Initial commit
[cbs-scheduler.git] / arch / x86 / kernel / tsc.c
blobc317da773fa778270ae4b1484a7902c3e7ab3d14
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
20 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
21 EXPORT_SYMBOL(cpu_khz);
23 unsigned int __read_mostly tsc_khz;
24 EXPORT_SYMBOL(tsc_khz);
27 * TSC can be unstable due to cpufreq or due to unsynced TSCs
29 static int __read_mostly tsc_unstable;
31 /* native_sched_clock() is called before tsc_init(), so
32 we must start with the TSC soft disabled to prevent
33 erroneous rdtsc usage on !cpu_has_tsc processors */
34 static int __read_mostly tsc_disabled = -1;
36 static int tsc_clocksource_reliable;
38 * Scheduler clock - returns current time in nanosec units.
40 u64 native_sched_clock(void)
42 u64 this_offset;
45 * Fall back to jiffies if there's no TSC available:
46 * ( But note that we still use it if the TSC is marked
47 * unstable. We do this because unlike Time Of Day,
48 * the scheduler clock tolerates small errors and it's
49 * very important for it to be as fast as the platform
50 * can achive it. )
52 if (unlikely(tsc_disabled)) {
53 /* No locking but a rare wrong value is not a big deal: */
54 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
57 /* read the Time Stamp Counter: */
58 rdtscll(this_offset);
60 /* return the value in ns */
61 return __cycles_2_ns(this_offset);
64 /* We need to define a real function for sched_clock, to override the
65 weak default version */
66 #ifdef CONFIG_PARAVIRT
67 unsigned long long sched_clock(void)
69 return paravirt_sched_clock();
71 #else
72 unsigned long long
73 sched_clock(void) __attribute__((alias("native_sched_clock")));
74 #endif
76 int check_tsc_unstable(void)
78 return tsc_unstable;
80 EXPORT_SYMBOL_GPL(check_tsc_unstable);
82 #ifdef CONFIG_X86_TSC
83 int __init notsc_setup(char *str)
85 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
86 "cannot disable TSC completely.\n");
87 tsc_disabled = 1;
88 return 1;
90 #else
92 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
93 * in cpu/common.c
95 int __init notsc_setup(char *str)
97 setup_clear_cpu_cap(X86_FEATURE_TSC);
98 return 1;
100 #endif
102 __setup("notsc", notsc_setup);
104 static int __init tsc_setup(char *str)
106 if (!strcmp(str, "reliable"))
107 tsc_clocksource_reliable = 1;
108 return 1;
111 __setup("tsc=", tsc_setup);
113 #define MAX_RETRIES 5
114 #define SMI_TRESHOLD 50000
117 * Read TSC and the reference counters. Take care of SMI disturbance
119 static u64 tsc_read_refs(u64 *p, int hpet)
121 u64 t1, t2;
122 int i;
124 for (i = 0; i < MAX_RETRIES; i++) {
125 t1 = get_cycles();
126 if (hpet)
127 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
128 else
129 *p = acpi_pm_read_early();
130 t2 = get_cycles();
131 if ((t2 - t1) < SMI_TRESHOLD)
132 return t2;
134 return ULLONG_MAX;
138 * Calculate the TSC frequency from HPET reference
140 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
142 u64 tmp;
144 if (hpet2 < hpet1)
145 hpet2 += 0x100000000ULL;
146 hpet2 -= hpet1;
147 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
148 do_div(tmp, 1000000);
149 do_div(deltatsc, tmp);
151 return (unsigned long) deltatsc;
155 * Calculate the TSC frequency from PMTimer reference
157 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
159 u64 tmp;
161 if (!pm1 && !pm2)
162 return ULONG_MAX;
164 if (pm2 < pm1)
165 pm2 += (u64)ACPI_PM_OVRRUN;
166 pm2 -= pm1;
167 tmp = pm2 * 1000000000LL;
168 do_div(tmp, PMTMR_TICKS_PER_SEC);
169 do_div(deltatsc, tmp);
171 return (unsigned long) deltatsc;
174 #define CAL_MS 10
175 #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
176 #define CAL_PIT_LOOPS 1000
178 #define CAL2_MS 50
179 #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
180 #define CAL2_PIT_LOOPS 5000
184 * Try to calibrate the TSC against the Programmable
185 * Interrupt Timer and return the frequency of the TSC
186 * in kHz.
188 * Return ULONG_MAX on failure to calibrate.
190 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
192 u64 tsc, t1, t2, delta;
193 unsigned long tscmin, tscmax;
194 int pitcnt;
196 /* Set the Gate high, disable speaker */
197 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
200 * Setup CTC channel 2* for mode 0, (interrupt on terminal
201 * count mode), binary count. Set the latch register to 50ms
202 * (LSB then MSB) to begin countdown.
204 outb(0xb0, 0x43);
205 outb(latch & 0xff, 0x42);
206 outb(latch >> 8, 0x42);
208 tsc = t1 = t2 = get_cycles();
210 pitcnt = 0;
211 tscmax = 0;
212 tscmin = ULONG_MAX;
213 while ((inb(0x61) & 0x20) == 0) {
214 t2 = get_cycles();
215 delta = t2 - tsc;
216 tsc = t2;
217 if ((unsigned long) delta < tscmin)
218 tscmin = (unsigned int) delta;
219 if ((unsigned long) delta > tscmax)
220 tscmax = (unsigned int) delta;
221 pitcnt++;
225 * Sanity checks:
227 * If we were not able to read the PIT more than loopmin
228 * times, then we have been hit by a massive SMI
230 * If the maximum is 10 times larger than the minimum,
231 * then we got hit by an SMI as well.
233 if (pitcnt < loopmin || tscmax > 10 * tscmin)
234 return ULONG_MAX;
236 /* Calculate the PIT value */
237 delta = t2 - t1;
238 do_div(delta, ms);
239 return delta;
243 * This reads the current MSB of the PIT counter, and
244 * checks if we are running on sufficiently fast and
245 * non-virtualized hardware.
247 * Our expectations are:
249 * - the PIT is running at roughