;
6041 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6042 h->dynstr_index);
6043 defaux.vda_next = 0;
6044 if (t->deps != NULL)
6045 defaux.vda_next = sizeof (Elf_External_Verdaux);
6046 t->name_indx = defaux.vda_name;
6048 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6049 (Elf_External_Verdaux *) p);
6050 p += sizeof (Elf_External_Verdaux);
6052 for (n = t->deps; n != NULL; n = n->next)
6054 if (n->version_needed == NULL)
6056 /* This can happen if there was an error in the
6057 version script. */
6058 defaux.vda_name = 0;
6060 else
6062 defaux.vda_name = n->version_needed->name_indx;
6063 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6064 defaux.vda_name);
6066 if (n->next == NULL)
6067 defaux.vda_next = 0;
6068 else
6069 defaux.vda_next = sizeof (Elf_External_Verdaux);
6071 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6072 (Elf_External_Verdaux *) p);
6073 p += sizeof (Elf_External_Verdaux);
6077 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6078 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6079 return FALSE;
6081 elf_tdata (output_bfd)->cverdefs = cdefs;
6084 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6086 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6087 return FALSE;
6089 else if (info->flags & DF_BIND_NOW)
6091 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6092 return FALSE;
6095 if (info->flags_1)
6097 if (info->executable)
6098 info->flags_1 &= ~ (DF_1_INITFIRST
6099 | DF_1_NODELETE
6100 | DF_1_NOOPEN);
6101 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6102 return FALSE;
6105 /* Work out the size of the version reference section. */
6107 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6108 BFD_ASSERT (s != NULL);
6110 struct elf_find_verdep_info sinfo;
6112 sinfo.info = info;
6113 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6114 if (sinfo.vers == 0)
6115 sinfo.vers = 1;
6116 sinfo.failed = FALSE;
6118 elf_link_hash_traverse (elf_hash_table (info),
6119 _bfd_elf_link_find_version_dependencies,
6120 &sinfo);
6121 if (sinfo.failed)
6122 return FALSE;
6124 if (elf_tdata (output_bfd)->verref == NULL)
6125 s->flags |= SEC_EXCLUDE;
6126 else
6128 Elf_Internal_Verneed *t;
6129 unsigned int size;
6130 unsigned int crefs;
6131 bfd_byte *p;
6133 /* Build the version definition section. */
6134 size = 0;
6135 crefs = 0;
6136 for (t = elf_tdata (output_bfd)->verref;
6137 t != NULL;
6138 t = t->vn_nextref)
6140 Elf_Internal_Vernaux *a;
6142 size += sizeof (Elf_External_Verneed);
6143 ++crefs;
6144 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6145 size += sizeof (Elf_External_Vernaux);
6148 s->size = size;
6149 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6150 if (s->contents == NULL)
6151 return FALSE;
6153 p = s->contents;
6154 for (t = elf_tdata (output_bfd)->verref;
6155 t != NULL;
6156 t = t->vn_nextref)
6158 unsigned int caux;
6159 Elf_Internal_Vernaux *a;
6160 bfd_size_type indx;
6162 caux = 0;
6163 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6164 ++caux;
6166 t->vn_version = VER_NEED_CURRENT;
6167 t->vn_cnt = caux;
6168 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6169 elf_dt_name (t->vn_bfd) != NULL
6170 ? elf_dt_name (t->vn_bfd)
6171 : lbasename (t->vn_bfd->filename),
6172 FALSE);
6173 if (indx == (bfd_size_type) -1)
6174 return FALSE;
6175 t->vn_file = indx;
6176 t->vn_aux = sizeof (Elf_External_Verneed);
6177 if (t->vn_nextref == NULL)
6178 t->vn_next = 0;
6179 else
6180 t->vn_next = (sizeof (Elf_External_Verneed)
6181 + caux * sizeof (Elf_External_Vernaux));
6183 _bfd_elf_swap_verneed_out (output_bfd, t,
6184 (Elf_External_Verneed *) p);
6185 p += sizeof (Elf_External_Verneed);
6187 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6189 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6190 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6191 a->vna_nodename, FALSE);
6192 if (indx == (bfd_size_type) -1)
6193 return FALSE;
6194 a->vna_name = indx;
6195 if (a->vna_nextptr == NULL)
6196 a->vna_next = 0;
6197 else
6198 a->vna_next = sizeof (Elf_External_Vernaux);
6200 _bfd_elf_swap_vernaux_out (output_bfd, a,
6201 (Elf_External_Vernaux *) p);
6202 p += sizeof (Elf_External_Vernaux);
6206 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6207 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6208 return FALSE;
6210 elf_tdata (output_bfd)->cverrefs = crefs;
6214 if ((elf_tdata (output_bfd)->cverrefs == 0
6215 && elf_tdata (output_bfd)->cverdefs == 0)
6216 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6217 &section_sym_count) == 0)
6219 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6220 s->flags |= SEC_EXCLUDE;
6223 return TRUE;
6226 /* Find the first non-excluded output section. We'll use its
6227 section symbol for some emitted relocs. */
6228 void
6229 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6231 asection *s;
6233 for (s = output_bfd->sections; s != NULL; s = s->next)
6234 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6235 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6237 elf_hash_table (info)->text_index_section = s;
6238 break;
6242 /* Find two non-excluded output sections, one for code, one for data.
6243 We'll use their section symbols for some emitted relocs. */
6244 void
6245 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6247 asection *s;
6249 /* Data first, since setting text_index_section changes
6250 _bfd_elf_link_omit_section_dynsym. */
6251 for (s = output_bfd->sections; s != NULL; s = s->next)
6252 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6253 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6255 elf_hash_table (info)->data_index_section = s;
6256 break;
6259 for (s = output_bfd->sections; s != NULL; s = s->next)
6260 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6261 == (SEC_ALLOC | SEC_READONLY))
6262 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6264 elf_hash_table (info)->text_index_section = s;
6265 break;
6268 if (elf_hash_table (info)->text_index_section == NULL)
6269 elf_hash_table (info)->text_index_section
6270 = elf_hash_table (info)->data_index_section;
6273 bfd_boolean
6274 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6276 const struct elf_backend_data *bed;
6278 if (!is_elf_hash_table (info->hash))
6279 return TRUE;
6281 bed = get_elf_backend_data (output_bfd);
6282 (*bed->elf_backend_init_index_section) (output_bfd, info);
6284 if (elf_hash_table (info)->dynamic_sections_created)
6286 bfd *dynobj;
6287 asection *s;
6288 bfd_size_type dynsymcount;
6289 unsigned long section_sym_count;
6290 unsigned int dtagcount;
6292 dynobj = elf_hash_table (info)->dynobj;
6294 /* Assign dynsym indicies. In a shared library we generate a
6295 section symbol for each output section, which come first.
6296 Next come all of the back-end allocated local dynamic syms,
6297 followed by the rest of the global symbols. */
6299 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6300 &section_sym_count);
6302 /* Work out the size of the symbol version section. */
6303 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6304 BFD_ASSERT (s != NULL);
6305 if (dynsymcount != 0
6306 && (s->flags & SEC_EXCLUDE) == 0)
6308 s->size = dynsymcount * sizeof (Elf_External_Versym);
6309 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6310 if (s->contents == NULL)
6311 return FALSE;
6313 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6314 return FALSE;
6317 /* Set the size of the .dynsym and .hash sections. We counted
6318 the number of dynamic symbols in elf_link_add_object_symbols.
6319 We will build the contents of .dynsym and .hash when we build
6320 the final symbol table, because until then we do not know the
6321 correct value to give the symbols. We built the .dynstr
6322 section as we went along in elf_link_add_object_symbols. */
6323 s = bfd_get_section_by_name (dynobj, ".dynsym");
6324 BFD_ASSERT (s != NULL);
6325 s->size = dynsymcount * bed->s->sizeof_sym;
6327 if (dynsymcount != 0)
6329 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6330 if (s->contents == NULL)
6331 return FALSE;
6333 /* The first entry in .dynsym is a dummy symbol.
6334 Clear all the section syms, in case we don't output them all. */
6335 ++section_sym_count;
6336 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6339 elf_hash_table (info)->bucketcount = 0;
6341 /* Compute the size of the hashing table. As a side effect this
6342 computes the hash values for all the names we export. */
6343 if (info->emit_hash)
6345 unsigned long int *hashcodes;
6346 struct hash_codes_info hashinf;
6347 bfd_size_type amt;
6348 unsigned long int nsyms;
6349 size_t bucketcount;
6350 size_t hash_entry_size;
6352 /* Compute the hash values for all exported symbols. At the same
6353 time store the values in an array so that we could use them for
6354 optimizations. */
6355 amt = dynsymcount * sizeof (unsigned long int);
6356 hashcodes = (unsigned long int *) bfd_malloc (amt);
6357 if (hashcodes == NULL)
6358 return FALSE;
6359 hashinf.hashcodes = hashcodes;
6360 hashinf.error = FALSE;
6362 /* Put all hash values in HASHCODES. */
6363 elf_link_hash_traverse (elf_hash_table (info),
6364 elf_collect_hash_codes, &hashinf);
6365 if (hashinf.error)
6367 free (hashcodes);
6368 return FALSE;
6371 nsyms = hashinf.hashcodes - hashcodes;
6372 bucketcount
6373 = compute_bucket_count (info, hashcodes, nsyms, 0);
6374 free (hashcodes);
6376 if (bucketcount == 0)
6377 return FALSE;
6379 elf_hash_table (info)->bucketcount = bucketcount;
6381 s = bfd_get_section_by_name (dynobj, ".hash");
6382 BFD_ASSERT (s != NULL);
6383 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6384 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6385 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6386 if (s->contents == NULL)
6387 return FALSE;
6389 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6390 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6391 s->contents + hash_entry_size);
6394 if (info->emit_gnu_hash)
6396 size_t i, cnt;
6397 unsigned char *contents;
6398 struct collect_gnu_hash_codes cinfo;
6399 bfd_size_type amt;
6400 size_t bucketcount;
6402 memset (&cinfo, 0, sizeof (cinfo));
6404 /* Compute the hash values for all exported symbols. At the same
6405 time store the values in an array so that we could use them for
6406 optimizations. */
6407 amt = dynsymcount * 2 * sizeof (unsigned long int);
6408 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6409 if (cinfo.hashcodes == NULL)
6410 return FALSE;
6412 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6413 cinfo.min_dynindx = -1;
6414 cinfo.output_bfd = output_bfd;
6415 cinfo.bed = bed;
6417 /* Put all hash values in HASHCODES. */
6418 elf_link_hash_traverse (elf_hash_table (info),
6419 elf_collect_gnu_hash_codes, &cinfo);
6420 if (cinfo.error)
6422 free (cinfo.hashcodes);
6423 return FALSE;
6426 bucketcount
6427 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6429 if (bucketcount == 0)
6431 free (cinfo.hashcodes);
6432 return FALSE;
6435 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6436 BFD_ASSERT (s != NULL);
6438 if (cinfo.nsyms == 0)
6440 /* Empty .gnu.hash section is special. */
6441 BFD_ASSERT (cinfo.min_dynindx == -1);
6442 free (cinfo.hashcodes);
6443 s->size = 5 * 4 + bed->s->arch_size / 8;
6444 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6445 if (contents == NULL)
6446 return FALSE;
6447 s->contents = contents;
6448 /* 1 empty bucket. */
6449 bfd_put_32 (output_bfd, 1, contents);
6450 /* SYMIDX above the special symbol 0. */
6451 bfd_put_32 (output_bfd, 1, contents + 4);
6452 /* Just one word for bitmask. */
6453 bfd_put_32 (output_bfd, 1, contents + 8);
6454 /* Only hash fn bloom filter. */
6455 bfd_put_32 (output_bfd, 0, contents + 12);
6456 /* No hashes are valid - empty bitmask. */
6457 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6458 /* No hashes in the only bucket. */
6459 bfd_put_32 (output_bfd, 0,
6460 contents + 16 + bed->s->arch_size / 8);
6462 else
6464 unsigned long int maskwords, maskbitslog2;
6465 BFD_ASSERT (cinfo.min_dynindx != -1);
6467 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6468 if (maskbitslog2 < 3)
6469 maskbitslog2 = 5;
6470 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6471 maskbitslog2 = maskbitslog2 + 3;
6472 else
6473 maskbitslog2 = maskbitslog2 + 2;
6474 if (bed->s->arch_size == 64)
6476 if (maskbitslog2 == 5)
6477 maskbitslog2 = 6;
6478 cinfo.shift1 = 6;
6480 else
6481 cinfo.shift1 = 5;
6482 cinfo.mask = (1 << cinfo.shift1) - 1;
6483 cinfo.shift2 = maskbitslog2;
6484 cinfo.maskbits = 1 << maskbitslog2;
6485 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6486 amt = bucketcount * sizeof (unsigned long int) * 2;
6487 amt += maskwords * sizeof (bfd_vma);
6488 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6489 if (cinfo.bitmask == NULL)
6491 free (cinfo.hashcodes);
6492 return FALSE;
6495 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6496 cinfo.indx = cinfo.counts + bucketcount;
6497 cinfo.symindx = dynsymcount - cinfo.nsyms;
6498 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6500 /* Determine how often each hash bucket is used. */
6501 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6502 for (i = 0; i < cinfo.nsyms; ++i)
6503 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6505 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6506 if (cinfo.counts[i] != 0)
6508 cinfo.indx[i] = cnt;
6509 cnt += cinfo.counts[i];
6511 BFD_ASSERT (cnt == dynsymcount);
6512 cinfo.bucketcount = bucketcount;
6513 cinfo.local_indx = cinfo.min_dynindx;
6515 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6516 s->size += cinfo.maskbits / 8;
6517 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6518 if (contents == NULL)
6520 free (cinfo.bitmask);
6521 free (cinfo.hashcodes);
6522 return FALSE;
6525 s->contents = contents;
6526 bfd_put_32 (output_bfd, bucketcount, contents);
6527 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6528 bfd_put_32 (output_bfd, maskwords, contents + 8);
6529 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6530 contents += 16 + cinfo.maskbits / 8;
6532 for (i = 0; i < bucketcount; ++i)
6534 if (cinfo.counts[i] == 0)
6535 bfd_put_32 (output_bfd, 0, contents);
6536 else
6537 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6538 contents += 4;
6541 cinfo.contents = contents;
6543 /* Renumber dynamic symbols, populate .gnu.hash section. */
6544 elf_link_hash_traverse (elf_hash_table (info),
6545 elf_renumber_gnu_hash_syms, &cinfo);
6547 contents = s->contents + 16;
6548 for (i = 0; i < maskwords; ++i)
6550 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6551 contents);
6552 contents += bed->s->arch_size / 8;
6555 free (cinfo.bitmask);
6556 free (cinfo.hashcodes);
6560 s = bfd_get_section_by_name (dynobj, ".dynstr");
6561 BFD_ASSERT (s != NULL);
6563 elf_finalize_dynstr (output_bfd, info);
6565 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6567 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6568 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6569 return FALSE;
6572 return TRUE;
6575 /* Indicate that we are only retrieving symbol values from this
6576 section. */
6578 void
6579 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6581 if (is_elf_hash_table (info->hash))
6582 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6583 _bfd_generic_link_just_syms (sec, info);
6586 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6588 static void
6589 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6590 asection *sec)
6592 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6593 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6596 /* Finish SHF_MERGE section merging. */
6598 bfd_boolean
6599 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6601 bfd *ibfd;
6602 asection *sec;
6604 if (!is_elf_hash_table (info->hash))
6605 return FALSE;
6607 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6608 if ((ibfd->flags & DYNAMIC) == 0)
6609 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6610 if ((sec->flags & SEC_MERGE) != 0
6611 && !bfd_is_abs_section (sec->output_section))
6613 struct bfd_elf_section_data *secdata;
6615 secdata = elf_section_data (sec);
6616 if (! _bfd_add_merge_section (abfd,
6617 &elf_hash_table (info)->merge_info,
6618 sec, &secdata->sec_info))
6619 return FALSE;
6620 else if (secdata->sec_info)
6621 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6624 if (elf_hash_table (info)->merge_info != NULL)
6625 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6626 merge_sections_remove_hook);
6627 return TRUE;
6630 /* Create an entry in an ELF linker hash table. */
6632 struct bfd_hash_entry *
6633 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6634 struct bfd_hash_table *table,
6635 const char *string)
6637 /* Allocate the structure if it has not already been allocated by a
6638 subclass. */
6639 if (entry == NULL)
6641 entry = (struct bfd_hash_entry *)
6642 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6643 if (entry == NULL)
6644 return entry;
6647 /* Call the allocation method of the superclass. */
6648 entry = _bfd_link_hash_newfunc (entry, table, string);
6649 if (entry != NULL)
6651 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6652 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6654 /* Set local fields. */
6655 ret->indx = -1;
6656 ret->dynindx = -1;
6657 ret->got = htab->init_got_refcount;
6658 ret->plt = htab->init_plt_refcount;
6659 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6660 - offsetof (struct elf_link_hash_entry, size)));
6661 /* Assume that we have been called by a non-ELF symbol reader.
6662 This flag is then reset by the code which reads an ELF input
6663 file. This ensures that a symbol created by a non-ELF symbol
6664 reader will have the flag set correctly. */
6665 ret->non_elf = 1;
6668 return entry;
6671 /* Copy data from an indirect symbol to its direct symbol, hiding the
6672 old indirect symbol. Also used for copying flags to a weakdef. */
6674 void
6675 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6676 struct elf_link_hash_entry *dir,
6677 struct elf_link_hash_entry *ind)
6679 struct elf_link_hash_table *htab;
6681 /* Copy down any references that we may have already seen to the
6682 symbol which just became indirect. */
6684 dir->ref_dynamic |= ind->ref_dynamic;
6685 dir->ref_regular |= ind->ref_regular;
6686 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6687 dir->non_got_ref |= ind->non_got_ref;
6688 dir->needs_plt |= ind->needs_plt;
6689 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6691 if (ind->root.type != bfd_link_hash_indirect)
6692 return;
6694 /* Copy over the global and procedure linkage table refcount entries.
6695 These may have been already set up by a check_relocs routine. */
6696 htab = elf_hash_table (info);
6697 if (ind->got.refcount > htab->init_got_refcount.refcount)
6699 if (dir->got.refcount < 0)
6700 dir->got.refcount = 0;
6701 dir->got.refcount += ind->got.refcount;
6702 ind->got.refcount = htab->init_got_refcount.refcount;
6705 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6707 if (dir->plt.refcount < 0)
6708 dir->plt.refcount = 0;
6709 dir->plt.refcount += ind->plt.refcount;
6710 ind->plt.refcount = htab->init_plt_refcount.refcount;
6713 if (ind->dynindx != -1)
6715 if (dir->dynindx != -1)
6716 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6717 dir->dynindx = ind->dynindx;
6718 dir->dynstr_index = ind->dynstr_index;
6719 ind->dynindx = -1;
6720 ind->dynstr_index = 0;
6724 void
6725 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6726 struct elf_link_hash_entry *h,
6727 bfd_boolean force_local)
6729 /* STT_GNU_IFUNC symbol must go through PLT. */
6730 if (h->type != STT_GNU_IFUNC)
6732 h->plt = elf_hash_table (info)->init_plt_offset;
6733 h->needs_plt = 0;
6735 if (force_local)
6737 h->forced_local = 1;
6738 if (h->dynindx != -1)
6740 h->dynindx = -1;
6741 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6742 h->dynstr_index);
6747 /* Initialize an ELF linker hash table. */
6749 bfd_boolean
6750 _bfd_elf_link_hash_table_init
6751 (struct elf_link_hash_table *table,
6752 bfd *abfd,
6753 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6754 struct bfd_hash_table *,
6755 const char *),
6756 unsigned int entsize)
6758 bfd_boolean ret;
6759 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6761 memset (table, 0, sizeof * table);
6762 table->init_got_refcount.refcount = can_refcount - 1;
6763 table->init_plt_refcount.refcount = can_refcount - 1;
6764 table->init_got_offset.offset = -(bfd_vma) 1;
6765 table->init_plt_offset.offset = -(bfd_vma) 1;
6766 /* The first dynamic symbol is a dummy. */
6767 table->dynsymcount = 1;
6769 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6770 table->root.type = bfd_link_elf_hash_table;
6772 return ret;
6775 /* Create an ELF linker hash table. */
6777 struct bfd_link_hash_table *
6778 _bfd_elf_link_hash_table_create (bfd *abfd)
6780 struct elf_link_hash_table *ret;
6781 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6783 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6784 if (ret == NULL)
6785 return NULL;
6787 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6788 sizeof (struct elf_link_hash_entry)))
6790 free (ret);
6791 return NULL;
6794 return &ret->root;
6797 /* This is a hook for the ELF emulation code in the generic linker to
6798 tell the backend linker what file name to use for the DT_NEEDED
6799 entry for a dynamic object. */
6801 void
6802 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6804 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6805 && bfd_get_format (abfd) == bfd_object)
6806 elf_dt_name (abfd) = name;
6810 bfd_elf_get_dyn_lib_class (bfd *abfd)
6812 int lib_class;
6813 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6814 && bfd_get_format (abfd) == bfd_object)
6815 lib_class = elf_dyn_lib_class (abfd);
6816 else
6817 lib_class = 0;
6818 return lib_class;
6821 void
6822 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6824 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6825 && bfd_get_format (abfd) == bfd_object)
6826 elf_dyn_lib_class (abfd) = lib_class;
6829 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6830 the linker ELF emulation code. */
6832 struct bfd_link_needed_list *
6833 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6834 struct bfd_link_info *info)
6836 if (! is_elf_hash_table (info->hash))
6837 return NULL;
6838 return elf_hash_table (info)->needed;
6841 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6842 hook for the linker ELF emulation code. */
6844 struct bfd_link_needed_list *
6845 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6846 struct bfd_link_info *info)
6848 if (! is_elf_hash_table (info->hash))
6849 return NULL;
6850 return elf_hash_table (info)->runpath;
6853 /* Get the name actually used for a dynamic object for a link. This
6854 is the SONAME entry if there is one. Otherwise, it is the string
6855 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6857 const char *
6858 bfd_elf_get_dt_soname (bfd *abfd)
6860 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6861 && bfd_get_format (abfd) == bfd_object)
6862 return elf_dt_name (abfd);
6863 return NULL;
6866 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6867 the ELF linker emulation code. */
6869 bfd_boolean
6870 bfd_elf_get_bfd_needed_list (bfd *abfd,
6871 struct bfd_link_needed_list **pneeded)
6873 asection *s;
6874 bfd_byte *dynbuf = NULL;
6875 unsigned int elfsec;
6876 unsigned long shlink;
6877 bfd_byte *extdyn, *extdynend;
6878 size_t extdynsize;
6879 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6881 *pneeded = NULL;
6883 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6884 || bfd_get_format (abfd) != bfd_object)
6885 return TRUE;
6887 s = bfd_get_section_by_name (abfd, ".dynamic");
6888 if (s == NULL || s->size == 0)
6889 return TRUE;
6891 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6892 goto error_return;
6894 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6895 if (elfsec == SHN_BAD)
6896 goto error_return;
6898 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6900 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6901 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6903 extdyn = dynbuf;
6904 extdynend = extdyn + s->size;
6905 for (; extdyn < extdynend; extdyn += extdynsize)
6907 Elf_Internal_Dyn dyn;
6909 (*swap_dyn_in) (abfd, extdyn, &dyn);
6911 if (dyn.d_tag == DT_NULL)
6912 break;
6914 if (dyn.d_tag == DT_NEEDED)
6916 const char *string;
6917 struct bfd_link_needed_list *l;
6918 unsigned int tagv = dyn.d_un.d_val;
6919 bfd_size_type amt;
6921 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6922 if (string == NULL)
6923 goto error_return;
6925 amt = sizeof *l;
6926 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6927 if (l == NULL)
6928 goto error_return;
6930 l->by = abfd;
6931 l->name = string;
6932 l->next = *pneeded;
6933 *pneeded = l;
6937 free (dynbuf);
6939 return TRUE;
6941 error_return:
6942 if (dynbuf != NULL)
6943 free (dynbuf);
6944 return FALSE;
6947 struct elf_symbuf_symbol
6949 unsigned long st_name; /* Symbol name, index in string tbl */
6950 unsigned char st_info; /* Type and binding attributes */
6951 unsigned char st_other; /* Visibilty, and target specific */
6954 struct elf_symbuf_head
6956 struct elf_symbuf_symbol *ssym;
6957 bfd_size_type count;
6958 unsigned int st_shndx;
6961 struct elf_symbol
6963 union
6965 Elf_Internal_Sym *isym;
6966 struct elf_symbuf_symbol *ssym;
6967 } u;
6968 const char *name;
6971 /* Sort references to symbols by ascending section number. */
6973 static int
6974 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6976 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6977 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6979 return s1->st_shndx - s2->st_shndx;
6982 static int
6983 elf_sym_name_compare (const void *arg1, const void *arg2)
6985 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6986 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6987 return strcmp (s1->name, s2->name);
6990 static struct elf_symbuf_head *
6991 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6993 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6994 struct elf_symbuf_symbol *ssym;
6995 struct elf_symbuf_head *ssymbuf, *ssymhead;
6996 bfd_size_type i, shndx_count, total_size;
6998 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
6999 if (indbuf == NULL)
7000 return NULL;
7002 for (ind = indbuf, i = 0; i < symcount; i++)
7003 if (isymbuf[i].st_shndx != SHN_UNDEF)
7004 *ind++ = &isymbuf[i];
7005 indbufend = ind;
7007 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7008 elf_sort_elf_symbol);
7010 shndx_count = 0;
7011 if (indbufend > indbuf)
7012 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7013 if (ind[0]->st_shndx != ind[1]->st_shndx)
7014 shndx_count++;
7016 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7017 + (indbufend - indbuf) * sizeof (*ssym));
7018 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7019 if (ssymbuf == NULL)
7021 free (indbuf);
7022 return NULL;
7025 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7026 ssymbuf->ssym = NULL;
7027 ssymbuf->count = shndx_count;
7028 ssymbuf->st_shndx = 0;
7029 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7031 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7033 ssymhead++;
7034 ssymhead->ssym = ssym;
7035 ssymhead->count = 0;
7036 ssymhead->st_shndx = (*ind)->st_shndx;
7038 ssym->st_name = (*ind)->st_name;
7039 ssym->st_info = (*ind)->st_info;
7040 ssym->st_other = (*ind)->st_other;
7041 ssymhead->count++;
7043 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7044 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7045 == total_size));
7047 free (indbuf);
7048 return ssymbuf;
7051 /* Check if 2 sections define the same set of local and global
7052 symbols. */
7054 static bfd_boolean
7055 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7056 struct bfd_link_info *info)
7058 bfd *bfd1, *bfd2;
7059 const struct elf_backend_data *bed1, *bed2;
7060 Elf_Internal_Shdr *hdr1, *hdr2;
7061 bfd_size_type symcount1, symcount2;
7062 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7063 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7064 Elf_Internal_Sym *isym, *isymend;
7065 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7066 bfd_size_type count1, count2, i;
7067 unsigned int shndx1, shndx2;
7068 bfd_boolean result;
7070 bfd1 = sec1->owner;
7071 bfd2 = sec2->owner;
7073 /* Both sections have to be in ELF. */
7074 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7075 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7076 return FALSE;
7078 if (elf_section_type (sec1) != elf_section_type (sec2))
7079 return FALSE;
7081 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7082 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7083 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7084 return FALSE;
7086 bed1 = get_elf_backend_data (bfd1);
7087 bed2 = get_elf_backend_data (bfd2);
7088 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7089 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7090 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7091 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7093 if (symcount1 == 0 || symcount2 == 0)
7094 return FALSE;
7096 result = FALSE;
7097 isymbuf1 = NULL;
7098 isymbuf2 = NULL;
7099 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7100 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7102 if (ssymbuf1 == NULL)
7104 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7105 NULL, NULL, NULL);
7106 if (isymbuf1 == NULL)
7107 goto done;
7109 if (!info->reduce_memory_overheads)
7110 elf_tdata (bfd1)->symbuf = ssymbuf1
7111 = elf_create_symbuf (symcount1, isymbuf1);
7114 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7116 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7117 NULL, NULL, NULL);
7118 if (isymbuf2 == NULL)
7119 goto done;
7121 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7122 elf_tdata (bfd2)->symbuf = ssymbuf2
7123 = elf_create_symbuf (symcount2, isymbuf2);
7126 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7128 /* Optimized faster version. */
7129 bfd_size_type lo, hi, mid;
7130 struct elf_symbol *symp;
7131 struct elf_symbuf_symbol *ssym, *ssymend;
7133 lo = 0;
7134 hi = ssymbuf1->count;
7135 ssymbuf1++;
7136 count1 = 0;
7137 while (lo < hi)
7139 mid = (lo + hi) / 2;
7140 if (shndx1 < ssymbuf1[mid].st_shndx)
7141 hi = mid;
7142 else if (shndx1 > ssymbuf1[mid].st_shndx)
7143 lo = mid + 1;
7144 else
7146 count1 = ssymbuf1[mid].count;
7147 ssymbuf1 += mid;
7148 break;
7152 lo = 0;
7153 hi = ssymbuf2->count;
7154 ssymbuf2++;
7155 count2 = 0;
7156 while (lo < hi)
7158 mid = (lo + hi) / 2;
7159 if (shndx2 < ssymbuf2[mid].st_shndx)
7160 hi = mid;
7161 else if (shndx2 > ssymbuf2[mid].st_shndx)
7162 lo = mid + 1;
7163 else
7165 count2 = ssymbuf2[mid].count;
7166 ssymbuf2 += mid;
7167 break;
7171 if (count1 == 0 || count2 == 0 || count1 != count2)
7172 goto done;
7174 symtable1 = (struct elf_symbol *)
7175 bfd_malloc (count1 * sizeof (struct elf_symbol));
7176 symtable2 = (struct elf_symbol *)
7177 bfd_malloc (count2 * sizeof (struct elf_symbol));
7178 if (symtable1 == NULL || symtable2 == NULL)
7179 goto done;
7181 symp = symtable1;
7182 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7183 ssym < ssymend; ssym++, symp++)
7185 symp->u.ssym = ssym;
7186 symp->name = bfd_elf_string_from_elf_section (bfd1,
7187 hdr1->sh_link,
7188 ssym->st_name);
7191 symp = symtable2;
7192 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7193 ssym < ssymend; ssym++, symp++)
7195 symp->u.ssym = ssym;
7196 symp->name = bfd_elf_string_from_elf_section (bfd2,
7197 hdr2->sh_link,
7198 ssym->st_name);
7201 /* Sort symbol by name. */
7202 qsort (symtable1, count1, sizeof (struct elf_symbol),
7203 elf_sym_name_compare);
7204 qsort (symtable2, count1, sizeof (struct elf_symbol),
7205 elf_sym_name_compare);
7207 for (i = 0; i < count1; i++)
7208 /* Two symbols must have the same binding, type and name. */
7209 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7210 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7211 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7212 goto done;
7214 result = TRUE;
7215 goto done;
7218 symtable1 = (struct elf_symbol *)
7219 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7220 symtable2 = (struct elf_symbol *)
7221 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7222 if (symtable1 == NULL || symtable2 == NULL)
7223 goto done;
7225 /* Count definitions in the section. */
7226 count1 = 0;
7227 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7228 if (isym->st_shndx == shndx1)
7229 symtable1[count1++].u.isym = isym;
7231 count2 = 0;
7232 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7233 if (isym->st_shndx == shndx2)
7234 symtable2[count2++].u.isym = isym;
7236 if (count1 == 0 || count2 == 0 || count1 != count2)
7237 goto done;
7239 for (i = 0; i < count1; i++)
7240 symtable1[i].name
7241 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7242 symtable1[i].u.isym->st_name);
7244 for (i = 0; i < count2; i++)
7245 symtable2[i].name
7246 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7247 symtable2[i].u.isym->st_name);
7249 /* Sort symbol by name. */
7250 qsort (symtable1, count1, sizeof (struct elf_symbol),
7251 elf_sym_name_compare);
7252 qsort (symtable2, count1, sizeof (struct elf_symbol),
7253 elf_sym_name_compare);
7255 for (i = 0; i < count1; i++)
7256 /* Two symbols must have the same binding, type and name. */
7257 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7258 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7259 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7260 goto done;
7262 result = TRUE;
7264 done:
7265 if (symtable1)
7266 free (symtable1);
7267 if (symtable2)
7268 free (symtable2);
7269 if (isymbuf1)
7270 free (isymbuf1);
7271 if (isymbuf2)
7272 free (isymbuf2);
7274 return result;
7277 /* Return TRUE if 2 section types are compatible. */
7279 bfd_boolean
7280 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7281 bfd *bbfd, const asection *bsec)
7283 if (asec == NULL
7284 || bsec == NULL
7285 || abfd->xvec->flavour != bfd_target_elf_flavour
7286 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7287 return TRUE;
7289 return elf_section_type (asec) == elf_section_type (bsec);
7292 /* Final phase of ELF linker. */
7294 /* A structure we use to avoid passing large numbers of arguments. */
7296 struct elf_final_link_info
7298 /* General link information. */
7299 struct bfd_link_info *info;
7300 /* Output BFD. */
7301 bfd *output_bfd;
7302 /* Symbol string table. */
7303 struct bfd_strtab_hash *symstrtab;
7304 /* .dynsym section. */
7305 asection *dynsym_sec;
7306 /* .hash section. */
7307 asection *hash_sec;
7308 /* symbol version section (.gnu.version). */
7309 asection *symver_sec;
7310 /* Buffer large enough to hold contents of any section. */
7311 bfd_byte *contents;
7312 /* Buffer large enough to hold external relocs of any section. */
7313 void *external_relocs;
7314 /* Buffer large enough to hold internal relocs of any section. */
7315 Elf_Internal_Rela *internal_relocs;
7316 /* Buffer large enough to hold external local symbols of any input
7317 BFD. */
7318 bfd_byte *external_syms;
7319 /* And a buffer for symbol section indices. */
7320 Elf_External_Sym_Shndx *locsym_shndx;
7321 /* Buffer large enough to hold internal local symbols of any input
7322 BFD. */
7323 Elf_Internal_Sym *internal_syms;
7324 /* Array large enough to hold a symbol index for each local symbol
7325 of any input BFD. */
7326 long *indices;
7327 /* Array large enough to hold a section pointer for each local
7328 symbol of any input BFD. */
7329 asection **sections;
7330 /* Buffer to hold swapped out symbols. */
7331 bfd_byte *symbuf;
7332 /* And one for symbol section indices. */
7333 Elf_External_Sym_Shndx *symshndxbuf;
7334 /* Number of swapped out symbols in buffer. */
7335 size_t symbuf_count;
7336 /* Number of symbols which fit in symbuf. */
7337 size_t symbuf_size;
7338 /* And same for symshndxbuf. */
7339 size_t shndxbuf_size;
7342 /* This struct is used to pass information to elf_link_output_extsym. */
7344 struct elf_outext_info
7346 bfd_boolean failed;
7347 bfd_boolean localsyms;
7348 struct elf_final_link_info *finfo;
7352 /* Support for evaluating a complex relocation.
7354 Complex relocations are generalized, self-describing relocations. The
7355 implementation of them consists of two parts: complex symbols, and the
7356 relocations themselves.
7358 The relocations are use a reserved elf-wide relocation type code (R_RELC
7359 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7360 information (start bit, end bit, word width, etc) into the addend. This
7361 information is extracted from CGEN-generated operand tables within gas.
7363 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7364 internal) representing prefix-notation expressions, including but not
7365 limited to those sorts of expressions normally encoded as addends in the
7366 addend field. The symbol mangling format is:
7368 <node> := <literal>
7369 | <unary-operator> ':' <node>
7370 | <binary-operator> ':' <node> ':' <node>
7373 <literal> := 's' <digits=N> ':' <N character symbol name>
7374 | 'S' <digits=N> ':' <N character section name>
7375 | '#' <hexdigits>
7378 <binary-operator> := as in C
7379 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7381 static void
7382 set_symbol_value (bfd *bfd_with_globals,
7383 Elf_Internal_Sym *isymbuf,
7384 size_t locsymcount,
7385 size_t symidx,
7386 bfd_vma val)
7388 struct elf_link_hash_entry **sym_hashes;
7389 struct elf_link_hash_entry *h;
7390 size_t extsymoff = locsymcount;
7392 if (symidx < locsymcount)
7394 Elf_Internal_Sym *sym;
7396 sym = isymbuf + symidx;
7397 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7399 /* It is a local symbol: move it to the
7400 "absolute" section and give it a value. */
7401 sym->st_shndx = SHN_ABS;
7402 sym->st_value = val;
7403 return;
7405 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7406 extsymoff = 0;
7409 /* It is a global symbol: set its link type
7410 to "defined" and give it a value. */
7412 sym_hashes = elf_sym_hashes (bfd_with_globals);
7413 h = sym_hashes [symidx - extsymoff];
7414 while (h->root.type == bfd_link_hash_indirect
7415 || h->root.type == bfd_link_hash_warning)
7416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7417 h->root.type = bfd_link_hash_defined;
7418 h->root.u.def.value = val;
7419 h->root.u.def.section = bfd_abs_section_ptr;
7422 static bfd_boolean
7423 resolve_symbol (const char *name,
7424 bfd *input_bfd,
7425 struct elf_final_link_info *finfo,
7426 bfd_vma *result,
7427 Elf_Internal_Sym *isymbuf,
7428 size_t locsymcount)
7430 Elf_Internal_Sym *sym;
7431 struct bfd_link_hash_entry *global_entry;
7432 const char *candidate = NULL;
7433 Elf_Internal_Shdr *symtab_hdr;
7434 size_t i;
7436 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7438 for (i = 0; i < locsymcount; ++ i)
7440 sym = isymbuf + i;
7442 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7443 continue;
7445 candidate = bfd_elf_string_from_elf_section (input_bfd,
7446 symtab_hdr->sh_link,
7447 sym->st_name);
7448 #ifdef DEBUG
7449 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7450 name, candidate, (unsigned long) sym->st_value);
7451 #endif
7452 if (candidate && strcmp (candidate, name) == 0)
7454 asection *sec = finfo->sections [i];
7456 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7457 *result += sec->output_offset + sec->output_section->vma;
7458 #ifdef DEBUG
7459 printf ("Found symbol with value %8.8lx\n",
7460 (unsigned long) *result);
7461 #endif
7462 return TRUE;
7466 /* Hmm, haven't found it yet. perhaps it is a global. */
7467 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7468 FALSE, FALSE, TRUE);
7469 if (!global_entry)
7470 return FALSE;
7472 if (global_entry->type == bfd_link_hash_defined
7473 || global_entry->type == bfd_link_hash_defweak)
7475 *result = (global_entry->u.def.value
7476 + global_entry->u.def.section->output_section->vma
7477 + global_entry->u.def.section->output_offset);
7478 #ifdef DEBUG
7479 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7480 global_entry->root.string, (unsigned long) *result);
7481 #endif
7482 return TRUE;
7485 return FALSE;
7488 static bfd_boolean
7489 resolve_section (const char *name,
7490 asection *sections,
7491 bfd_vma *result)
7493 asection *curr;
7494 unsigned int len;
7496 for (curr = sections; curr; curr = curr->next)
7497 if (strcmp (curr->name, name) == 0)
7499 *result = curr->vma;
7500 return TRUE;
7503 /* Hmm. still haven't found it. try pseudo-section names. */
7504 for (curr = sections; curr; curr = curr->next)
7506 len = strlen (curr->name);
7507 if (len > strlen (name))
7508 continue;
7510 if (strncmp (curr->name, name, len) == 0)
7512 if (strncmp (".end", name + len, 4) == 0)
7514 *result = curr->vma + curr->size;
7515 return TRUE;
7518 /* Insert more pseudo-section names here, if you like. */
7522 return FALSE;
7525 static void
7526 undefined_reference (const char *reftype, const char *name)
7528 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7529 reftype, name);
7532 static bfd_boolean
7533 eval_symbol (bfd_vma *result,
7534 const char **symp,
7535 bfd *input_bfd,
7536 struct elf_final_link_info *finfo,
7537 bfd_vma dot,
7538 Elf_Internal_Sym *isymbuf,
7539 size_t locsymcount,
7540 int signed_p)
7542 size_t len;
7543 size_t symlen;
7544 bfd_vma a;
7545 bfd_vma b;
7546 char symbuf[4096];
7547 const char *sym = *symp;
7548 const char *symend;
7549 bfd_boolean symbol_is_section = FALSE;
7551 len = strlen (sym);
7552 symend = sym + len;
7554 if (len < 1 || len > sizeof (symbuf))
7556 bfd_set_error (bfd_error_invalid_operation);
7557 return FALSE;
7560 switch (* sym)
7562 case '.':
7563 *result = dot;
7564 *symp = sym + 1;
7565 return TRUE;
7567 case '#':
7568 ++sym;
7569 *result = strtoul (sym, (char **) symp, 16);
7570 return TRUE;
7572 case 'S':
7573 symbol_is_section = TRUE;
7574 case 's':
7575 ++sym;
7576 symlen = strtol (sym, (char **) symp, 10);
7577 sym = *symp + 1; /* Skip the trailing ':'. */
7579 if (symend < sym || symlen + 1 > sizeof (symbuf))
7581 bfd_set_error (bfd_error_invalid_operation);
7582 return FALSE;
7585 memcpy (symbuf, sym, symlen);
7586 symbuf[symlen] = '\0';
7587 *symp = sym + symlen;
7589 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7590 the symbol as a section, or vice-versa. so we're pretty liberal in our
7591 interpretation here; section means "try section first", not "must be a
7592 section", and likewise with symbol. */
7594 if (symbol_is_section)
7596 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7597 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7598 isymbuf, locsymcount))
7600 undefined_reference ("section", symbuf);
7601 return FALSE;
7604 else
7606 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7607 isymbuf, locsymcount)
7608 && !resolve_section (symbuf, finfo->output_bfd->sections,
7609 result))
7611 undefined_reference ("symbol", symbuf);
7612 return FALSE;
7616 return TRUE;
7618 /* All that remains are operators. */
7620 #define UNARY_OP(op) \
7621 if (strncmp (sym, #op, strlen (#op)) == 0) \
7623 sym += strlen (#op); \
7624 if (*sym == ':') \
7625 ++sym; \
7626 *symp = sym; \
7627 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7628 isymbuf, locsymcount, signed_p)) \
7629 return FALSE; \
7630 if (signed_p) \
7631 *result = op ((bfd_signed_vma) a); \
7632 else \
7633 *result = op a; \
7634 return TRUE; \
7637 #define BINARY_OP(op) \
7638 if (strncmp (sym, #op, strlen (#op)) == 0) \
7640 sym += strlen (#op); \
7641 if (*sym == ':') \
7642 ++sym; \
7643 *symp = sym; \
7644 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7645 isymbuf, locsymcount, signed_p)) \
7646 return FALSE; \
7647 ++*symp; \
7648 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7649 isymbuf, locsymcount, signed_p)) \
7650 return FALSE; \
7651 if (signed_p) \
7652 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7653 else \
7654 *result = a op b; \
7655 return TRUE; \
7658 default:
7659 UNARY_OP (0-);
7660 BINARY_OP (<<);
7661 BINARY_OP (>>);
7662 BINARY_OP (==);
7663 BINARY_OP (!=);
7664 BINARY_OP (<=);
7665 BINARY_OP (>=);
7666 BINARY_OP (&&);
7667 BINARY_OP (||);
7668 UNARY_OP (~);
7669 UNARY_OP (!);
7670 BINARY_OP (*);
7671 BINARY_OP (/);
7672 BINARY_OP (%);
7673 BINARY_OP (^);
7674 BINARY_OP (|);
7675 BINARY_OP (&);
7676 BINARY_OP (+);
7677 BINARY_OP (-);
7678 BINARY_OP (<);
7679 BINARY_OP (>);
7680 #undef UNARY_OP
7681 #undef BINARY_OP
7682 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7683 bfd_set_error (bfd_error_invalid_operation);
7684 return FALSE;
7688 static void
7689 put_value (bfd_vma size,
7690 unsigned long chunksz,
7691 bfd *input_bfd,
7692 bfd_vma x,
7693 bfd_byte *location)
7695 location += (size - chunksz);
7697 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7699 switch (chunksz)
7701 default:
7702 case 0:
7703 abort ();
7704 case 1:
7705 bfd_put_8 (input_bfd, x, location);
7706 break;
7707 case 2:
7708 bfd_put_16 (input_bfd, x, location);
7709 break;
7710 case 4:
7711 bfd_put_32 (input_bfd, x, location);
7712 break;
7713 case 8:
7714 #ifdef BFD64
7715 bfd_put_64 (input_bfd, x, location);
7716 #else
7717 abort ();
7718 #endif
7719 break;
7724 static bfd_vma
7725 get_value (bfd_vma size,
7726 unsigned long chunksz,
7727 bfd *input_bfd,
7728 bfd_byte *location)
7730 bfd_vma x = 0;
7732 for (; size; size -= chunksz, location += chunksz)
7734 switch (chunksz)
7736 default:
7737 case 0:
7738 abort ();
7739 case 1:
7740 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7741 break;
7742 case 2:
7743 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7744 break;
7745 case 4:
7746 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7747 break;
7748 case 8:
7749 #ifdef BFD64
7750 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7751 #else
7752 abort ();
7753 #endif
7754 break;
7757 return x;
7760 static void
7761 decode_complex_addend (unsigned long *start, /* in bits */
7762 unsigned long *oplen, /* in bits */
7763 unsigned long *len, /* in bits */
7764 unsigned long *wordsz, /* in bytes */
7765 unsigned long *chunksz, /* in bytes */
7766 unsigned long *lsb0_p,
7767 unsigned long *signed_p,
7768 unsigned long *trunc_p,
7769 unsigned long encoded)
7771 * start = encoded & 0x3F;
7772 * len = (encoded >> 6) & 0x3F;
7773 * oplen = (encoded >> 12) & 0x3F;
7774 * wordsz = (encoded >> 18) & 0xF;
7775 * chunksz = (encoded >> 22) & 0xF;
7776 * lsb0_p = (encoded >> 27) & 1;
7777 * signed_p = (encoded >> 28) & 1;
7778 * trunc_p = (encoded >> 29) & 1;
7781 bfd_reloc_status_type
7782 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7783 asection *input_section ATTRIBUTE_UNUSED,
7784 bfd_byte *contents,
7785 Elf_Internal_Rela *rel,
7786 bfd_vma relocation)
7788 bfd_vma shift, x, mask;
7789 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7790 bfd_reloc_status_type r;
7792 /* Perform this reloc, since it is complex.
7793 (this is not to say that it necessarily refers to a complex
7794 symbol; merely that it is a self-describing CGEN based reloc.
7795 i.e. the addend has the complete reloc information (bit start, end,
7796 word size, etc) encoded within it.). */
7798 decode_complex_addend (&start, &oplen, &len, &wordsz,
7799 &chunksz, &lsb0_p, &signed_p,
7800 &trunc_p, rel->r_addend);
7802 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7804 if (lsb0_p)
7805 shift = (start + 1) - len;
7806 else
7807 shift = (8 * wordsz) - (start + len);
7809 /* FIXME: octets_per_byte. */
7810 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7812 #ifdef DEBUG
7813 printf ("Doing complex reloc: "
7814 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7815 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7816 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7817 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7818 oplen, x, mask, relocation);
7819 #endif
7821 r = bfd_reloc_ok;
7822 if (! trunc_p)
7823 /* Now do an overflow check. */
7824 r = bfd_check_overflow ((signed_p
7825 ? complain_overflow_signed
7826 : complain_overflow_unsigned),
7827 len, 0, (8 * wordsz),
7828 relocation);
7830 /* Do the deed. */
7831 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7833 #ifdef DEBUG
7834 printf (" relocation: %8.8lx\n"
7835 " shifted mask: %8.8lx\n"
7836 " shifted/masked reloc: %8.8lx\n"
7837 " result: %8.8lx\n",
7838 relocation, (mask << shift),
7839 ((relocation & mask) << shift), x);
7840 #endif
7841 /* FIXME: octets_per_byte. */
7842 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7843 return r;
7846 /* When performing a relocatable link, the input relocations are
7847 preserved. But, if they reference global symbols, the indices
7848 referenced must be updated. Update all the relocations in
7849 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7851 static void
7852 elf_link_adjust_relocs (bfd *abfd,
7853 Elf_Internal_Shdr *rel_hdr,
7854 unsigned int count,
7855 struct elf_link_hash_entry **rel_hash)
7857 unsigned int i;
7858 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7859 bfd_byte *erela;
7860 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7861 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7862 bfd_vma r_type_mask;
7863 int r_sym_shift;
7865 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7867 swap_in = bed->s->swap_reloc_in;
7868 swap_out = bed->s->swap_reloc_out;
7870 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7872 swap_in = bed->s->swap_reloca_in;
7873 swap_out = bed->s->swap_reloca_out;
7875 else
7876 abort ();
7878 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7879 abort ();
7881 if (bed->s->arch_size == 32)
7883 r_type_mask = 0xff;
7884 r_sym_shift = 8;
7886 else
7888 r_type_mask = 0xffffffff;
7889 r_sym_shift = 32;
7892 erela = rel_hdr->contents;
7893 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7895 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7896 unsigned int j;
7898 if (*rel_hash == NULL)
7899 continue;
7901 BFD_ASSERT ((*rel_hash)->indx >= 0);
7903 (*swap_in) (abfd, erela, irela);
7904 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7905 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7906 | (irela[j].r_info & r_type_mask));
7907 (*swap_out) (abfd, irela, erela);
7911 struct elf_link_sort_rela
7913 union {
7914 bfd_vma offset;
7915 bfd_vma sym_mask;
7916 } u;
7917 enum elf_reloc_type_class type;
7918 /* We use this as an array of size int_rels_per_ext_rel. */
7919 Elf_Internal_Rela rela[1];
7922 static int
7923 elf_link_sort_cmp1 (const void *A, const void *B)
7925 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7926 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7927 int relativea, relativeb;
7929 relativea = a->type == reloc_class_relative;
7930 relativeb = b->type == reloc_class_relative;
7932 if (relativea < relativeb)
7933 return 1;
7934 if (relativea > relativeb)
7935 return -1;
7936 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7937 return -1;
7938 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7939 return 1;
7940 if (a->rela->r_offset < b->rela->r_offset)
7941 return -1;
7942 if (a->rela->r_offset > b->rela->r_offset)
7943 return 1;
7944 return 0;
7947 static int
7948 elf_link_sort_cmp2 (const void *A, const void *B)
7950 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7951 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7952 int copya, copyb;
7954 if (a->u.offset < b->u.offset)
7955 return -1;
7956 if (a->u.offset > b->u.offset)
7957 return 1;
7958 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7959 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7960 if (copya < copyb)
7961 return -1;
7962 if (copya > copyb)
7963 return 1;
7964 if (a->rela->r_offset < b->rela->r_offset)
7965 return -1;
7966 if (a->rela->r_offset > b->rela->r_offset)
7967 return 1;
7968 return 0;
7971 static size_t
7972 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7974 asection *dynamic_relocs;
7975 asection *rela_dyn;
7976 asection *rel_dyn;
7977 bfd_size_type count, size;
7978 size_t i, ret, sort_elt, ext_size;
7979 bfd_byte *sort, *s_non_relative, *p;
7980 struct elf_link_sort_rela *sq;
7981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7982 int i2e = bed->s->int_rels_per_ext_rel;
7983 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7984 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7985 struct bfd_link_order *lo;
7986 bfd_vma r_sym_mask;
7987 bfd_boolean use_rela;
7989 /* Find a dynamic reloc section. */
7990 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7991 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7992 if (rela_dyn != NULL && rela_dyn->size > 0
7993 && rel_dyn != NULL && rel_dyn->size > 0)
7995 bfd_boolean use_rela_initialised = FALSE;
7997 /* This is just here to stop gcc from complaining.
7998 It's initialization checking code is not perfect. */
7999 use_rela = TRUE;
8001 /* Both sections are present. Examine the sizes
8002 of the indirect sections to help us choose. */
8003 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8004 if (lo->type == bfd_indirect_link_order)
8006 asection *o = lo->u.indirect.section;
8008 if ((o->size % bed->s->sizeof_rela) == 0)
8010 if ((o->size % bed->s->sizeof_rel) == 0)
8011 /* Section size is divisible by both rel and rela sizes.
8012 It is of no help to us. */
8014 else
8016 /* Section size is only divisible by rela. */
8017 if (use_rela_initialised && (use_rela == FALSE))
8019 _bfd_error_handler
8020 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8021 bfd_set_error (bfd_error_invalid_operation);
8022 return 0;
8024 else
8026 use_rela = TRUE;
8027 use_rela_initialised = TRUE;
8031 else if ((o->size % bed->s->sizeof_rel) == 0)
8033 /* Section size is only divisible by rel. */
8034 if (use_rela_initialised && (use_rela == TRUE))
8036 _bfd_error_handler
8037 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8038 bfd_set_error (bfd_error_invalid_operation);
8039 return 0;
8041 else
8043 use_rela = FALSE;
8044 use_rela_initialised = TRUE;
8047 else
8049 /* The section size is not divisible by either - something is wrong. */
8050 _bfd_error_handler
8051 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8052 bfd_set_error (bfd_error_invalid_operation);
8053 return 0;
8057 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8058 if (lo->type == bfd_indirect_link_order)
8060 asection *o = lo->u.indirect.section;
8062 if ((o->size % bed->s->sizeof_rela) == 0)
8064 if ((o->size % bed->s->sizeof_rel) == 0)
8065 /* Section size is divisible by both rel and rela sizes.
8066 It is of no help to us. */
8068 else
8070 /* Section size is only divisible by rela. */
8071 if (use_rela_initialised && (use_rela == FALSE))
8073 _bfd_error_handler
8074 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8075 bfd_set_error (bfd_error_invalid_operation);
8076 return 0;
8078 else
8080 use_rela = TRUE;
8081 use_rela_initialised = TRUE;
8085 else if ((o->size % bed->s->sizeof_rel) == 0)
8087 /* Section size is only divisible by rel. */
8088 if (use_rela_initialised && (use_rela == TRUE))
8090 _bfd_error_handler
8091 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8092 bfd_set_error (bfd_error_invalid_operation);
8093 return 0;
8095 else
8097 use_rela = FALSE;
8098 use_rela_initialised = TRUE;
8101 else
8103 /* The section size is not divisible by either - something is wrong. */
8104 _bfd_error_handler
8105 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8106 bfd_set_error (bfd_error_invalid_operation);
8107 return 0;
8111 if (! use_rela_initialised)
8112 /* Make a guess. */
8113 use_rela = TRUE;
8115 else if (rela_dyn != NULL && rela_dyn->size > 0)
8116 use_rela = TRUE;
8117 else if (rel_dyn != NULL && rel_dyn->size > 0)
8118 use_rela = FALSE;
8119 else
8120 return 0;
8122 if (use_rela)
8124 dynamic_relocs = rela_dyn;
8125 ext_size = bed->s->sizeof_rela;
8126 swap_in = bed->s->swap_reloca_in;
8127 swap_out = bed->s->swap_reloca_out;
8129 else
8131 dynamic_relocs = rel_dyn;
8132 ext_size = bed->s->sizeof_rel;
8133 swap_in = bed->s->swap_reloc_in;
8134 swap_out = bed->s->swap_reloc_out;
8137 size = 0;
8138 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8139 if (lo->type == bfd_indirect_link_order)
8140 size += lo->u.indirect.section->size;
8142 if (size != dynamic_relocs->size)
8143 return 0;
8145 sort_elt = (sizeof (struct elf_link_sort_rela)
8146 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8148 count = dynamic_relocs->size / ext_size;
8149 if (count == 0)
8150 return 0;
8151 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8153 if (sort == NULL)
8155 (*info->callbacks->warning)
8156 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8157 return 0;
8160 if (bed->s->arch_size == 32)
8161 r_sym_mask = ~(bfd_vma) 0xff;
8162 else
8163 r_sym_mask = ~(bfd_vma) 0xffffffff;
8165 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8166 if (lo->type == bfd_indirect_link_order)
8168 bfd_byte *erel, *erelend;
8169 asection *o = lo->u.indirect.section;
8171 if (o->contents == NULL && o->size != 0)
8173 /* This is a reloc section that is being handled as a normal
8174 section. See bfd_section_from_shdr. We can't combine
8175 relocs in this case. */
8176 free (sort);
8177 return 0;
8179 erel = o->contents;
8180 erelend = o->contents + o->size;
8181 /* FIXME: octets_per_byte. */
8182 p = sort + o->output_offset / ext_size * sort_elt;
8184 while (erel < erelend)
8186 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8188 (*swap_in) (abfd, erel, s->rela);
8189 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8190 s->u.sym_mask = r_sym_mask;
8191 p += sort_elt;
8192 erel += ext_size;
8196 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8198 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8200 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8201 if (s->type != reloc_class_relative)
8202 break;
8204 ret = i;
8205 s_non_relative = p;
8207 sq = (struct elf_link_sort_rela *) s_non_relative;
8208 for (; i < count; i++, p += sort_elt)
8210 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8211 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8212 sq = sp;
8213 sp->u.offset = sq->rela->r_offset;
8216 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8218 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8219 if (lo->type == bfd_indirect_link_order)
8221 bfd_byte *erel, *erelend;
8222 asection *o = lo->u.indirect.section;
8224 erel = o->contents;
8225 erelend = o->contents + o->size;
8226 /* FIXME: octets_per_byte. */
8227 p = sort + o->output_offset / ext_size * sort_elt;
8228 while (erel < erelend)
8230 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8231 (*swap_out) (abfd, s->rela, erel);
8232 p += sort_elt;
8233 erel += ext_size;
8237 free (sort);
8238 *psec = dynamic_relocs;
8239 return ret;
8242 /* Flush the output symbols to the file. */
8244 static bfd_boolean
8245 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8246 const struct elf_backend_data *bed)
8248 if (finfo->symbuf_count > 0)
8250 Elf_Internal_Shdr *hdr;
8251 file_ptr pos;
8252 bfd_size_type amt;
8254 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8255 pos = hdr->sh_offset + hdr->sh_size;
8256 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8257 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8258 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8259 return FALSE;
8261 hdr->sh_size += amt;
8262 finfo->symbuf_count = 0;
8265 return TRUE;
8268 /* Add a symbol to the output symbol table. */
8270 static int
8271 elf_link_output_sym (struct elf_final_link_info *finfo,
8272 const char *name,
8273 Elf_Internal_Sym *elfsym,
8274 asection *input_sec,
8275 struct elf_link_hash_entry *h)
8277 bfd_byte *dest;
8278 Elf_External_Sym_Shndx *destshndx;
8279 int (*output_symbol_hook)
8280 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8281 struct elf_link_hash_entry *);
8282 const struct elf_backend_data *bed;
8284 bed = get_elf_backend_data (finfo->output_bfd);
8285 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8286 if (output_symbol_hook != NULL)
8288 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8289 if (ret != 1)
8290 return ret;
8293 if (name == NULL || *name == '\0')
8294 elfsym->st_name = 0;
8295 else if (input_sec->flags & SEC_EXCLUDE)
8296 elfsym->st_name = 0;
8297 else
8299 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8300 name, TRUE, FALSE);
8301 if (elfsym->st_name == (unsigned long) -1)
8302 return 0;
8305 if (finfo->symbuf_count >= finfo->symbuf_size)
8307 if (! elf_link_flush_output_syms (finfo, bed))
8308 return 0;
8311 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8312 destshndx = finfo->symshndxbuf;
8313 if (destshndx != NULL)
8315 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8317 bfd_size_type amt;
8319 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8320 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8321 amt * 2);
8322 if (destshndx == NULL)
8323 return 0;
8324 finfo->symshndxbuf = destshndx;
8325 memset ((char *) destshndx + amt, 0, amt);
8326 finfo->shndxbuf_size *= 2;
8328 destshndx += bfd_get_symcount (finfo->output_bfd);
8331 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8332 finfo->symbuf_count += 1;
8333 bfd_get_symcount (finfo->output_bfd) += 1;
8335 return 1;
8338 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8340 static bfd_boolean
8341 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8343 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8344 && sym->st_shndx < SHN_LORESERVE)
8346 /* The gABI doesn't support dynamic symbols in output sections
8347 beyond 64k. */
8348 (*_bfd_error_handler)
8349 (_("%B: Too many sections: %d (>= %d)"),
8350 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8351 bfd_set_error (bfd_error_nonrepresentable_section);
8352 return FALSE;
8354 return TRUE;
8357 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8358 allowing an unsatisfied unversioned symbol in the DSO to match a
8359 versioned symbol that would normally require an explicit version.
8360 We also handle the case that a DSO references a hidden symbol
8361 which may be satisfied by a versioned symbol in another DSO. */
8363 static bfd_boolean
8364 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8365 const struct elf_backend_data *bed,
8366 struct elf_link_hash_entry *h)
8368 bfd *abfd;
8369 struct elf_link_loaded_list *loaded;
8371 if (!is_elf_hash_table (info->hash))
8372 return FALSE;
8374 switch (h->root.type)
8376 default:
8377 abfd = NULL;
8378 break;
8380 case bfd_link_hash_undefined:
8381 case bfd_link_hash_undefweak:
8382 abfd = h->root.u.undef.abfd;
8383 if ((abfd->flags & DYNAMIC) == 0
8384 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8385 return FALSE;
8386 break;
8388 case bfd_link_hash_defined:
8389 case bfd_link_hash_defweak:
8390 abfd = h->root.u.def.section->owner;
8391 break;
8393 case bfd_link_hash_common:
8394 abfd = h->root.u.c.p->section->owner;
8395 break;
8397 BFD_ASSERT (abfd != NULL);
8399 for (loaded = elf_hash_table (info)->loaded;
8400 loaded != NULL;
8401 loaded = loaded->next)
8403 bfd *input;
8404 Elf_Internal_Shdr *hdr;
8405 bfd_size_type symcount;
8406 bfd_size_type extsymcount;
8407 bfd_size_type extsymoff;
8408 Elf_Internal_Shdr *versymhdr;
8409 Elf_Internal_Sym *isym;
8410 Elf_Internal_Sym *isymend;
8411 Elf_Internal_Sym *isymbuf;
8412 Elf_External_Versym *ever;
8413 Elf_External_Versym *extversym;
8415 input = loaded->abfd;
8417 /* We check each DSO for a possible hidden versioned definition. */
8418 if (input == abfd
8419 || (input->flags & DYNAMIC) == 0
8420 || elf_dynversym (input) == 0)
8421 continue;
8423 hdr = &elf_tdata (input)->dynsymtab_hdr;
8425 symcount = hdr->sh_size / bed->s->sizeof_sym;
8426 if (elf_bad_symtab (input))
8428 extsymcount = symcount;
8429 extsymoff = 0;
8431 else
8433 extsymcount = symcount - hdr->sh_info;
8434 extsymoff = hdr->sh_info;
8437 if (extsymcount == 0)
8438 continue;
8440 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8441 NULL, NULL, NULL);
8442 if (isymbuf == NULL)
8443 return FALSE;
8445 /* Read in any version definitions. */
8446 versymhdr = &elf_tdata (input)->dynversym_hdr;
8447 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8448 if (extversym == NULL)
8449 goto error_ret;
8451 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8452 || (bfd_bread (extversym, versymhdr->sh_size, input)
8453 != versymhdr->sh_size))
8455 free (extversym);
8456 error_ret:
8457 free (isymbuf);
8458 return FALSE;
8461 ever = extversym + extsymoff;
8462 isymend = isymbuf + extsymcount;
8463 for (isym = isymbuf; isym < isymend; isym++, ever++)
8465 const char *name;
8466 Elf_Internal_Versym iver;
8467 unsigned short version_index;
8469 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8470 || isym->st_shndx == SHN_UNDEF)
8471 continue;
8473 name = bfd_elf_string_from_elf_section (input,
8474 hdr->sh_link,
8475 isym->st_name);
8476 if (strcmp (name, h->root.root.string) != 0)
8477 continue;
8479 _bfd_elf_swap_versym_in (input, ever, &iver);
8481 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8483 /* If we have a non-hidden versioned sym, then it should
8484 have provided a definition for the undefined sym. */
8485 abort ();
8488 version_index = iver.vs_vers & VERSYM_VERSION;
8489 if (version_index == 1 || version_index == 2)
8491 /* This is the base or first version. We can use it. */
8492 free (extversym);
8493 free (isymbuf);
8494 return TRUE;
8498 free (extversym);
8499 free (isymbuf);
8502 return FALSE;
8505 /* Add an external symbol to the symbol table. This is called from
8506 the hash table traversal routine. When generating a shared object,
8507 we go through the symbol table twice. The first time we output
8508 anything that might have been forced to local scope in a version
8509 script. The second time we output the symbols that are still
8510 global symbols. */
8512 static bfd_boolean
8513 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8515 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8516 struct elf_final_link_info *finfo = eoinfo->finfo;
8517 bfd_boolean strip;
8518 Elf_Internal_Sym sym;
8519 asection *input_sec;
8520 const struct elf_backend_data *bed;
8521 long indx;
8522 int ret;
8524 if (h->root.type == bfd_link_hash_warning)
8526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8527 if (h->root.type == bfd_link_hash_new)
8528 return TRUE;
8531 /* Decide whether to output this symbol in this pass. */
8532 if (eoinfo->localsyms)
8534 if (!h->forced_local)
8535 return TRUE;
8537 else
8539 if (h->forced_local)
8540 return TRUE;
8543 bed = get_elf_backend_data (finfo->output_bfd);
8545 if (h->root.type == bfd_link_hash_undefined)
8547 /* If we have an undefined symbol reference here then it must have
8548 come from a shared library that is being linked in. (Undefined
8549 references in regular files have already been handled). */
8550 bfd_boolean ignore_undef = FALSE;
8552 /* Some symbols may be special in that the fact that they're
8553 undefined can be safely ignored - let backend determine that. */
8554 if (bed->elf_backend_ignore_undef_symbol)
8555 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8557 /* If we are reporting errors for this situation then do so now. */
8558 if (ignore_undef == FALSE
8559 && h->ref_dynamic
8560 && ! h->ref_regular
8561 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8562 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8564 if (! (finfo->info->callbacks->undefined_symbol
8565 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8566 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8568 eoinfo->failed = TRUE;
8569 return FALSE;
8574 /* We should also warn if a forced local symbol is referenced from
8575 shared libraries. */
8576 if (! finfo->info->relocatable
8577 && (! finfo->info->shared)
8578 && h->forced_local
8579 && h->ref_dynamic
8580 && !h->dynamic_def
8581 && !h->dynamic_weak
8582 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8584 (*_bfd_error_handler)
8585 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8586 finfo->output_bfd,
8587 h->root.u.def.section == bfd_abs_section_ptr
8588 ? finfo->output_bfd : h->root.u.def.section->owner,
8589 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8590 ? "internal"
8591 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8592 ? "hidden" : "local",
8593 h->root.root.string);
8594 eoinfo->failed = TRUE;
8595 return FALSE;
8598 /* We don't want to output symbols that have never been mentioned by
8599 a regular file, or that we have been told to strip. However, if
8600 h->indx is set to -2, the symbol is used by a reloc and we must
8601 output it. */
8602 if (h->indx == -2)
8603 strip = FALSE;
8604 else if ((h->def_dynamic
8605 || h->ref_dynamic
8606 || h->root.type == bfd_link_hash_new)
8607 && !h->def_regular
8608 && !h->ref_regular)
8609 strip = TRUE;
8610 else if (finfo->info->strip == strip_all)
8611 strip = TRUE;
8612 else if (finfo->info->strip == strip_some
8613 && bfd_hash_lookup (finfo->info->keep_hash,
8614 h->root.root.string, FALSE, FALSE) == NULL)
8615 strip = TRUE;
8616 else if (finfo->info->strip_discarded
8617 && (h->root.type == bfd_link_hash_defined
8618 || h->root.type == bfd_link_hash_defweak)
8619 && elf_discarded_section (h->root.u.def.section))
8620 strip = TRUE;
8621 else
8622 strip = FALSE;
8624 /* If we're stripping it, and it's not a dynamic symbol, there's
8625 nothing else to do unless it is a forced local symbol. */
8626 if (strip
8627 && h->dynindx == -1
8628 && !h->forced_local)
8629 return TRUE;
8631 sym.st_value = 0;
8632 sym.st_size = h->size;
8633 sym.st_other = h->other;
8634 if (h->forced_local)
8636 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8637 /* Turn off visibility on local symbol. */
8638 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8640 else if (h->unique_global)
8641 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8642 else if (h->root.type == bfd_link_hash_undefweak
8643 || h->root.type == bfd_link_hash_defweak)
8644 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8645 else
8646 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8648 switch (h->root.type)
8650 default:
8651 case bfd_link_hash_new:
8652 case bfd_link_hash_warning:
8653 abort ();
8654 return FALSE;
8656 case bfd_link_hash_undefined:
8657 case bfd_link_hash_undefweak:
8658 input_sec = bfd_und_section_ptr;
8659 sym.st_shndx = SHN_UNDEF;
8660 break;
8662 case bfd_link_hash_defined:
8663 case bfd_link_hash_defweak:
8665 input_sec = h->root.u.def.section;
8666 if (input_sec->output_section != NULL)
8668 sym.st_shndx =
8669 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8670 input_sec->output_section);
8671 if (sym.st_shndx == SHN_BAD)
8673 (*_bfd_error_handler)
8674 (_("%B: could not find output section %A for input section %A"),
8675 finfo->output_bfd, input_sec->output_section, input_sec);
8676 eoinfo->failed = TRUE;
8677 return FALSE;
8680 /* ELF symbols in relocatable files are section relative,
8681 but in nonrelocatable files they are virtual
8682 addresses. */
8683 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8684 if (! finfo->info->relocatable)
8686 sym.st_value += input_sec->output_section->vma;
8687 if (h->type == STT_TLS)
8689 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8690 if (tls_sec != NULL)
8691 sym.st_value -= tls_sec->vma;
8692 else
8694 /* The TLS section may have been garbage collected. */
8695 BFD_ASSERT (finfo->info->gc_sections
8696 && !input_sec->gc_mark);
8701 else
8703 BFD_ASSERT (input_sec->owner == NULL
8704 || (input_sec->owner->flags & DYNAMIC) != 0);
8705 sym.st_shndx = SHN_UNDEF;
8706 input_sec = bfd_und_section_ptr;
8709 break;
8711 case bfd_link_hash_common:
8712 input_sec = h->root.u.c.p->section;
8713 sym.st_shndx = bed->common_section_index (input_sec);
8714 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8715 break;
8717 case bfd_link_hash_indirect:
8718 /* These symbols are created by symbol versioning. They point
8719 to the decorated version of the name. For example, if the
8720 symbol foo@@GNU_1.2 is the default, which should be used when
8721 foo is used with no version, then we add an indirect symbol
8722 foo which points to foo@@GNU_1.2. We ignore these symbols,
8723 since the indirected symbol is already in the hash table. */
8724 return TRUE;
8727 /* Give the processor backend a chance to tweak the symbol value,
8728 and also to finish up anything that needs to be done for this
8729 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8730 forced local syms when non-shared is due to a historical quirk.
8731 STT_GNU_IFUNC symbol must go through PLT. */
8732 if ((h->type == STT_GNU_IFUNC
8733 && h->def_regular
8734 && !finfo->info->relocatable)
8735 || ((h->dynindx != -1
8736 || h->forced_local)
8737 && ((finfo->info->shared
8738 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8739 || h->root.type != bfd_link_hash_undefweak))
8740 || !h->forced_local)
8741 && elf_hash_table (finfo->info)->dynamic_sections_created))
8743 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8744 (finfo->output_bfd, finfo->info, h, &sym)))
8746 eoinfo->failed = TRUE;
8747 return FALSE;
8751 /* If we are marking the symbol as undefined, and there are no
8752 non-weak references to this symbol from a regular object, then
8753 mark the symbol as weak undefined; if there are non-weak
8754 references, mark the symbol as strong. We can't do this earlier,
8755 because it might not be marked as undefined until the
8756 finish_dynamic_symbol routine gets through with it. */
8757 if (sym.st_shndx == SHN_UNDEF
8758 && h->ref_regular
8759 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8760 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8762 int bindtype;
8763 unsigned int type = ELF_ST_TYPE (sym.st_info);
8765 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8766 if (type == STT_GNU_IFUNC)
8767 type = STT_FUNC;
8769 if (h->ref_regular_nonweak)
8770 bindtype = STB_GLOBAL;
8771 else
8772 bindtype = STB_WEAK;
8773 sym.st_info = ELF_ST_INFO (bindtype, type);
8776 /* If this is a symbol defined in a dynamic library, don't use the
8777 symbol size from the dynamic library. Relinking an executable
8778 against a new library may introduce gratuitous changes in the
8779 executable's symbols if we keep the size. */
8780 if (sym.st_shndx == SHN_UNDEF
8781 && !h->def_regular
8782 && h->def_dynamic)
8783 sym.st_size = 0;
8785 /* If a non-weak symbol with non-default visibility is not defined
8786 locally, it is a fatal error. */
8787 if (! finfo->info->relocatable
8788 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8789 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8790 && h->root.type == bfd_link_hash_undefined
8791 && !h->def_regular)
8793 (*_bfd_error_handler)
8794 (_("%B: %s symbol `%s' isn't defined"),
8795 finfo->output_bfd,
8796 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8797 ? "protected"
8798 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8799 ? "internal" : "hidden",
8800 h->root.root.string);
8801 eoinfo->failed = TRUE;
8802 return FALSE;
8805 /* If this symbol should be put in the .dynsym section, then put it
8806 there now. We already know the symbol index. We also fill in
8807 the entry in the .hash section. */
8808 if (h->dynindx != -1
8809 && elf_hash_table (finfo->info)->dynamic_sections_created)
8811 bfd_byte *esym;
8813 sym.st_name = h->dynstr_index;
8814 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8815 if (! check_dynsym (finfo->output_bfd, &sym))
8817 eoinfo->failed = TRUE;
8818 return FALSE;
8820 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8822 if (finfo->hash_sec != NULL)
8824 size_t hash_entry_size;
8825 bfd_byte *bucketpos;
8826 bfd_vma chain;
8827 size_t bucketcount;
8828 size_t bucket;
8830 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8831 bucket = h->u.elf_hash_value % bucketcount;
8833 hash_entry_size
8834 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8835 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8836 + (bucket + 2) * hash_entry_size);
8837 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8838 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8839 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8840 ((bfd_byte *) finfo->hash_sec->contents
8841 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8844 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8846 Elf_Internal_Versym iversym;
8847 Elf_External_Versym *eversym;
8849 if (!h->def_regular)
8851 if (h->verinfo.verdef == NULL)
8852 iversym.vs_vers = 0;
8853 else
8854 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8856 else
8858 if (h->verinfo.vertree == NULL)
8859 iversym.vs_vers = 1;
8860 else
8861 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8862 if (finfo->info->create_default_symver)
8863 iversym.vs_vers++;
8866 if (h->hidden)
8867 iversym.vs_vers |= VERSYM_HIDDEN;
8869 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8870 eversym += h->dynindx;
8871 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8875 /* If we're stripping it, then it was just a dynamic symbol, and
8876 there's nothing else to do. */
8877 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8878 return TRUE;
8880 indx = bfd_get_symcount (finfo->output_bfd);
8881 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8882 if (ret == 0)
8884 eoinfo->failed = TRUE;
8885 return FALSE;
8887 else if (ret == 1)
8888 h->indx = indx;
8889 else if (h->indx == -2)
8890 abort();
8892 return TRUE;
8895 /* Return TRUE if special handling is done for relocs in SEC against
8896 symbols defined in discarded sections. */
8898 static bfd_boolean
8899 elf_section_ignore_discarded_relocs (asection *sec)
8901 const struct elf_backend_data *bed;
8903 switch (sec->sec_info_type)
8905 case ELF_INFO_TYPE_STABS:
8906 case ELF_INFO_TYPE_EH_FRAME:
8907 return TRUE;
8908 default:
8909 break;
8912 bed = get_elf_backend_data (sec->owner);
8913 if (bed->elf_backend_ignore_discarded_relocs != NULL
8914 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8915 return TRUE;
8917 return FALSE;
8920 /* Return a mask saying how ld should treat relocations in SEC against
8921 symbols defined in discarded sections. If this function returns
8922 COMPLAIN set, ld will issue a warning message. If this function
8923 returns PRETEND set, and the discarded section was link-once and the
8924 same size as the kept link-once section, ld will pretend that the
8925 symbol was actually defined in the kept section. Otherwise ld will
8926 zero the reloc (at least that is the intent, but some cooperation by
8927 the target dependent code is needed, particularly for REL targets). */
8929 unsigned int
8930 _bfd_elf_default_action_discarded (asection *sec)
8932 if (sec->flags & SEC_DEBUGGING)
8933 return PRETEND;
8935 if (strcmp (".eh_frame", sec->name) == 0)
8936 return 0;
8938 if (strcmp (".gcc_except_table", sec->name) == 0)
8939 return 0;
8941 return COMPLAIN | PRETEND;
8944 /* Find a match between a section and a member of a section group. */
8946 static asection *
8947 match_group_member (asection *sec, asection *group,
8948 struct bfd_link_info *info)
8950 asection *first = elf_next_in_group (group);
8951 asection *s = first;
8953 while (s != NULL)
8955 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8956 return s;
8958 s = elf_next_in_group (s);
8959 if (s == first)
8960 break;
8963 return NULL;
8966 /* Check if the kept section of a discarded section SEC can be used
8967 to replace it. Return the replacement if it is OK. Otherwise return
8968 NULL. */
8970 asection *
8971 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8973 asection *kept;
8975 kept = sec->kept_section;
8976 if (kept != NULL)
8978 if ((kept->flags & SEC_GROUP) != 0)
8979 kept = match_group_member (sec, kept, info);
8980 if (kept != NULL
8981 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8982 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8983 kept = NULL;
8984 sec->kept_section = kept;
8986 return kept;
8989 /* Link an input file into the linker output file. This function
8990 handles all the sections and relocations of the input file at once.
8991 This is so that we only have to read the local symbols once, and
8992 don't have to keep them in memory. */
8994 static bfd_boolean
8995 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8997 int (*relocate_section)
8998 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8999 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9000 bfd *output_bfd;
9001 Elf_Internal_Shdr *symtab_hdr;
9002 size_t locsymcount;
9003 size_t extsymoff;
9004 Elf_Internal_Sym *isymbuf;
9005 Elf_Internal_Sym *isym;
9006 Elf_Internal_Sym *isymend;
9007 long *pindex;
9008 asection **ppsection;
9009 asection *o;
9010 const struct elf_backend_data *bed;
9011 struct elf_link_hash_entry **sym_hashes;
9013 output_bfd = finfo->output_bfd;
9014 bed = get_elf_backend_data (output_bfd);
9015 relocate_section = bed->elf_backend_relocate_section;
9017 /* If this is a dynamic object, we don't want to do anything here:
9018 we don't want the local symbols, and we don't want the section
9019 contents. */
9020 if ((input_bfd->flags & DYNAMIC) != 0)
9021 return TRUE;
9023 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9024 if (elf_bad_symtab (input_bfd))
9026 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9027 extsymoff = 0;
9029 else
9031 locsymcount = symtab_hdr->sh_info;
9032 extsymoff = symtab_hdr->sh_info;
9035 /* Read the local symbols. */
9036 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9037 if (isymbuf == NULL && locsymcount != 0)
9039 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9040 finfo->internal_syms,
9041 finfo->external_syms,
9042 finfo->locsym_shndx);
9043 if (isymbuf == NULL)
9044 return FALSE;
9047 /* Find local symbol sections and adjust values of symbols in
9048 SEC_MERGE sections. Write out those local symbols we know are
9049 going into the output file. */
9050 isymend = isymbuf + locsymcount;
9051 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9052 isym < isymend;
9053 isym++, pindex++, ppsection++)
9055 asection *isec;
9056 const char *name;
9057 Elf_Internal_Sym osym;
9058 long indx;
9059 int ret;
9061 *pindex = -1;
9063 if (elf_bad_symtab (input_bfd))
9065 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9067 *ppsection = NULL;
9068 continue;
9072 if (isym->st_shndx == SHN_UNDEF)
9073 isec = bfd_und_section_ptr;
9074 else if (isym->st_shndx == SHN_ABS)
9075 isec = bfd_abs_section_ptr;
9076 else if (isym->st_shndx == SHN_COMMON)
9077 isec = bfd_com_section_ptr;
9078 else
9080 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9081 if (isec == NULL)
9083 /* Don't attempt to output symbols with st_shnx in the
9084 reserved range other than SHN_ABS and SHN_COMMON. */
9085 *ppsection = NULL;
9086 continue;
9088 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9089 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9090 isym->st_value =
9091 _bfd_merged_section_offset (output_bfd, &isec,
9092 elf_section_data (isec)->sec_info,
9093 isym->st_value);
9096 *ppsection = isec;
9098 /* Don't output the first, undefined, symbol. */
9099 if (ppsection == finfo->sections)
9100 continue;
9102 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9104 /* We never output section symbols. Instead, we use the
9105 section symbol of the corresponding section in the output
9106 file. */
9107 continue;
9110 /* If we are stripping all symbols, we don't want to output this
9111 one. */
9112 if (finfo->info->strip == strip_all)
9113 continue;
9115 /* If we are discarding all local symbols, we don't want to
9116 output this one. If we are generating a relocatable output
9117 file, then some of the local symbols may be required by
9118 relocs; we output them below as we discover that they are
9119 needed. */
9120 if (finfo->info->discard == discard_all)
9121 continue;
9123 /* If this symbol is defined in a section which we are
9124 discarding, we don't need to keep it. */
9125 if (isym->st_shndx != SHN_UNDEF
9126 && isym->st_shndx < SHN_LORESERVE
9127 && bfd_section_removed_from_list (output_bfd,
9128 isec->output_section))
9129 continue;
9131 /* Get the name of the symbol. */
9132 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9133 isym->st_name);
9134 if (name == NULL)
9135 return FALSE;
9137 /* See if we are discarding symbols with this name. */
9138 if ((finfo->info->strip == strip_some
9139 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9140 == NULL))
9141 || (((finfo->info->discard == discard_sec_merge
9142 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9143 || finfo->info->discard == discard_l)
9144 && bfd_is_local_label_name (input_bfd, name)))
9145 continue;
9147 osym = *isym;
9149 /* Adjust the section index for the output file. */
9150 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9151 isec->output_section);
9152 if (osym.st_shndx == SHN_BAD)
9153 return FALSE;
9155 /* ELF symbols in relocatable files are section relative, but
9156 in executable files they are virtual addresses. Note that
9157 this code assumes that all ELF sections have an associated
9158 BFD section with a reasonable value for output_offset; below
9159 we assume that they also have a reasonable value for
9160 output_section. Any special sections must be set up to meet
9161 these requirements. */
9162 osym.st_value += isec->output_offset;
9163 if (! finfo->info->relocatable)
9165 osym.st_value += isec->output_section->vma;
9166 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9168 /* STT_TLS symbols are relative to PT_TLS segment base. */
9169 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9170 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9174 indx = bfd_get_symcount (output_bfd);
9175 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9176 if (ret == 0)
9177 return FALSE;
9178 else if (ret == 1)
9179 *pindex = indx;
9182 /* Relocate the contents of each section. */
9183 sym_hashes = elf_sym_hashes (input_bfd);
9184 for (o = input_bfd->sections; o != NULL; o = o->next)
9186 bfd_byte *contents;
9188 if (! o->linker_mark)
9190 /* This section was omitted from the link. */
9191 continue;
9194 if (finfo->info->relocatable
9195 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9197 /* Deal with the group signature symbol. */
9198 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9199 unsigned long symndx = sec_data->this_hdr.sh_info;
9200 asection *osec = o->output_section;
9202 if (symndx >= locsymcount
9203 || (elf_bad_symtab (input_bfd)
9204 && finfo->sections[symndx] == NULL))
9206 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9207 while (h->root.type == bfd_link_hash_indirect
9208 || h->root.type == bfd_link_hash_warning)
9209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9210 /* Arrange for symbol to be output. */
9211 h->indx = -2;
9212 elf_section_data (osec)->this_hdr.sh_info = -2;
9214 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9216 /* We'll use the output section target_index. */
9217 asection *sec = finfo->sections[symndx]->output_section;
9218 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9220 else
9222 if (finfo->indices[symndx] == -1)
9224 /* Otherwise output the local symbol now. */
9225 Elf_Internal_Sym sym = isymbuf[symndx];
9226 asection *sec = finfo->sections[symndx]->output_section;
9227 const char *name;
9228 long indx;
9229 int ret;
9231 name = bfd_elf_string_from_elf_section (input_bfd,
9232 symtab_hdr->sh_link,
9233 sym.st_name);
9234 if (name == NULL)
9235 return FALSE;
9237 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9238 sec);
9239 if (sym.st_shndx == SHN_BAD)
9240 return FALSE;
9242 sym.st_value += o->output_offset;
9244 indx = bfd_get_symcount (output_bfd);
9245 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9246 if (ret == 0)
9247 return FALSE;
9248 else if (ret == 1)
9249 finfo->indices[symndx] = indx;
9250 else
9251 abort ();
9253 elf_section_data (osec)->this_hdr.sh_info
9254 = finfo->indices[symndx];
9258 if ((o->flags & SEC_HAS_CONTENTS) == 0
9259 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9260 continue;
9262 if ((o->flags & SEC_LINKER_CREATED) != 0)
9264 /* Section was created by _bfd_elf_link_create_dynamic_sections
9265 or somesuch. */
9266 continue;
9269 /* Get the contents of the section. They have been cached by a
9270 relaxation routine. Note that o is a section in an input
9271 file, so the contents field will not have been set by any of
9272 the routines which work on output files. */
9273 if (elf_section_data (o)->this_hdr.contents != NULL)
9274 contents = elf_section_data (o)->this_hdr.contents;
9275 else
9277 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9279 contents = finfo->contents;
9280 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9281 return FALSE;
9284 if ((o->flags & SEC_RELOC) != 0)
9286 Elf_Internal_Rela *internal_relocs;
9287 Elf_Internal_Rela *rel, *relend;
9288 bfd_vma r_type_mask;
9289 int r_sym_shift;
9290 int action_discarded;
9291 int ret;
9293 /* Get the swapped relocs. */
9294 internal_relocs
9295 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9296 finfo->internal_relocs, FALSE);
9297 if (internal_relocs == NULL
9298 && o->reloc_count > 0)
9299 return FALSE;
9301 if (bed->s->arch_size == 32)
9303 r_type_mask = 0xff;
9304 r_sym_shift = 8;
9306 else
9308 r_type_mask = 0xffffffff;
9309 r_sym_shift = 32;
9312 action_discarded = -1;
9313 if (!elf_section_ignore_discarded_relocs (o))
9314 action_discarded = (*bed->action_discarded) (o);
9316 /* Run through the relocs evaluating complex reloc symbols and
9317 looking for relocs against symbols from discarded sections
9318 or section symbols from removed link-once sections.
9319 Complain about relocs against discarded sections. Zero
9320 relocs against removed link-once sections. */
9322 rel = internal_relocs;
9323 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9324 for ( ; rel < relend; rel++)
9326 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9327 unsigned int s_type;
9328 asection **ps, *sec;
9329 struct elf_link_hash_entry *h = NULL;
9330 const char *sym_name;
9332 if (r_symndx == STN_UNDEF)
9333 continue;
9335 if (r_symndx >= locsymcount
9336 || (elf_bad_symtab (input_bfd)
9337 && finfo->sections[r_symndx] == NULL))
9339 h = sym_hashes[r_symndx - extsymoff];
9341 /* Badly formatted input files can contain relocs that
9342 reference non-existant symbols. Check here so that
9343 we do not seg fault. */
9344 if (h == NULL)
9346 char buffer [32];
9348 sprintf_vma (buffer, rel->r_info);
9349 (*_bfd_error_handler)
9350 (_("error: %B contains a reloc (0x%s) for section %A "
9351 "that references a non-existent global symbol"),
9352 input_bfd, o, buffer);
9353 bfd_set_error (bfd_error_bad_value);
9354 return FALSE;
9357 while (h->root.type == bfd_link_hash_indirect
9358 || h->root.type == bfd_link_hash_warning)
9359 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9361 s_type = h->type;
9363 ps = NULL;
9364 if (h->root.type == bfd_link_hash_defined
9365 || h->root.type == bfd_link_hash_defweak)
9366 ps = &h->root.u.def.section;
9368 sym_name = h->root.root.string;
9370 else
9372 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9374 s_type = ELF_ST_TYPE (sym->st_info);
9375 ps = &finfo->sections[r_symndx];
9376 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9377 sym, *ps);
9380 if ((s_type == STT_RELC || s_type == STT_SRELC)
9381 && !finfo->info->relocatable)
9383 bfd_vma val;
9384 bfd_vma dot = (rel->r_offset
9385 + o->output_offset + o->output_section->vma);
9386 #ifdef DEBUG
9387 printf ("Encountered a complex symbol!");
9388 printf (" (input_bfd %s, section %s, reloc %ld\n",
9389 input_bfd->filename, o->name, rel - internal_relocs);
9390 printf (" symbol: idx %8.8lx, name %s\n",
9391 r_symndx, sym_name);
9392 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9393 (unsigned long) rel->r_info,
9394 (unsigned long) rel->r_offset);
9395 #endif
9396 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9397 isymbuf, locsymcount, s_type == STT_SRELC))
9398 return FALSE;
9400 /* Symbol evaluated OK. Update to absolute value. */
9401 set_symbol_value (input_bfd, isymbuf, locsymcount,
9402 r_symndx, val);
9403 continue;
9406 if (action_discarded != -1 && ps != NULL)
9408 /* Complain if the definition comes from a
9409 discarded section. */
9410 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9412 BFD_ASSERT (r_symndx != 0);
9413 if (action_discarded & COMPLAIN)
9414 (*finfo->info->callbacks->einfo)
9415 (_("%X`%s' referenced in section `%A' of %B: "
9416 "defined in discarded section `%A' of %B\n"),
9417 sym_name, o, input_bfd, sec, sec->owner);
9419 /* Try to do the best we can to support buggy old
9420 versions of gcc. Pretend that the symbol is
9421 really defined in the kept linkonce section.
9422 FIXME: This is quite broken. Modifying the
9423 symbol here means we will be changing all later
9424 uses of the symbol, not just in this section. */
9425 if (action_discarded & PRETEND)
9427 asection *kept;
9429 kept = _bfd_elf_check_kept_section (sec,
9430 finfo->info);
9431 if (kept != NULL)
9433 *ps = kept;
9434 continue;
9441 /* Relocate the section by invoking a back end routine.
9443 The back end routine is responsible for adjusting the
9444 section contents as necessary, and (if using Rela relocs
9445 and generating a relocatable output file) adjusting the
9446 reloc addend as necessary.
9448 The back end routine does not have to worry about setting
9449 the reloc address or the reloc symbol index.
9451 The back end routine is given a pointer to the swapped in
9452 internal symbols, and can access the hash table entries
9453 for the external symbols via elf_sym_hashes (input_bfd).
9455 When generating relocatable output, the back end routine
9456 must handle STB_LOCAL/STT_SECTION symbols specially. The
9457 output symbol is going to be a section symbol
9458 corresponding to the output section, which will require
9459 the addend to be adjusted. */
9461 ret = (*relocate_section) (output_bfd, finfo->info,
9462 input_bfd, o, contents,
9463 internal_relocs,
9464 isymbuf,
9465 finfo->sections);
9466 if (!ret)
9467 return FALSE;
9469 if (ret == 2
9470 || finfo->info->relocatable
9471 || finfo->info->emitrelocations)
9473 Elf_Internal_Rela *irela;
9474 Elf_Internal_Rela *irelaend;
9475 bfd_vma last_offset;
9476 struct elf_link_hash_entry **rel_hash;
9477 struct elf_link_hash_entry **rel_hash_list;
9478 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9479 unsigned int next_erel;
9480 bfd_boolean rela_normal;
9482 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9483 rela_normal = (bed->rela_normal
9484 && (input_rel_hdr->sh_entsize
9485 == bed->s->sizeof_rela));
9487 /* Adjust the reloc addresses and symbol indices. */
9489 irela = internal_relocs;
9490 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9491 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9492 + elf_section_data (o->output_section)->rel_count
9493 + elf_section_data (o->output_section)->rel_count2);
9494 rel_hash_list = rel_hash;
9495 last_offset = o->output_offset;
9496 if (!finfo->info->relocatable)
9497 last_offset += o->output_section->vma;
9498 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9500 unsigned long r_symndx;
9501 asection *sec;
9502 Elf_Internal_Sym sym;
9504 if (next_erel == bed->s->int_rels_per_ext_rel)
9506 rel_hash++;
9507 next_erel = 0;
9510 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9511 finfo->info, o,
9512 irela->r_offset);
9513 if (irela->r_offset >= (bfd_vma) -2)
9515 /* This is a reloc for a deleted entry or somesuch.
9516 Turn it into an R_*_NONE reloc, at the same
9517 offset as the last reloc. elf_eh_frame.c and
9518 bfd_elf_discard_info rely on reloc offsets
9519 being ordered. */
9520 irela->r_offset = last_offset;
9521 irela->r_info = 0;
9522 irela->r_addend = 0;
9523 continue;
9526 irela->r_offset += o->output_offset;
9528 /* Relocs in an executable have to be virtual addresses. */
9529 if (!finfo->info->relocatable)
9530 irela->r_offset += o->output_section->vma;
9532 last_offset = irela->r_offset;
9534 r_symndx = irela->r_info >> r_sym_shift;
9535 if (r_symndx == STN_UNDEF)
9536 continue;
9538 if (r_symndx >= locsymcount
9539 || (elf_bad_symtab (input_bfd)
9540 && finfo->sections[r_symndx] == NULL))
9542 struct elf_link_hash_entry *rh;
9543 unsigned long indx;
9545 /* This is a reloc against a global symbol. We
9546 have not yet output all the local symbols, so
9547 we do not know the symbol index of any global
9548 symbol. We set the rel_hash entry for this
9549 reloc to point to the global hash table entry
9550 for this symbol. The symbol index is then
9551 set at the end of bfd_elf_final_link. */
9552 indx = r_symndx - extsymoff;
9553 rh = elf_sym_hashes (input_bfd)[indx];
9554 while (rh->root.type == bfd_link_hash_indirect
9555 || rh->root.type == bfd_link_hash_warning)
9556 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9558 /* Setting the index to -2 tells
9559 elf_link_output_extsym that this symbol is
9560 used by a reloc. */
9561 BFD_ASSERT (rh->indx < 0);
9562 rh->indx = -2;
9564 *rel_hash = rh;
9566 continue;
9569 /* This is a reloc against a local symbol. */
9571 *rel_hash = NULL;
9572 sym = isymbuf[r_symndx];
9573 sec = finfo->sections[r_symndx];
9574 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9576 /* I suppose the backend ought to fill in the
9577 section of any STT_SECTION symbol against a
9578 processor specific section. */
9579 r_symndx = 0;
9580 if (bfd_is_abs_section (sec))
9582 else if (sec == NULL || sec->owner == NULL)
9584 bfd_set_error (bfd_error_bad_value);
9585 return FALSE;
9587 else
9589 asection *osec = sec->output_section;
9591 /* If we have discarded a section, the output
9592 section will be the absolute section. In
9593 case of discarded SEC_MERGE sections, use
9594 the kept section. relocate_section should
9595 have already handled discarded linkonce
9596 sections. */
9597 if (bfd_is_abs_section (osec)
9598 && sec->kept_section != NULL
9599 && sec->kept_section->output_section != NULL)
9601 osec = sec->kept_section->output_section;
9602 irela->r_addend -= osec->vma;
9605 if (!bfd_is_abs_section (osec))
9607 r_symndx = osec->target_index;
9608 if (r_symndx == 0)
9610 struct elf_link_hash_table *htab;
9611 asection *oi;
9613 htab = elf_hash_table (finfo->info);
9614 oi = htab->text_index_section;
9615 if ((osec->flags & SEC_READONLY) == 0
9616 && htab->data_index_section != NULL)
9617 oi = htab->data_index_section;
9619 if (oi != NULL)
9621 irela->r_addend += osec->vma - oi->vma;
9622 r_symndx = oi->target_index;
9626 BFD_ASSERT (r_symndx != 0);
9630 /* Adjust the addend according to where the
9631 section winds up in the output section. */
9632 if (rela_normal)
9633 irela->r_addend += sec->output_offset;
9635 else
9637 if (finfo->indices[r_symndx] == -1)
9639 unsigned long shlink;
9640 const char *name;
9641 asection *osec;
9642 long indx;
9644 if (finfo->info->strip == strip_all)
9646 /* You can't do ld -r -s. */
9647 bfd_set_error (bfd_error_invalid_operation);
9648 return FALSE;
9651 /* This symbol was skipped earlier, but
9652 since it is needed by a reloc, we
9653 must output it now. */
9654 shlink = symtab_hdr->sh_link;
9655 name = (bfd_elf_string_from_elf_section
9656 (input_bfd, shlink, sym.st_name));
9657 if (name == NULL)
9658 return FALSE;
9660 osec = sec->output_section;
9661 sym.st_shndx =
9662 _bfd_elf_section_from_bfd_section (output_bfd,
9663 osec);
9664 if (sym.st_shndx == SHN_BAD)
9665 return FALSE;
9667 sym.st_value += sec->output_offset;
9668 if (! finfo->info->relocatable)
9670 sym.st_value += osec->vma;
9671 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9673 /* STT_TLS symbols are relative to PT_TLS
9674 segment base. */
9675 BFD_ASSERT (elf_hash_table (finfo->info)
9676 ->tls_sec != NULL);
9677 sym.st_value -= (elf_hash_table (finfo->info)
9678 ->tls_sec->vma);
9682 indx = bfd_get_symcount (output_bfd);
9683 ret = elf_link_output_sym (finfo, name, &sym, sec,
9684 NULL);
9685 if (ret == 0)
9686 return FALSE;
9687 else if (ret == 1)
9688 finfo->indices[r_symndx] = indx;
9689 else
9690 abort ();
9693 r_symndx = finfo->indices[r_symndx];
9696 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9697 | (irela->r_info & r_type_mask));
9700 /* Swap out the relocs. */
9701 if (input_rel_hdr->sh_size != 0
9702 && !bed->elf_backend_emit_relocs (output_bfd, o,
9703 input_rel_hdr,
9704 internal_relocs,
9705 rel_hash_list))
9706 return FALSE;
9708 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9709 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9711 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9712 * bed->s->int_rels_per_ext_rel);
9713 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9714 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9715 input_rel_hdr2,
9716 internal_relocs,
9717 rel_hash_list))
9718 return FALSE;
9723 /* Write out the modified section contents. */
9724 if (bed->elf_backend_write_section
9725 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9726 contents))
9728 /* Section written out. */
9730 else switch (o->sec_info_type)
9732 case ELF_INFO_TYPE_STABS:
9733 if (! (_bfd_write_section_stabs
9734 (output_bfd,
9735 &elf_hash_table (finfo->info)->stab_info,
9736 o, &elf_section_data (o)->sec_info, contents)))
9737 return FALSE;
9738 break;
9739 case ELF_INFO_TYPE_MERGE:
9740 if (! _bfd_write_merged_section (output_bfd, o,
9741 elf_section_data (o)->sec_info))
9742 return FALSE;
9743 break;
9744 case ELF_INFO_TYPE_EH_FRAME:
9746 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9747 o, contents))
9748 return FALSE;
9750 break;
9751 default:
9753 /* FIXME: octets_per_byte. */
9754 if (! (o->flags & SEC_EXCLUDE)
9755 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9756 && ! bfd_set_section_contents (output_bfd, o->output_section,
9757 contents,
9758 (file_ptr) o->output_offset,
9759 o->size))
9760 return FALSE;
9762 break;
9766 return TRUE;
9769 /* Generate a reloc when linking an ELF file. This is a reloc
9770 requested by the linker, and does not come from any input file. This
9771 is used to build constructor and destructor tables when linking
9772 with -Ur. */
9774 static bfd_boolean
9775 elf_reloc_link_order (bfd *output_bfd,
9776 struct bfd_link_info *info,
9777 asection *output_section,
9778 struct bfd_link_order *link_order)
9780 reloc_howto_type *howto;
9781 long indx;
9782 bfd_vma offset;
9783 bfd_vma addend;
9784 struct elf_link_hash_entry **rel_hash_ptr;
9785 Elf_Internal_Shdr *rel_hdr;
9786 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9787 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9788 bfd_byte *erel;
9789 unsigned int i;
9791 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9792 if (howto == NULL)
9794 bfd_set_error (bfd_error_bad_value);
9795 return FALSE;
9798 addend = link_order->u.reloc.p->addend;
9800 /* Figure out the symbol index. */
9801 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9802 + elf_section_data (output_section)->rel_count
9803 + elf_section_data (output_section)->rel_count2);
9804 if (link_order->type == bfd_section_reloc_link_order)
9806 indx = link_order->u.reloc.p->u.section->target_index;
9807 BFD_ASSERT (indx != 0);
9808 *rel_hash_ptr = NULL;
9810 else
9812 struct elf_link_hash_entry *h;
9814 /* Treat a reloc against a defined symbol as though it were
9815 actually against the section. */
9816 h = ((struct elf_link_hash_entry *)
9817 bfd_wrapped_link_hash_lookup (output_bfd, info,
9818 link_order->u.reloc.p->u.name,
9819 FALSE, FALSE, TRUE));
9820 if (h != NULL
9821 && (h->root.type == bfd_link_hash_defined
9822 || h->root.type == bfd_link_hash_defweak))
9824 asection *section;
9826 section = h->root.u.def.section;
9827 indx = section->output_section->target_index;
9828 *rel_hash_ptr = NULL;
9829 /* It seems that we ought to add the symbol value to the
9830 addend here, but in practice it has already been added
9831 because it was passed to constructor_callback. */
9832 addend += section->output_section->vma + section->output_offset;
9834 else if (h != NULL)
9836 /* Setting the index to -2 tells elf_link_output_extsym that
9837 this symbol is used by a reloc. */
9838 h->indx = -2;
9839 *rel_hash_ptr = h;
9840 indx = 0;
9842 else
9844 if (! ((*info->callbacks->unattached_reloc)
9845 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9846 return FALSE;
9847 indx = 0;
9851 /* If this is an inplace reloc, we must write the addend into the
9852 object file. */
9853 if (howto->partial_inplace && addend != 0)
9855 bfd_size_type size;
9856 bfd_reloc_status_type rstat;
9857 bfd_byte *buf;
9858 bfd_boolean ok;
9859 const char *sym_name;
9861 size = (bfd_size_type) bfd_get_reloc_size (howto);
9862 buf = (bfd_byte *) bfd_zmalloc (size);
9863 if (buf == NULL)
9864 return FALSE;
9865 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9866 switch (rstat)
9868 case bfd_reloc_ok:
9869 break;
9871 default:
9872 case bfd_reloc_outofrange:
9873 abort ();
9875 case bfd_reloc_overflow:
9876 if (link_order->type == bfd_section_reloc_link_order)
9877 sym_name = bfd_section_name (output_bfd,
9878 link_order->u.reloc.p->u.section);
9879 else
9880 sym_name = link_order->u.reloc.p->u.name;
9881 if (! ((*info->callbacks->reloc_overflow)
9882 (info, NULL, sym_name, howto->name, addend, NULL,
9883 NULL, (bfd_vma) 0)))
9885 free (buf);
9886 return FALSE;
9888 break;
9890 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9891 link_order->offset, size);
9892 free (buf);
9893 if (! ok)
9894 return FALSE;
9897 /* The address of a reloc is relative to the section in a
9898 relocatable file, and is a virtual address in an executable
9899 file. */
9900 offset = link_order->offset;
9901 if (! info->relocatable)
9902 offset += output_section->vma;
9904 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9906 irel[i].r_offset = offset;
9907 irel[i].r_info = 0;
9908 irel[i].r_addend = 0;
9910 if (bed->s->arch_size == 32)
9911 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9912 else
9913 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9915 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9916 erel = rel_hdr->contents;
9917 if (rel_hdr->sh_type == SHT_REL)
9919 erel += (elf_section_data (output_section)->rel_count
9920 * bed->s->sizeof_rel);
9921 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9923 else
9925 irel[0].r_addend = addend;
9926 erel += (elf_section_data (output_section)->rel_count
9927 * bed->s->sizeof_rela);
9928 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9931 ++elf_section_data (output_section)->rel_count;
9933 return TRUE;
9937 /* Get the output vma of the section pointed to by the sh_link field. */
9939 static bfd_vma
9940 elf_get_linked_section_vma (struct bfd_link_order *p)
9942 Elf_Internal_Shdr **elf_shdrp;
9943 asection *s;
9944 int elfsec;
9946 s = p->u.indirect.section;
9947 elf_shdrp = elf_elfsections (s->owner);
9948 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9949 elfsec = elf_shdrp[elfsec]->sh_link;
9950 /* PR 290:
9951 The Intel C compiler generates SHT_IA_64_UNWIND with
9952 SHF_LINK_ORDER. But it doesn't set the sh_link or
9953 sh_info fields. Hence we could get the situation
9954 where elfsec is 0. */
9955 if (elfsec == 0)
9957 const struct elf_backend_data *bed
9958 = get_elf_backend_data (s->owner);
9959 if (bed->link_order_error_handler)
9960 bed->link_order_error_handler
9961 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9962 return 0;
9964 else
9966 s = elf_shdrp[elfsec]->bfd_section;
9967 return s->output_section->vma + s->output_offset;
9972 /* Compare two sections based on the locations of the sections they are
9973 linked to. Used by elf_fixup_link_order. */
9975 static int
9976 compare_link_order (const void * a, const void * b)
9978 bfd_vma apos;
9979 bfd_vma bpos;
9981 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9982 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9983 if (apos < bpos)
9984 return -1;
9985 return apos > bpos;
9989 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9990 order as their linked sections. Returns false if this could not be done
9991 because an output section includes both ordered and unordered
9992 sections. Ideally we'd do this in the linker proper. */
9994 static bfd_boolean
9995 elf_fixup_link_order (bfd *abfd, asection *o)
9997 int seen_linkorder;
9998 int seen_other;
9999 int n;
10000 struct bfd_link_order *p;
10001 bfd *sub;
10002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10003 unsigned elfsec;
10004 struct bfd_link_order **sections;
10005 asection *s, *other_sec, *linkorder_sec;
10006 bfd_vma offset;
10008 other_sec = NULL;
10009 linkorder_sec = NULL;
10010 seen_other = 0;
10011 seen_linkorder = 0;
10012 for (p = o->map_head.link_order; p != NULL; p = p->next)
10014 if (p->type == bfd_indirect_link_order)
10016 s = p->u.indirect.section;
10017 sub = s->owner;
10018 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10019 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10020 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10021 && elfsec < elf_numsections (sub)
10022 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10023 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10025 seen_linkorder++;
10026 linkorder_sec = s;
10028 else
10030 seen_other++;
10031 other_sec = s;
10034 else
10035 seen_other++;
10037 if (seen_other && seen_linkorder)
10039 if (other_sec && linkorder_sec)
10040 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10041 o, linkorder_sec,
10042 linkorder_sec->owner, other_sec,
10043 other_sec->owner);
10044 else
10045 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10047 bfd_set_error (bfd_error_bad_value);
10048 return FALSE;
10052 if (!seen_linkorder)
10053 return TRUE;
10055 sections = (struct bfd_link_order **)
10056 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10057 if (sections == NULL)
10058 return FALSE;
10059 seen_linkorder = 0;
10061 for (p = o->map_head.link_order; p != NULL; p = p->next)
10063 sections[seen_linkorder++] = p;
10065 /* Sort the input sections in the order of their linked section. */
10066 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10067 compare_link_order);
10069 /* Change the offsets of the sections. */
10070 offset = 0;
10071 for (n = 0; n < seen_linkorder; n++)
10073 s = sections[n]->u.indirect.section;
10074 offset &= ~(bfd_vma) 0 << s->alignment_power;
10075 s->output_offset = offset;
10076 sections[n]->offset = offset;
10077 /* FIXME: octets_per_byte. */
10078 offset += sections[n]->size;
10081 free (sections);
10082 return TRUE;
10086 /* Do the final step of an ELF link. */
10088 bfd_boolean
10089 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10091 bfd_boolean dynamic;
10092 bfd_boolean emit_relocs;
10093 bfd *dynobj;
10094 struct elf_final_link_info finfo;
10095 register asection *o;
10096 register struct bfd_link_order *p;
10097 register bfd *sub;
10098 bfd_size_type max_contents_size;
10099 bfd_size_type max_external_reloc_size;
10100 bfd_size_type max_internal_reloc_count;
10101 bfd_size_type max_sym_count;
10102 bfd_size_type max_sym_shndx_count;
10103 file_ptr off;
10104 Elf_Internal_Sym elfsym;
10105 unsigned int i;
10106 Elf_Internal_Shdr *symtab_hdr;
10107 Elf_Internal_Shdr *symtab_shndx_hdr;
10108 Elf_Internal_Shdr *symstrtab_hdr;
10109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10110 struct elf_outext_info eoinfo;
10111 bfd_boolean merged;
10112 size_t relativecount = 0;
10113 asection *reldyn = 0;
10114 bfd_size_type amt;
10115 asection *attr_section = NULL;
10116 bfd_vma attr_size = 0;
10117 const char *std_attrs_section;
10119 if (! is_elf_hash_table (info->hash))
10120 return FALSE;
10122 if (info->shared)
10123 abfd->flags |= DYNAMIC;
10125 dynamic = elf_hash_table (info)->dynamic_sections_created;
10126 dynobj = elf_hash_table (info)->dynobj;
10128 emit_relocs = (info->relocatable
10129 || info->emitrelocations);
10131 finfo.info = info;
10132 finfo.output_bfd = abfd;
10133 finfo.symstrtab = _bfd_elf_stringtab_init ();
10134 if (finfo.symstrtab == NULL)
10135 return FALSE;
10137 if (! dynamic)
10139 finfo.dynsym_sec = NULL;
10140 finfo.hash_sec = NULL;
10141 finfo.symver_sec = NULL;
10143 else
10145 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10146 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10147 BFD_ASSERT (finfo.dynsym_sec != NULL);
10148 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10149 /* Note that it is OK if symver_sec is NULL. */
10152 finfo.contents = NULL;
10153 finfo.external_relocs = NULL;
10154 finfo.internal_relocs = NULL;
10155 finfo.external_syms = NULL;
10156 finfo.locsym_shndx = NULL;
10157 finfo.internal_syms = NULL;
10158 finfo.indices = NULL;
10159 finfo.sections = NULL;
10160 finfo.symbuf = NULL;
10161 finfo.symshndxbuf = NULL;
10162 finfo.symbuf_count = 0;
10163 finfo.shndxbuf_size = 0;
10165 /* The object attributes have been merged. Remove the input
10166 sections from the link, and set the contents of the output
10167 secton. */
10168 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10169 for (o = abfd->sections; o != NULL; o = o->next)
10171 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10172 || strcmp (o->name, ".gnu.attributes") == 0)
10174 for (p = o->map_head.link_order; p != NULL; p = p->next)
10176 asection *input_section;
10178 if (p->type != bfd_indirect_link_order)
10179 continue;
10180 input_section = p->u.indirect.section;
10181 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10182 elf_link_input_bfd ignores this section. */
10183 input_section->flags &= ~SEC_HAS_CONTENTS;
10186 attr_size = bfd_elf_obj_attr_size (abfd);
10187 if (attr_size)
10189 bfd_set_section_size (abfd, o, attr_size);
10190 attr_section = o;
10191 /* Skip this section later on. */
10192 o->map_head.link_order = NULL;
10194 else
10195 o->flags |= SEC_EXCLUDE;
10199 /* Count up the number of relocations we will output for each output
10200 section, so that we know the sizes of the reloc sections. We
10201 also figure out some maximum sizes. */
10202 max_contents_size = 0;
10203 max_external_reloc_size = 0;
10204 max_internal_reloc_count = 0;
10205 max_sym_count = 0;
10206 max_sym_shndx_count = 0;
10207 merged = FALSE;
10208 for (o = abfd->sections; o != NULL; o = o->next)
10210 struct bfd_elf_section_data *esdo = elf_section_data (o);
10211 o->reloc_count = 0;
10213 for (p = o->map_head.link_order; p != NULL; p = p->next)
10215 unsigned int reloc_count = 0;
10216 struct bfd_elf_section_data *esdi = NULL;
10217 unsigned int *rel_count1;
10219 if (p->type == bfd_section_reloc_link_order
10220 || p->type == bfd_symbol_reloc_link_order)
10221 reloc_count = 1;
10222 else if (p->type == bfd_indirect_link_order)
10224 asection *sec;
10226 sec = p->u.indirect.section;
10227 esdi = elf_section_data (sec);
10229 /* Mark all sections which are to be included in the
10230 link. This will normally be every section. We need
10231 to do this so that we can identify any sections which
10232 the linker has decided to not include. */
10233 sec->linker_mark = TRUE;
10235 if (sec->flags & SEC_MERGE)
10236 merged = TRUE;
10238 if (info->relocatable || info->emitrelocations)
10239 reloc_count = sec->reloc_count;
10240 else if (bed->elf_backend_count_relocs)
10241 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10243 if (sec->rawsize > max_contents_size)
10244 max_contents_size = sec->rawsize;
10245 if (sec->size > max_contents_size)
10246 max_contents_size = sec->size;
10248 /* We are interested in just local symbols, not all
10249 symbols. */
10250 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10251 && (sec->owner->flags & DYNAMIC) == 0)
10253 size_t sym_count;
10255 if (elf_bad_symtab (sec->owner))
10256 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10257 / bed->s->sizeof_sym);
10258 else
10259 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10261 if (sym_count > max_sym_count)
10262 max_sym_count = sym_count;
10264 if (sym_count > max_sym_shndx_count
10265 && elf_symtab_shndx (sec->owner) != 0)
10266 max_sym_shndx_count = sym_count;
10268 if ((sec->flags & SEC_RELOC) != 0)
10270 size_t ext_size;
10272 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10273 if (ext_size > max_external_reloc_size)
10274 max_external_reloc_size = ext_size;
10275 if (sec->reloc_count > max_internal_reloc_count)
10276 max_internal_reloc_count = sec->reloc_count;
10281 if (reloc_count == 0)
10282 continue;
10284 o->reloc_count += reloc_count;
10286 /* MIPS may have a mix of REL and RELA relocs on sections.
10287 To support this curious ABI we keep reloc counts in
10288 elf_section_data too. We must be careful to add the
10289 relocations from the input section to the right output
10290 count. FIXME: Get rid of one count. We have
10291 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10292 rel_count1 = &esdo->rel_count;
10293 if (esdi != NULL)
10295 bfd_boolean same_size;
10296 bfd_size_type entsize1;
10298 entsize1 = esdi->rel_hdr.sh_entsize;
10299 /* PR 9827: If the header size has not been set yet then
10300 assume that it will match the output section's reloc type. */
10301 if (entsize1 == 0)
10302 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10303 else
10304 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10305 || entsize1 == bed->s->sizeof_rela);
10306 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10308 if (!same_size)
10309 rel_count1 = &esdo->rel_count2;
10311 if (esdi->rel_hdr2 != NULL)
10313 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10314 unsigned int alt_count;
10315 unsigned int *rel_count2;
10317 BFD_ASSERT (entsize2 != entsize1
10318 && (entsize2 == bed->s->sizeof_rel
10319 || entsize2 == bed->s->sizeof_rela));
10321 rel_count2 = &esdo->rel_count2;
10322 if (!same_size)
10323 rel_count2 = &esdo->rel_count;
10325 /* The following is probably too simplistic if the
10326 backend counts output relocs unusually. */
10327 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10328 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10329 *rel_count2 += alt_count;
10330 reloc_count -= alt_count;
10333 *rel_count1 += reloc_count;
10336 if (o->reloc_count > 0)
10337 o->flags |= SEC_RELOC;
10338 else
10340 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10341 set it (this is probably a bug) and if it is set
10342 assign_section_numbers will create a reloc section. */
10343 o->flags &=~ SEC_RELOC;
10346 /* If the SEC_ALLOC flag is not set, force the section VMA to
10347 zero. This is done in elf_fake_sections as well, but forcing
10348 the VMA to 0 here will ensure that relocs against these
10349 sections are handled correctly. */
10350 if ((o->flags & SEC_ALLOC) == 0
10351 && ! o->user_set_vma)
10352 o->vma = 0;
10355 if (! info->relocatable && merged)
10356 elf_link_hash_traverse (elf_hash_table (info),
10357 _bfd_elf_link_sec_merge_syms, abfd);
10359 /* Figure out the file positions for everything but the symbol table
10360 and the relocs. We set symcount to force assign_section_numbers
10361 to create a symbol table. */
10362 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10363 BFD_ASSERT (! abfd->output_has_begun);
10364 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10365 goto error_return;
10367 /* Set sizes, and assign file positions for reloc sections. */
10368 for (o = abfd->sections; o != NULL; o = o->next)
10370 if ((o->flags & SEC_RELOC) != 0)
10372 if (!(_bfd_elf_link_size_reloc_section
10373 (abfd, &elf_section_data (o)->rel_hdr, o)))
10374 goto error_return;
10376 if (elf_section_data (o)->rel_hdr2
10377 && !(_bfd_elf_link_size_reloc_section
10378 (abfd, elf_section_data (o)->rel_hdr2, o)))
10379 goto error_return;
10382 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10383 to count upwards while actually outputting the relocations. */
10384 elf_section_data (o)->rel_count = 0;
10385 elf_section_data (o)->rel_count2 = 0;
10388 _bfd_elf_assign_file_positions_for_relocs (abfd);
10390 /* We have now assigned file positions for all the sections except
10391 .symtab and .strtab. We start the .symtab section at the current
10392 file position, and write directly to it. We build the .strtab
10393 section in memory. */
10394 bfd_get_symcount (abfd) = 0;
10395 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10396 /* sh_name is set in prep_headers. */
10397 symtab_hdr->sh_type = SHT_SYMTAB;
10398 /* sh_flags, sh_addr and sh_size all start off zero. */
10399 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10400 /* sh_link is set in assign_section_numbers. */
10401 /* sh_info is set below. */
10402 /* sh_offset is set just below. */
10403 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10405 off = elf_tdata (abfd)->next_file_pos;
10406 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10408 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10409 incorrect. We do not yet know the size of the .symtab section.
10410 We correct next_file_pos below, after we do know the size. */
10412 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10413 continuously seeking to the right position in the file. */
10414 if (! info->keep_memory || max_sym_count < 20)
10415 finfo.symbuf_size = 20;
10416 else
10417 finfo.symbuf_size = max_sym_count;
10418 amt = finfo.symbuf_size;
10419 amt *= bed->s->sizeof_sym;
10420 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10421 if (finfo.symbuf == NULL)
10422 goto error_return;
10423 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10425 /* Wild guess at number of output symbols. realloc'd as needed. */
10426 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10427 finfo.shndxbuf_size = amt;
10428 amt *= sizeof (Elf_External_Sym_Shndx);
10429 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10430 if (finfo.symshndxbuf == NULL)
10431 goto error_return;
10434 /* Start writing out the symbol table. The first symbol is always a
10435 dummy symbol. */
10436 if (info->strip != strip_all
10437 || emit_relocs)
10439 elfsym.st_value = 0;
10440 elfsym.st_size = 0;
10441 elfsym.st_info = 0;
10442 elfsym.st_other = 0;
10443 elfsym.st_shndx = SHN_UNDEF;
10444 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10445 NULL) != 1)
10446 goto error_return;
10449 /* Output a symbol for each section. We output these even if we are
10450 discarding local symbols, since they are used for relocs. These
10451 symbols have no names. We store the index of each one in the
10452 index field of the section, so that we can find it again when
10453 outputting relocs. */
10454 if (info->strip != strip_all
10455 || emit_relocs)
10457 elfsym.st_size = 0;
10458 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10459 elfsym.st_other = 0;
10460 elfsym.st_value = 0;
10461 for (i = 1; i < elf_numsections (abfd); i++)
10463 o = bfd_section_from_elf_index (abfd, i);
10464 if (o != NULL)
10466 o->target_index = bfd_get_symcount (abfd);
10467 elfsym.st_shndx = i;
10468 if (!info->relocatable)
10469 elfsym.st_value = o->vma;
10470 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10471 goto error_return;
10476 /* Allocate some memory to hold information read in from the input
10477 files. */
10478 if (max_contents_size != 0)
10480 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10481 if (finfo.contents == NULL)
10482 goto error_return;
10485 if (max_external_reloc_size != 0)
10487 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10488 if (finfo.external_relocs == NULL)
10489 goto error_return;
10492 if (max_internal_reloc_count != 0)
10494 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10495 amt *= sizeof (Elf_Internal_Rela);
10496 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10497 if (finfo.internal_relocs == NULL)
10498 goto error_return;
10501 if (max_sym_count != 0)
10503 amt = max_sym_count * bed->s->sizeof_sym;
10504 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10505 if (finfo.external_syms == NULL)
10506 goto error_return;
10508 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10509 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10510 if (finfo.internal_syms == NULL)
10511 goto error_return;
10513 amt = max_sym_count * sizeof (long);
10514 finfo.indices = (long int *) bfd_malloc (amt);
10515 if (finfo.indices == NULL)
10516 goto error_return;
10518 amt = max_sym_count * sizeof (asection *);
10519 finfo.sections = (asection **) bfd_malloc (amt);
10520 if (finfo.sections == NULL)
10521 goto error_return;
10524 if (max_sym_shndx_count != 0)
10526 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10527 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10528 if (finfo.locsym_shndx == NULL)
10529 goto error_return;
10532 if (elf_hash_table (info)->tls_sec)
10534 bfd_vma base, end = 0;
10535 asection *sec;
10537 for (sec = elf_hash_table (info)->tls_sec;
10538 sec && (sec->flags & SEC_THREAD_LOCAL);
10539 sec = sec->next)
10541 bfd_size_type size = sec->size;
10543 if (size == 0
10544 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10546 struct bfd_link_order *o = sec->map_tail.link_order;
10547 if (o != NULL)
10548 size = o->offset + o->size;
10550 end = sec->vma + size;
10552 base = elf_hash_table (info)->tls_sec->vma;
10553 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10554 elf_hash_table (info)->tls_size = end - base;
10557 /* Reorder SHF_LINK_ORDER sections. */
10558 for (o = abfd->sections; o != NULL; o = o->next)
10560 if (!elf_fixup_link_order (abfd, o))
10561 return FALSE;
10564 /* Since ELF permits relocations to be against local symbols, we
10565 must have the local symbols available when we do the relocations.
10566 Since we would rather only read the local symbols once, and we
10567 would rather not keep them in memory, we handle all the
10568 relocations for a single input file at the same time.
10570 Unfortunately, there is no way to know the total number of local
10571 symbols until we have seen all of them, and the local symbol
10572 indices precede the global symbol indices. This means that when
10573 we are generating relocatable output, and we see a reloc against
10574 a global symbol, we can not know the symbol index until we have
10575 finished examining all the local symbols to see which ones we are
10576 going to output. To deal with this, we keep the relocations in
10577 memory, and don't output them until the end of the link. This is
10578 an unfortunate waste of memory, but I don't see a good way around
10579 it. Fortunately, it only happens when performing a relocatable
10580 link, which is not the common case. FIXME: If keep_memory is set
10581 we could write the relocs out and then read them again; I don't
10582 know how bad the memory loss will be. */
10584 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10585 sub->output_has_begun = FALSE;
10586 for (o = abfd->sections; o != NULL; o = o->next)
10588 for (p = o->map_head.link_order; p != NULL; p = p->next)
10590 if (p->type == bfd_indirect_link_order
10591 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10592 == bfd_target_elf_flavour)
10593 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10595 if (! sub->output_has_begun)
10597 if (! elf_link_input_bfd (&finfo, sub))
10598 goto error_return;
10599 sub->output_has_begun = TRUE;
10602 else if (p->type == bfd_section_reloc_link_order
10603 || p->type == bfd_symbol_reloc_link_order)
10605 if (! elf_reloc_link_order (abfd, info, o, p))
10606 goto error_return;
10608 else
10610 if (! _bfd_default_link_order (abfd, info, o, p))
10611 goto error_return;
10616 /* Free symbol buffer if needed. */
10617 if (!info->reduce_memory_overheads)
10619 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10620 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10621 && elf_tdata (sub)->symbuf)
10623 free (elf_tdata (sub)->symbuf);
10624 elf_tdata (sub)->symbuf = NULL;
10628 /* Output any global symbols that got converted to local in a
10629 version script or due to symbol visibility. We do this in a
10630 separate step since ELF requires all local symbols to appear
10631 prior to any global symbols. FIXME: We should only do this if
10632 some global symbols were, in fact, converted to become local.
10633 FIXME: Will this work correctly with the Irix 5 linker? */
10634 eoinfo.failed = FALSE;
10635 eoinfo.finfo = &finfo;
10636 eoinfo.localsyms = TRUE;
10637 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10638 &eoinfo);
10639 if (eoinfo.failed)
10640 return FALSE;
10642 /* If backend needs to output some local symbols not present in the hash
10643 table, do it now. */
10644 if (bed->elf_backend_output_arch_local_syms)
10646 typedef int (*out_sym_func)
10647 (void *, const char *, Elf_Internal_Sym *, asection *,
10648 struct elf_link_hash_entry *);
10650 if (! ((*bed->elf_backend_output_arch_local_syms)
10651 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10652 return FALSE;
10655 /* That wrote out all the local symbols. Finish up the symbol table
10656 with the global symbols. Even if we want to strip everything we
10657 can, we still need to deal with those global symbols that got
10658 converted to local in a version script. */
10660 /* The sh_info field records the index of the first non local symbol. */
10661 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10663 if (dynamic
10664 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10666 Elf_Internal_Sym sym;
10667 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10668 long last_local = 0;
10670 /* Write out the section symbols for the output sections. */
10671 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10673 asection *s;
10675 sym.st_size = 0;
10676 sym.st_name = 0;
10677 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10678 sym.st_other = 0;
10680 for (s = abfd->sections; s != NULL; s = s->next)
10682 int indx;
10683 bfd_byte *dest;
10684 long dynindx;
10686 dynindx = elf_section_data (s)->dynindx;
10687 if (dynindx <= 0)
10688 continue;
10689 indx = elf_section_data (s)->this_idx;
10690 BFD_ASSERT (indx > 0);
10691 sym.st_shndx = indx;
10692 if (! check_dynsym (abfd, &sym))
10693 return FALSE;
10694 sym.st_value = s->vma;
10695 dest = dynsym + dynindx * bed->s->sizeof_sym;
10696 if (last_local < dynindx)
10697 last_local = dynindx;
10698 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10702 /* Write out the local dynsyms. */
10703 if (elf_hash_table (info)->dynlocal)
10705 struct elf_link_local_dynamic_entry *e;
10706 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10708 asection *s;
10709 bfd_byte *dest;
10711 /* Copy the internal symbol and turn off visibility.
10712 Note that we saved a word of storage and overwrote
10713 the original st_name with the dynstr_index. */
10714 sym = e->isym;
10715 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10717 s = bfd_section_from_elf_index (e->input_bfd,
10718 e->isym.st_shndx);
10719 if (s != NULL)
10721 sym.st_shndx =
10722 elf_section_data (s->output_section)->this_idx;
10723 if (! check_dynsym (abfd, &sym))
10724 return FALSE;
10725 sym.st_value = (s->output_section->vma
10726 + s->output_offset
10727 + e->isym.st_value);
10730 if (last_local < e->dynindx)
10731 last_local = e->dynindx;
10733 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10734 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10738 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10739 last_local + 1;
10742 /* We get the global symbols from the hash table. */
10743 eoinfo.failed = FALSE;
10744 eoinfo.localsyms = FALSE;
10745 eoinfo.finfo = &finfo;
10746 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10747 &eoinfo);
10748 if (eoinfo.failed)
10749 return FALSE;
10751 /* If backend needs to output some symbols not present in the hash
10752 table, do it now. */
10753 if (bed->elf_backend_output_arch_syms)
10755 typedef int (*out_sym_func)
10756 (void *, const char *, Elf_Internal_Sym *, asection *,
10757 struct elf_link_hash_entry *);
10759 if (! ((*bed->elf_backend_output_arch_syms)
10760 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10761 return FALSE;
10764 /* Flush all symbols to the file. */
10765 if (! elf_link_flush_output_syms (&finfo, bed))
10766 return FALSE;
10768 /* Now we know the size of the symtab section. */
10769 off += symtab_hdr->sh_size;
10771 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10772 if (symtab_shndx_hdr->sh_name != 0)
10774 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10775 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10776 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10777 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10778 symtab_shndx_hdr->sh_size = amt;
10780 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10781 off, TRUE);
10783 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10784 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10785 return FALSE;
10789 /* Finish up and write out the symbol string table (.strtab)
10790 section. */
10791 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10792 /* sh_name was set in prep_headers. */
10793 symstrtab_hdr->sh_type = SHT_STRTAB;
10794 symstrtab_hdr->sh_flags = 0;
10795 symstrtab_hdr->sh_addr = 0;
10796 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10797 symstrtab_hdr->sh_entsize = 0;
10798 symstrtab_hdr->sh_link = 0;
10799 symstrtab_hdr->sh_info = 0;
10800 /* sh_offset is set just below. */
10801 symstrtab_hdr->sh_addralign = 1;
10803 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10804 elf_tdata (abfd)->next_file_pos = off;
10806 if (bfd_get_symcount (abfd) > 0)
10808 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10809 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10810 return FALSE;
10813 /* Adjust the relocs to have the correct symbol indices. */
10814 for (o = abfd->sections; o != NULL; o = o->next)
10816 if ((o->flags & SEC_RELOC) == 0)
10817 continue;
10819 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10820 elf_section_data (o)->rel_count,
10821 elf_section_data (o)->rel_hashes);
10822 if (elf_section_data (o)->rel_hdr2 != NULL)
10823 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10824 elf_section_data (o)->rel_count2,
10825 (elf_section_data (o)->rel_hashes
10826 + elf_section_data (o)->rel_count));
10828 /* Set the reloc_count field to 0 to prevent write_relocs from
10829 trying to swap the relocs out itself. */
10830 o->reloc_count = 0;
10833 if (dynamic && info->combreloc && dynobj != NULL)
10834 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10836 /* If we are linking against a dynamic object, or generating a
10837 shared library, finish up the dynamic linking information. */
10838 if (dynamic)
10840 bfd_byte *dyncon, *dynconend;
10842 /* Fix up .dynamic entries. */
10843 o = bfd_get_section_by_name (dynobj, ".dynamic");
10844 BFD_ASSERT (o != NULL);
10846 dyncon = o->contents;
10847 dynconend = o->contents + o->size;
10848 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10850 Elf_Internal_Dyn dyn;
10851 const char *name;
10852 unsigned int type;
10854 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10856 switch (dyn.d_tag)
10858 default:
10859 continue;
10860 case DT_NULL:
10861 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10863 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10865 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10866 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10867 default: continue;
10869 dyn.d_un.d_val = relativecount;
10870 relativecount = 0;
10871 break;
10873 continue;
10875 case DT_INIT:
10876 name = info->init_function;
10877 goto get_sym;
10878 case DT_FINI:
10879 name = info->fini_function;
10880 get_sym:
10882 struct elf_link_hash_entry *h;
10884 h = elf_link_hash_lookup (elf_hash_table (info), name,
10885 FALSE, FALSE, TRUE);
10886 if (h != NULL
10887 && (h->root.type == bfd_link_hash_defined
10888 || h->root.type == bfd_link_hash_defweak))
10890 dyn.d_un.d_ptr = h->root.u.def.value;
10891 o = h->root.u.def.section;
10892 if (o->output_section != NULL)
10893 dyn.d_un.d_ptr += (o->output_section->vma
10894 + o->output_offset);
10895 else
10897 /* The symbol is imported from another shared
10898 library and does not apply to this one. */
10899 dyn.d_un.d_ptr = 0;
10901 break;
10904 continue;
10906 case DT_PREINIT_ARRAYSZ:
10907 name = ".preinit_array";
10908 goto get_size;
10909 case DT_INIT_ARRAYSZ:
10910 name = ".init_array";
10911 goto get_size;
10912 case DT_FINI_ARRAYSZ:
10913 name = ".fini_array";
10914 get_size:
10915 o = bfd_get_section_by_name (abfd, name);
10916 if (o == NULL)
10918 (*_bfd_error_handler)
10919 (_("%B: could not find output section %s"), abfd, name);
10920 goto error_return;
10922 if (o->size == 0)
10923 (*_bfd_error_handler)
10924 (_("warning: %s section has zero size"), name);
10925 dyn.d_un.d_val = o->size;
10926 break;
10928 case DT_PREINIT_ARRAY:
10929 name = ".preinit_array";
10930 goto get_vma;
10931 case DT_INIT_ARRAY:
10932 name = ".init_array";
10933 goto get_vma;
10934 case DT_FINI_ARRAY:
10935 name = ".fini_array";
10936 goto get_vma;
10938 case DT_HASH:
10939 name = ".hash";
10940 goto get_vma;
10941 case DT_GNU_HASH:
10942 name = ".gnu.hash";
10943 goto get_vma;
10944 case DT_STRTAB:
10945 name = ".dynstr";
10946 goto get_vma;
10947 case DT_SYMTAB:
10948 name = ".dynsym";
10949 goto get_vma;
10950 case DT_VERDEF:
10951 name = ".gnu.version_d";
10952 goto get_vma;
10953 case DT_VERNEED:
10954 name = ".gnu.version_r";
10955 goto get_vma;
10956 case DT_VERSYM:
10957 name = ".gnu.version";
10958 get_vma:
10959 o = bfd_get_section_by_name (abfd, name);
10960 if (o == NULL)
10962 (*_bfd_error_handler)
10963 (_("%B: could not find output section %s"), abfd, name);
10964 goto error_return;
10966 dyn.d_un.d_ptr = o->vma;
10967 break;
10969 case DT_REL:
10970 case DT_RELA:
10971 case DT_RELSZ:
10972 case DT_RELASZ:
10973 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10974 type = SHT_REL;
10975 else
10976 type = SHT_RELA;
10977 dyn.d_un.d_val = 0;
10978 dyn.d_un.d_ptr = 0;
10979 for (i = 1; i < elf_numsections (abfd); i++)
10981 Elf_Internal_Shdr *hdr;
10983 hdr = elf_elfsections (abfd)[i];
10984 if (hdr->sh_type == type
10985 && (hdr->sh_flags & SHF_ALLOC) != 0)
10987 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10988 dyn.d_un.d_val += hdr->sh_size;
10989 else
10991 if (dyn.d_un.d_ptr == 0
10992 || hdr->sh_addr < dyn.d_un.d_ptr)
10993 dyn.d_un.d_ptr = hdr->sh_addr;
10997 break;
10999 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11003 /* If we have created any dynamic sections, then output them. */
11004 if (dynobj != NULL)
11006 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11007 goto error_return;
11009 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11010 if (info->warn_shared_textrel && info->shared)
11012 bfd_byte *dyncon, *dynconend;
11014 /* Fix up .dynamic entries. */
11015 o = bfd_get_section_by_name (dynobj, ".dynamic");
11016 BFD_ASSERT (o != NULL);
11018 dyncon = o->contents;
11019 dynconend = o->contents + o->size;
11020 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11022 Elf_Internal_Dyn dyn;
11024 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11026 if (dyn.d_tag == DT_TEXTREL)
11028 info->callbacks->einfo
11029 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11030 break;
11035 for (o = dynobj->sections; o != NULL; o = o->next)
11037 if ((o->flags & SEC_HAS_CONTENTS) == 0
11038 || o->size == 0
11039 || o->output_section == bfd_abs_section_ptr)
11040 continue;
11041 if ((o->flags & SEC_LINKER_CREATED) == 0)
11043 /* At this point, we are only interested in sections
11044 created by _bfd_elf_link_create_dynamic_sections. */
11045 continue;
11047 if (elf_hash_table (info)->stab_info.stabstr == o)
11048 continue;
11049 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11050 continue;
11051 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11052 != SHT_STRTAB)
11053 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11055 /* FIXME: octets_per_byte. */
11056 if (! bfd_set_section_contents (abfd, o->output_section,
11057 o->contents,
11058 (file_ptr) o->output_offset,
11059 o->size))
11060 goto error_return;
11062 else
11064 /* The contents of the .dynstr section are actually in a
11065 stringtab. */
11066 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11067 if (bfd_seek (abfd, off, SEEK_SET) != 0
11068 || ! _bfd_elf_strtab_emit (abfd,
11069 elf_hash_table (info)->dynstr))
11070 goto error_return;
11075 if (info->relocatable)
11077 bfd_boolean failed = FALSE;
11079 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11080 if (failed)
11081 goto error_return;
11084 /* If we have optimized stabs strings, output them. */
11085 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11087 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11088 goto error_return;
11091 if (info->eh_frame_hdr)
11093 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11094 goto error_return;
11097 if (finfo.symstrtab != NULL)
11098 _bfd_stringtab_free (finfo.symstrtab);
11099 if (finfo.contents != NULL)
11100 free (finfo.contents);
11101 if (finfo.external_relocs != NULL)
11102 free (finfo.external_relocs);
11103 if (finfo.internal_relocs != NULL)
11104 free (finfo.internal_relocs);
11105 if (finfo.external_syms != NULL)
11106 free (finfo.external_syms);
11107 if (finfo.locsym_shndx != NULL)
11108 free (finfo.locsym_shndx);
11109 if (finfo.internal_syms != NULL)
11110 free (finfo.internal_syms);
11111 if (finfo.indices != NULL)
11112 free (finfo.indices);
11113 if (finfo.sections != NULL)
11114 free (finfo.sections);
11115 if (finfo.symbuf != NULL)
11116 free (finfo.symbuf);
11117 if (finfo.symshndxbuf != NULL)
11118 free (finfo.symshndxbuf);
11119 for (o = abfd->sections; o != NULL; o = o->next)
11121 if ((o->flags & SEC_RELOC) != 0
11122 && elf_section_data (o)->rel_hashes != NULL)
11123 free (elf_section_data (o)->rel_hashes);
11126 elf_tdata (abfd)->linker = TRUE;
11128 if (attr_section)
11130 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11131 if (contents == NULL)
11132 return FALSE; /* Bail out and fail. */
11133 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11134 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11135 free (contents);
11138 return TRUE;
11140 error_return:
11141 if (finfo.symstrtab != NULL)
11142 _bfd_stringtab_free (finfo.symstrtab);
11143 if (finfo.contents != NULL)
11144 free (finfo.contents);
11145 if (finfo.external_relocs != NULL)
11146 free (finfo.external_relocs);
11147 if (finfo.internal_relocs != NULL)
11148 free (finfo.internal_relocs);
11149 if (finfo.external_syms != NULL)
11150 free (finfo.external_syms);
11151 if (finfo.locsym_shndx != NULL)
11152 free (finfo.locsym_shndx);
11153 if (finfo.internal_syms != NULL)
11154 free (finfo.internal_syms);
11155 if (finfo.indices != NULL)
11156 free (finfo.indices);
11157 if (finfo.sections != NULL)
11158 free (finfo.sections);
11159 if (finfo.symbuf != NULL)
11160 free (finfo.symbuf);
11161 if (finfo.symshndxbuf != NULL)
11162 free (finfo.symshndxbuf);
11163 for (o = abfd->sections; o != NULL; o = o->next)
11165 if ((o->flags & SEC_RELOC) != 0
11166 && elf_section_data (o)->rel_hashes != NULL)
11167 free (elf_section_data (o)->rel_hashes);
11170 return FALSE;
11173 /* Initialize COOKIE for input bfd ABFD. */
11175 static bfd_boolean
11176 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11177 struct bfd_link_info *info, bfd *abfd)
11179 Elf_Internal_Shdr *symtab_hdr;
11180 const struct elf_backend_data *bed;
11182 bed = get_elf_backend_data (abfd);
11183 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11185 cookie->abfd = abfd;
11186 cookie->sym_hashes = elf_sym_hashes (abfd);
11187 cookie->bad_symtab = elf_bad_symtab (abfd);
11188 if (cookie->bad_symtab)
11190 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11191 cookie->extsymoff = 0;
11193 else
11195 cookie->locsymcount = symtab_hdr->sh_info;
11196 cookie->extsymoff = symtab_hdr->sh_info;
11199 if (bed->s->arch_size == 32)
11200 cookie->r_sym_shift = 8;
11201 else
11202 cookie->r_sym_shift = 32;
11204 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11205 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11207 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11208 cookie->locsymcount, 0,
11209 NULL, NULL, NULL);
11210 if (cookie->locsyms == NULL)
11212 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11213 return FALSE;
11215 if (info->keep_memory)
11216 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11218 return TRUE;
11221 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11223 static void
11224 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11226 Elf_Internal_Shdr *symtab_hdr;
11228 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11229 if (cookie->locsyms != NULL
11230 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11231 free (cookie->locsyms);
11234 /* Initialize the relocation information in COOKIE for input section SEC
11235 of input bfd ABFD. */
11237 static bfd_boolean
11238 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11239 struct bfd_link_info *info, bfd *abfd,
11240 asection *sec)
11242 const struct elf_backend_data *bed;
11244 if (sec->reloc_count == 0)
11246 cookie->rels = NULL;
11247 cookie->relend = NULL;
11249 else
11251 bed = get_elf_backend_data (abfd);
11253 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11254 info->keep_memory);
11255 if (cookie->rels == NULL)
11256 return FALSE;
11257 cookie->rel = cookie->rels;
11258 cookie->relend = (cookie->rels
11259 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11261 cookie->rel = cookie->rels;
11262 return TRUE;
11265 /* Free the memory allocated by init_reloc_cookie_rels,
11266 if appropriate. */
11268 static void
11269 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11270 asection *sec)
11272 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11273 free (cookie->rels);
11276 /* Initialize the whole of COOKIE for input section SEC. */
11278 static bfd_boolean
11279 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11280 struct bfd_link_info *info,
11281 asection *sec)
11283 if (!init_reloc_cookie (cookie, info, sec->owner))
11284 goto error1;
11285 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11286 goto error2;
11287 return TRUE;
11289 error2:
11290 fini_reloc_cookie (cookie, sec->owner);
11291 error1:
11292 return FALSE;
11295 /* Free the memory allocated by init_reloc_cookie_for_section,
11296 if appropriate. */
11298 static void
11299 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11300 asection *sec)
11302 fini_reloc_cookie_rels (cookie, sec);
11303 fini_reloc_cookie (cookie, sec->owner);
11306 /* Garbage collect unused sections. */
11308 /* Default gc_mark_hook. */
11310 asection *
11311 _bfd_elf_gc_mark_hook (asection *sec,
11312 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11313 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11314 struct elf_link_hash_entry *h,
11315 Elf_Internal_Sym *sym)
11317 if (h != NULL)
11319 switch (h->root.type)
11321 case bfd_link_hash_defined:
11322 case bfd_link_hash_defweak:
11323 return h->root.u.def.section;
11325 case bfd_link_hash_common:
11326 return h->root.u.c.p->section;
11328 default:
11329 break;
11332 else
11333 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11335 return NULL;
11338 /* COOKIE->rel describes a relocation against section SEC, which is
11339 a section we've decided to keep. Return the section that contains
11340 the relocation symbol, or NULL if no section contains it. */
11342 asection *
11343 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11344 elf_gc_mark_hook_fn gc_mark_hook,
11345 struct elf_reloc_cookie *cookie)
11347 unsigned long r_symndx;
11348 struct elf_link_hash_entry *h;
11350 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11351 if (r_symndx == 0)
11352 return NULL;
11354 if (r_symndx >= cookie->locsymcount
11355 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11357 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11358 while (h->root.type == bfd_link_hash_indirect
11359 || h->root.type == bfd_link_hash_warning)
11360 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11361 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11364 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11365 &cookie->locsyms[r_symndx]);
11368 /* COOKIE->rel describes a relocation against section SEC, which is
11369 a section we've decided to keep. Mark the section that contains
11370 the relocation symbol. */
11372 bfd_boolean
11373 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11374 asection *sec,
11375 elf_gc_mark_hook_fn gc_mark_hook,
11376 struct elf_reloc_cookie *cookie)
11378 asection *rsec;
11380 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11381 if (rsec && !rsec->gc_mark)
11383 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11384 rsec->gc_mark = 1;
11385 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11386 return FALSE;
11388 return TRUE;
11391 /* The mark phase of garbage collection. For a given section, mark
11392 it and any sections in this section's group, and all the sections
11393 which define symbols to which it refers. */
11395 bfd_boolean
11396 _bfd_elf_gc_mark (struct bfd_link_info *info,
11397 asection *sec,
11398 elf_gc_mark_hook_fn gc_mark_hook)
11400 bfd_boolean ret;
11401 asection *group_sec, *eh_frame;
11403 sec->gc_mark = 1;
11405 /* Mark all the sections in the group. */
11406 group_sec = elf_section_data (sec)->next_in_group;
11407 if (group_sec && !group_sec->gc_mark)
11408 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11409 return FALSE;
11411 /* Look through the section relocs. */
11412 ret = TRUE;
11413 eh_frame = elf_eh_frame_section (sec->owner);
11414 if ((sec->flags & SEC_RELOC) != 0
11415 && sec->reloc_count > 0
11416 && sec != eh_frame)
11418 struct elf_reloc_cookie cookie;
11420 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11421 ret = FALSE;
11422 else
11424 for (; cookie.rel < cookie.relend; cookie.rel++)
11425 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11427 ret = FALSE;
11428 break;
11430 fini_reloc_cookie_for_section (&cookie, sec);
11434 if (ret && eh_frame && elf_fde_list (sec))
11436 struct elf_reloc_cookie cookie;
11438 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11439 ret = FALSE;
11440 else
11442 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11443 gc_mark_hook, &cookie))
11444 ret = FALSE;
11445 fini_reloc_cookie_for_section (&cookie, eh_frame);
11449 return ret;
11452 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11454 struct elf_gc_sweep_symbol_info
11456 struct bfd_link_info *info;
11457 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11458 bfd_boolean);
11461 static bfd_boolean
11462 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11464 if (h->root.type == bfd_link_hash_warning)
11465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11467 if ((h->root.type == bfd_link_hash_defined
11468 || h->root.type == bfd_link_hash_defweak)
11469 && !h->root.u.def.section->gc_mark
11470 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11472 struct elf_gc_sweep_symbol_info *inf =
11473 (struct elf_gc_sweep_symbol_info *) data;
11474 (*inf->hide_symbol) (inf->info, h, TRUE);
11477 return TRUE;
11480 /* The sweep phase of garbage collection. Remove all garbage sections. */
11482 typedef bfd_boolean (*gc_sweep_hook_fn)
11483 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11485 static bfd_boolean
11486 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11488 bfd *sub;
11489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11490 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11491 unsigned long section_sym_count;
11492 struct elf_gc_sweep_symbol_info sweep_info;
11494 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11496 asection *o;
11498 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11499 continue;
11501 for (o = sub->sections; o != NULL; o = o->next)
11503 /* When any section in a section group is kept, we keep all
11504 sections in the section group. If the first member of
11505 the section group is excluded, we will also exclude the
11506 group section. */
11507 if (o->flags & SEC_GROUP)
11509 asection *first = elf_next_in_group (o);
11510 o->gc_mark = first->gc_mark;
11512 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11513 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11515 /* Keep debug and special sections. */
11516 o->gc_mark = 1;
11519 if (o->gc_mark)
11520 continue;
11522 /* Skip sweeping sections already excluded. */
11523 if (o->flags & SEC_EXCLUDE)
11524 continue;
11526 /* Since this is early in the link process, it is simple
11527 to remove a section from the output. */
11528 o->flags |= SEC_EXCLUDE;
11530 if (info->print_gc_sections && o->size != 0)
11531 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11533 /* But we also have to update some of the relocation
11534 info we collected before. */
11535 if (gc_sweep_hook
11536 && (o->flags & SEC_RELOC) != 0
11537 && o->reloc_count > 0
11538 && !bfd_is_abs_section (o->output_section))
11540 Elf_Internal_Rela *internal_relocs;
11541 bfd_boolean r;
11543 internal_relocs
11544 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11545 info->keep_memory);
11546 if (internal_relocs == NULL)
11547 return FALSE;
11549 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11551 if (elf_section_data (o)->relocs != internal_relocs)
11552 free (internal_relocs);
11554 if (!r)
11555 return FALSE;
11560 /* Remove the symbols that were in the swept sections from the dynamic
11561 symbol table. GCFIXME: Anyone know how to get them out of the
11562 static symbol table as well? */
11563 sweep_info.info = info;
11564 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11565 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11566 &sweep_info);
11568 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11569 return TRUE;
11572 /* Propagate collected vtable information. This is called through
11573 elf_link_hash_traverse. */
11575 static bfd_boolean
11576 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11578 if (h->root.type == bfd_link_hash_warning)
11579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11581 /* Those that are not vtables. */
11582 if (h->vtable == NULL || h->vtable->parent == NULL)
11583 return TRUE;
11585 /* Those vtables that do not have parents, we cannot merge. */
11586 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11587 return TRUE;
11589 /* If we've already been done, exit. */
11590 if (h->vtable->used && h->vtable->used[-1])
11591 return TRUE;
11593 /* Make sure the parent's table is up to date. */
11594 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11596 if (h->vtable->used == NULL)
11598 /* None of this table's entries were referenced. Re-use the
11599 parent's table. */
11600 h->vtable->used = h->vtable->parent->vtable->used;
11601 h->vtable->size = h->vtable->parent->vtable->size;
11603 else
11605 size_t n;
11606 bfd_boolean *cu, *pu;
11608 /* Or the parent's entries into ours. */
11609 cu = h->vtable->used;
11610 cu[-1] = TRUE;
11611 pu = h->vtable->parent->vtable->used;
11612 if (pu != NULL)
11614 const struct elf_backend_data *bed;
11615 unsigned int log_file_align;
11617 bed = get_elf_backend_data (h->root.u.def.section->owner);
11618 log_file_align = bed->s->log_file_align;
11619 n = h->vtable->parent->vtable->size >> log_file_align;
11620 while (n--)
11622 if (*pu)
11623 *cu = TRUE;
11624 pu++;
11625 cu++;
11630 return TRUE;
11633 static bfd_boolean
11634 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11636 asection *sec;
11637 bfd_vma hstart, hend;
11638 Elf_Internal_Rela *relstart, *relend, *rel;
11639 const struct elf_backend_data *bed;
11640 unsigned int log_file_align;
11642 if (h->root.type == bfd_link_hash_warning)
11643 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11645 /* Take care of both those symbols that do not describe vtables as
11646 well as those that are not loaded. */
11647 if (h->vtable == NULL || h->vtable->parent == NULL)
11648 return TRUE;
11650 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11651 || h->root.type == bfd_link_hash_defweak);
11653 sec = h->root.u.def.section;
11654 hstart = h->root.u.def.value;
11655 hend = hstart + h->size;
11657 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11658 if (!relstart)
11659 return *(bfd_boolean *) okp = FALSE;
11660 bed = get_elf_backend_data (sec->owner);
11661 log_file_align = bed->s->log_file_align;
11663 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11665 for (rel = relstart; rel < relend; ++rel)
11666 if (rel->r_offset >= hstart && rel->r_offset < hend)
11668 /* If the entry is in use, do nothing. */
11669 if (h->vtable->used
11670 && (rel->r_offset - hstart) < h->vtable->size)
11672 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11673 if (h->vtable->used[entry])
11674 continue;
11676 /* Otherwise, kill it. */
11677 rel->r_offset = rel->r_info = rel->r_addend = 0;
11680 return TRUE;
11683 /* Mark sections containing dynamically referenced symbols. When
11684 building shared libraries, we must assume that any visible symbol is
11685 referenced. */
11687 bfd_boolean
11688 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11690 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11692 if (h->root.type == bfd_link_hash_warning)
11693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11695 if ((h->root.type == bfd_link_hash_defined
11696 || h->root.type == bfd_link_hash_defweak)
11697 && (h->ref_dynamic
11698 || (!info->executable
11699 && h->def_regular
11700 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11701 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11702 h->root.u.def.section->flags |= SEC_KEEP;
11704 return TRUE;
11707 /* Keep all sections containing symbols undefined on the command-line,
11708 and the section containing the entry symbol. */
11710 void
11711 _bfd_elf_gc_keep (struct bfd_link_info *info)
11713 struct bfd_sym_chain *sym;
11715 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11717 struct elf_link_hash_entry *h;
11719 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11720 FALSE, FALSE, FALSE);
11722 if (h != NULL
11723 && (h->root.type == bfd_link_hash_defined
11724 || h->root.type == bfd_link_hash_defweak)
11725 && !bfd_is_abs_section (h->root.u.def.section))
11726 h->root.u.def.section->flags |= SEC_KEEP;
11730 /* Do mark and sweep of unused sections. */
11732 bfd_boolean
11733 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11735 bfd_boolean ok = TRUE;
11736 bfd *sub;
11737 elf_gc_mark_hook_fn gc_mark_hook;
11738 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11740 if (!bed->can_gc_sections
11741 || !is_elf_hash_table (info->hash))
11743 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11744 return TRUE;
11747 bed->gc_keep (info);
11749 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11750 at the .eh_frame section if we can mark the FDEs individually. */
11751 _bfd_elf_begin_eh_frame_parsing (info);
11752 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11754 asection *sec;
11755 struct elf_reloc_cookie cookie;
11757 sec = bfd_get_section_by_name (sub, ".eh_frame");
11758 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11760 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11761 if (elf_section_data (sec)->sec_info)
11762 elf_eh_frame_section (sub) = sec;
11763 fini_reloc_cookie_for_section (&cookie, sec);
11766 _bfd_elf_end_eh_frame_parsing (info);
11768 /* Apply transitive closure to the vtable entry usage info. */
11769 elf_link_hash_traverse (elf_hash_table (info),
11770 elf_gc_propagate_vtable_entries_used,
11771 &ok);
11772 if (!ok)
11773 return FALSE;
11775 /* Kill the vtable relocations that were not used. */
11776 elf_link_hash_traverse (elf_hash_table (info),
11777 elf_gc_smash_unused_vtentry_relocs,
11778 &ok);
11779 if (!ok)
11780 return FALSE;
11782 /* Mark dynamically referenced symbols. */
11783 if (elf_hash_table (info)->dynamic_sections_created)
11784 elf_link_hash_traverse (elf_hash_table (info),
11785 bed->gc_mark_dynamic_ref,
11786 info);
11788 /* Grovel through relocs to find out who stays ... */
11789 gc_mark_hook = bed->gc_mark_hook;
11790 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11792 asection *o;
11794 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11795 continue;
11797 for (o = sub->sections; o != NULL; o = o->next)
11798 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11799 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11800 return FALSE;
11803 /* Allow the backend to mark additional target specific sections. */
11804 if (bed->gc_mark_extra_sections)
11805 bed->gc_mark_extra_sections (info, gc_mark_hook);
11807 /* ... and mark SEC_EXCLUDE for those that go. */
11808 return elf_gc_sweep (abfd, info);
11811 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11813 bfd_boolean
11814 bfd_elf_gc_record_vtinherit (bfd *abfd,
11815 asection *sec,
11816 struct elf_link_hash_entry *h,
11817 bfd_vma offset)
11819 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11820 struct elf_link_hash_entry **search, *child;
11821 bfd_size_type extsymcount;
11822 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11824 /* The sh_info field of the symtab header tells us where the
11825 external symbols start. We don't care about the local symbols at
11826 this point. */
11827 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11828 if (!elf_bad_symtab (abfd))
11829 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11831 sym_hashes = elf_sym_hashes (abfd);
11832 sym_hashes_end = sym_hashes + extsymcount;
11834 /* Hunt down the child symbol, which is in this section at the same
11835 offset as the relocation. */
11836 for (search = sym_hashes; search != sym_hashes_end; ++search)
11838 if ((child = *search) != NULL
11839 && (child->root.type == bfd_link_hash_defined
11840 || child->root.type == bfd_link_hash_defweak)
11841 && child->root.u.def.section == sec
11842 && child->root.u.def.value == offset)
11843 goto win;
11846 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11847 abfd, sec, (unsigned long) offset);
11848 bfd_set_error (bfd_error_invalid_operation);
11849 return FALSE;
11851 win:
11852 if (!child->vtable)
11854 child->vtable = (struct elf_link_virtual_table_entry *)
11855 bfd_zalloc (abfd, sizeof (*child->vtable));
11856 if (!child->vtable)
11857 return FALSE;
11859 if (!h)
11861 /* This *should* only be the absolute section. It could potentially
11862 be that someone has defined a non-global vtable though, which
11863 would be bad. It isn't worth paging in the local symbols to be
11864 sure though; that case should simply be handled by the assembler. */
11866 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11868 else
11869 child->vtable->parent = h;
11871 return TRUE;
11874 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11876 bfd_boolean
11877 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11878 asection *sec ATTRIBUTE_UNUSED,
11879 struct elf_link_hash_entry *h,
11880 bfd_vma addend)
11882 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11883 unsigned int log_file_align = bed->s->log_file_align;
11885 if (!h->vtable)
11887 h->vtable = (struct elf_link_virtual_table_entry *)
11888 bfd_zalloc (abfd, sizeof (*h->vtable));
11889 if (!h->vtable)
11890 return FALSE;
11893 if (addend >= h->vtable->size)
11895 size_t size, bytes, file_align;
11896 bfd_boolean *ptr = h->vtable->used;
11898 /* While the symbol is undefined, we have to be prepared to handle
11899 a zero size. */
11900 file_align = 1 << log_file_align;
11901 if (h->root.type == bfd_link_hash_undefined)
11902 size = addend + file_align;
11903 else
11905 size = h->size;
11906 if (addend >= size)
11908 /* Oops! We've got a reference past the defined end of
11909 the table. This is probably a bug -- shall we warn? */
11910 size = addend + file_align;
11913 size = (size + file_align - 1) & -file_align;
11915 /* Allocate one extra entry for use as a "done" flag for the
11916 consolidation pass. */
11917 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11919 if (ptr)
11921 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
11923 if (ptr != NULL)
11925 size_t oldbytes;
11927 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11928 * sizeof (bfd_boolean));
11929 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11932 else
11933 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
11935 if (ptr == NULL)
11936 return FALSE;
11938 /* And arrange for that done flag to be at index -1. */
11939 h->vtable->used = ptr + 1;
11940 h->vtable->size = size;
11943 h->vtable->used[addend >> log_file_align] = TRUE;
11945 return TRUE;
11948 struct alloc_got_off_arg {
11949 bfd_vma gotoff;
11950 struct bfd_link_info *info;
11953 /* We need a special top-level link routine to convert got reference counts
11954 to real got offsets. */
11956 static bfd_boolean
11957 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11959 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
11960 bfd *obfd = gofarg->info->output_bfd;
11961 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11963 if (h->root.type == bfd_link_hash_warning)
11964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11966 if (h->got.refcount > 0)
11968 h->got.offset = gofarg->gotoff;
11969 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11971 else
11972 h->got.offset = (bfd_vma) -1;
11974 return TRUE;
11977 /* And an accompanying bit to work out final got entry offsets once
11978 we're done. Should be called from final_link. */
11980 bfd_boolean
11981 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11982 struct bfd_link_info *info)
11984 bfd *i;
11985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11986 bfd_vma gotoff;
11987 struct alloc_got_off_arg gofarg;
11989 BFD_ASSERT (abfd == info->output_bfd);
11991 if (! is_elf_hash_table (info->hash))
11992 return FALSE;
11994 /* The GOT offset is relative to the .got section, but the GOT header is
11995 put into the .got.plt section, if the backend uses it. */
11996 if (bed->want_got_plt)
11997 gotoff = 0;
11998 else
11999 gotoff = bed->got_header_size;
12001 /* Do the local .got entries first. */
12002 for (i = info->input_bfds; i; i = i->link_next)
12004 bfd_signed_vma *local_got;
12005 bfd_size_type j, locsymcount;
12006 Elf_Internal_Shdr *symtab_hdr;
12008 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12009 continue;
12011 local_got = elf_local_got_refcounts (i);
12012 if (!local_got)
12013 continue;
12015 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12016 if (elf_bad_symtab (i))
12017 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12018 else
12019 locsymcount = symtab_hdr->sh_info;
12021 for (j = 0; j < locsymcount; ++j)
12023 if (local_got[j] > 0)
12025 local_got[j] = gotoff;
12026 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12028 else
12029 local_got[j] = (bfd_vma) -1;
12033 /* Then the global .got entries. .plt refcounts are handled by
12034 adjust_dynamic_symbol */
12035 gofarg.gotoff = gotoff;
12036 gofarg.info = info;
12037 elf_link_hash_traverse (elf_hash_table (info),
12038 elf_gc_allocate_got_offsets,
12039 &gofarg);
12040 return TRUE;
12043 /* Many folk need no more in the way of final link than this, once
12044 got entry reference counting is enabled. */
12046 bfd_boolean
12047 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12049 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12050 return FALSE;
12052 /* Invoke the regular ELF backend linker to do all the work. */
12053 return bfd_elf_final_link (abfd, info);
12056 bfd_boolean
12057 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12059 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12061 if (rcookie->bad_symtab)
12062 rcookie->rel = rcookie->rels;
12064 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12066 unsigned long r_symndx;
12068 if (! rcookie->bad_symtab)
12069 if (rcookie->rel->r_offset > offset)
12070 return FALSE;
12071 if (rcookie->rel->r_offset != offset)
12072 continue;
12074 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12075 if (r_symndx == SHN_UNDEF)
12076 return TRUE;
12078 if (r_symndx >= rcookie->locsymcount
12079 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12081 struct elf_link_hash_entry *h;
12083 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12085 while (h->root.type == bfd_link_hash_indirect
12086 || h->root.type == bfd_link_hash_warning)
12087 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12089 if ((h->root.type == bfd_link_hash_defined
12090 || h->root.type == bfd_link_hash_defweak)
12091 && elf_discarded_section (h->root.u.def.section))
12092 return TRUE;
12093 else
12094 return FALSE;
12096 else
12098 /* It's not a relocation against a global symbol,
12099 but it could be a relocation against a local
12100 symbol for a discarded section. */
12101 asection *isec;
12102 Elf_Internal_Sym *isym;
12104 /* Need to: get the symbol; get the section. */
12105 isym = &rcookie->locsyms[r_symndx];
12106 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12107 if (isec != NULL && elf_discarded_section (isec))
12108 return TRUE;
12110 return FALSE;
12112 return FALSE;
12115 /* Discard unneeded references to discarded sections.
12116 Returns TRUE if any section's size was changed. */
12117 /* This function assumes that the relocations are in sorted order,
12118 which is true for all known assemblers. */
12120 bfd_boolean
12121 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12123 struct elf_reloc_cookie cookie;
12124 asection *stab, *eh;
12125 const struct elf_backend_data *bed;
12126 bfd *abfd;
12127 bfd_boolean ret = FALSE;
12129 if (info->traditional_format
12130 || !is_elf_hash_table (info->hash))
12131 return FALSE;
12133 _bfd_elf_begin_eh_frame_parsing (info);
12134 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12136 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12137 continue;
12139 bed = get_elf_backend_data (abfd);
12141 if ((abfd->flags & DYNAMIC) != 0)
12142 continue;
12144 eh = NULL;
12145 if (!info->relocatable)
12147 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12148 if (eh != NULL
12149 && (eh->size == 0
12150 || bfd_is_abs_section (eh->output_section)))
12151 eh = NULL;
12154 stab = bfd_get_section_by_name (abfd, ".stab");
12155 if (stab != NULL
12156 && (stab->size == 0
12157 || bfd_is_abs_section (stab->output_section)
12158 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12159 stab = NULL;
12161 if (stab == NULL
12162 && eh == NULL
12163 && bed->elf_backend_discard_info == NULL)
12164 continue;
12166 if (!init_reloc_cookie (&cookie, info, abfd))
12167 return FALSE;
12169 if (stab != NULL
12170 && stab->reloc_count > 0
12171 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12173 if (_bfd_discard_section_stabs (abfd, stab,
12174 elf_section_data (stab)->sec_info,
12175 bfd_elf_reloc_symbol_deleted_p,
12176 &cookie))
12177 ret = TRUE;
12178 fini_reloc_cookie_rels (&cookie, stab);
12181 if (eh != NULL
12182 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12184 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12185 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12186 bfd_elf_reloc_symbol_deleted_p,
12187 &cookie))
12188 ret = TRUE;
12189 fini_reloc_cookie_rels (&cookie, eh);
12192 if (bed->elf_backend_discard_info != NULL
12193 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12194 ret = TRUE;
12196 fini_reloc_cookie (&cookie, abfd);
12198 _bfd_elf_end_eh_frame_parsing (info);
12200 if (info->eh_frame_hdr
12201 && !info->relocatable
12202 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12203 ret = TRUE;
12205 return ret;
12208 /* For a SHT_GROUP section, return the group signature. For other
12209 sections, return the normal section name. */
12211 static const char *
12212 section_signature (asection *sec)
12214 if ((sec->flags & SEC_GROUP) != 0
12215 && elf_next_in_group (sec) != NULL
12216 && elf_group_name (elf_next_in_group (sec)) != NULL)
12217 return elf_group_name (elf_next_in_group (sec));
12218 return sec->name;
12221 void
12222 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12223 struct bfd_link_info *info)
12225 flagword flags;
12226 const char *name, *p;
12227 struct bfd_section_already_linked *l;
12228 struct bfd_section_already_linked_hash_entry *already_linked_list;
12230 if (sec->output_section == bfd_abs_section_ptr)
12231 return;
12233 flags = sec->flags;
12235 /* Return if it isn't a linkonce section. A comdat group section
12236 also has SEC_LINK_ONCE set. */
12237 if ((flags & SEC_LINK_ONCE) == 0)
12238 return;
12240 /* Don't put group member sections on our list of already linked
12241 sections. They are handled as a group via their group section. */
12242 if (elf_sec_group (sec) != NULL)
12243 return;
12245 /* FIXME: When doing a relocatable link, we may have trouble
12246 copying relocations in other sections that refer to local symbols
12247 in the section being discarded. Those relocations will have to
12248 be converted somehow; as of this writing I'm not sure that any of
12249 the backends handle that correctly.
12251 It is tempting to instead not discard link once sections when
12252 doing a relocatable link (technically, they should be discarded
12253 whenever we are building constructors). However, that fails,
12254 because the linker winds up combining all the link once sections
12255 into a single large link once section, which defeats the purpose
12256 of having link once sections in the first place.
12258 Also, not merging link once sections in a relocatable link
12259 causes trouble for MIPS ELF, which relies on link once semantics
12260 to handle the .reginfo section correctly. */
12262 name = section_signature (sec);
12264 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12265 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12266 p++;
12267 else
12268 p = name;
12270 already_linked_list = bfd_section_already_linked_table_lookup (p);
12272 for (l = already_linked_list->entry; l != NULL; l = l->next)
12274 /* We may have 2 different types of sections on the list: group
12275 sections and linkonce sections. Match like sections. */
12276 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12277 && strcmp (name, section_signature (l->sec)) == 0
12278 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12280 /* The section has already been linked. See if we should
12281 issue a warning. */
12282 switch (flags & SEC_LINK_DUPLICATES)
12284 default:
12285 abort ();
12287 case SEC_LINK_DUPLICATES_DISCARD:
12288 break;
12290 case SEC_LINK_DUPLICATES_ONE_ONLY:
12291 (*_bfd_error_handler)
12292 (_("%B: ignoring duplicate section `%A'"),
12293 abfd, sec);
12294 break;
12296 case SEC_LINK_DUPLICATES_SAME_SIZE:
12297 if (sec->size != l->sec->size)
12298 (*_bfd_error_handler)
12299 (_("%B: duplicate section `%A' has different size"),
12300 abfd, sec);
12301 break;
12303 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12304 if (sec->size != l->sec->size)
12305 (*_bfd_error_handler)
12306 (_("%B: duplicate section `%A' has different size"),
12307 abfd, sec);
12308 else if (sec->size != 0)
12310 bfd_byte *sec_contents, *l_sec_contents;
12312 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12313 (*_bfd_error_handler)
12314 (_("%B: warning: could not read contents of section `%A'"),
12315 abfd, sec);
12316 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12317 &l_sec_contents))
12318 (*_bfd_error_handler)
12319 (_("%B: warning: could not read contents of section `%A'"),
12320 l->sec->owner, l->sec);
12321 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12322 (*_bfd_error_handler)
12323 (_("%B: warning: duplicate section `%A' has different contents"),
12324 abfd, sec);
12326 if (sec_contents)
12327 free (sec_contents);
12328 if (l_sec_contents)
12329 free (l_sec_contents);
12331 break;
12334 /* Set the output_section field so that lang_add_section
12335 does not create a lang_input_section structure for this
12336 section. Since there might be a symbol in the section
12337 being discarded, we must retain a pointer to the section
12338 which we are really going to use. */
12339 sec->output_section = bfd_abs_section_ptr;
12340 sec->kept_section = l->sec;
12342 if (flags & SEC_GROUP)
12344 asection *first = elf_next_in_group (sec);
12345 asection *s = first;
12347 while (s != NULL)
12349 s->output_section = bfd_abs_section_ptr;
12350 /* Record which group discards it. */
12351 s->kept_section = l->sec;
12352 s = elf_next_in_group (s);
12353 /* These lists are circular. */
12354 if (s == first)
12355 break;
12359 return;
12363 /* A single member comdat group section may be discarded by a
12364 linkonce section and vice versa. */
12366 if ((flags & SEC_GROUP) != 0)
12368 asection *first = elf_next_in_group (sec);
12370 if (first != NULL && elf_next_in_group (first) == first)
12371 /* Check this single member group against linkonce sections. */
12372 for (l = already_linked_list->entry; l != NULL; l = l->next)
12373 if ((l->sec->flags & SEC_GROUP) == 0
12374 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12375 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12377 first->output_section = bfd_abs_section_ptr;
12378 first->kept_section = l->sec;
12379 sec->output_section = bfd_abs_section_ptr;
12380 break;
12383 else
12384 /* Check this linkonce section against single member groups. */
12385 for (l = already_linked_list->entry; l != NULL; l = l->next)
12386 if (l->sec->flags & SEC_GROUP)
12388 asection *first = elf_next_in_group (l->sec);
12390 if (first != NULL
12391 && elf_next_in_group (first) == first
12392 && bfd_elf_match_symbols_in_sections (first, sec, info))
12394 sec->output_section = bfd_abs_section_ptr;
12395 sec->kept_section = first;
12396 break;
12400 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12401 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12402 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12403 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12404 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12405 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12406 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12407 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12408 The reverse order cannot happen as there is never a bfd with only the
12409 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12410 matter as here were are looking only for cross-bfd sections. */
12412 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12413 for (l = already_linked_list->entry; l != NULL; l = l->next)
12414 if ((l->sec->flags & SEC_GROUP) == 0
12415 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12417 if (abfd != l->sec->owner)
12418 sec->output_section = bfd_abs_section_ptr;
12419 break;
12422 /* This is the first section with this name. Record it. */
12423 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12424 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12427 bfd_boolean
12428 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12430 return sym->st_shndx == SHN_COMMON;
12433 unsigned int
12434 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12436 return SHN_COMMON;
12439 asection *
12440 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12442 return bfd_com_section_ptr;
12445 bfd_vma
12446 _bfd_elf_default_got_elt_size (bfd *abfd,
12447 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12448 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12449 bfd *ibfd ATTRIBUTE_UNUSED,
12450 unsigned long symndx ATTRIBUTE_UNUSED)
12452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12453 return bed->s->arch_size / 8;
12456 /* Routines to support the creation of dynamic relocs. */
12458 /* Return true if NAME is a name of a relocation
12459 section associated with section S. */
12461 static bfd_boolean
12462 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12464 if (rela)
12465 return CONST_STRNEQ (name, ".rela")
12466 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12468 return CONST_STRNEQ (name, ".rel")
12469 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12472 /* Returns the name of the dynamic reloc section associated with SEC. */
12474 static const char *
12475 get_dynamic_reloc_section_name (bfd * abfd,
12476 asection * sec,
12477 bfd_boolean is_rela)
12479 const char * name;
12480 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12481 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12483 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12484 if (name == NULL)
12485 return NULL;
12487 if (! is_reloc_section (is_rela, name, sec))
12489 static bfd_boolean complained = FALSE;
12491 if (! complained)
12493 (*_bfd_error_handler)
12494 (_("%B: bad relocation section name `%s\'"), abfd, name);
12495 complained = TRUE;
12497 name = NULL;
12500 return name;
12503 /* Returns the dynamic reloc section associated with SEC.
12504 If necessary compute the name of the dynamic reloc section based
12505 on SEC's name (looked up in ABFD's string table) and the setting
12506 of IS_RELA. */
12508 asection *
12509 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12510 asection * sec,
12511 bfd_boolean is_rela)
12513 asection * reloc_sec = elf_section_data (sec)->sreloc;
12515 if (reloc_sec == NULL)
12517 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12519 if (name != NULL)
12521 reloc_sec = bfd_get_section_by_name (abfd, name);
12523 if (reloc_sec != NULL)
12524 elf_section_data (sec)->sreloc = reloc_sec;
12528 return reloc_sec;
12531 /* Returns the dynamic reloc section associated with SEC. If the
12532 section does not exist it is created and attached to the DYNOBJ
12533 bfd and stored in the SRELOC field of SEC's elf_section_data
12534 structure.
12536 ALIGNMENT is the alignment for the newly created section and
12537 IS_RELA defines whether the name should be .rela.<SEC's name>
12538 or .rel.<SEC's name>. The section name is looked up in the
12539 string table associated with ABFD. */
12541 asection *
12542 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12543 bfd * dynobj,
12544 unsigned int alignment,
12545 bfd * abfd,
12546 bfd_boolean is_rela)
12548 asection * reloc_sec = elf_section_data (sec)->sreloc;
12550 if (reloc_sec == NULL)
12552 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12554 if (name == NULL)
12555 return NULL;
12557 reloc_sec = bfd_get_section_by_name (dynobj, name);
12559 if (reloc_sec == NULL)
12561 flagword flags;
12563 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12564 if ((sec->flags & SEC_ALLOC) != 0)
12565 flags |= SEC_ALLOC | SEC_LOAD;
12567 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12568 if (reloc_sec != NULL)
12570 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12571 reloc_sec = NULL;
12575 elf_section_data (sec)->sreloc = reloc_sec;
12578 return reloc_sec;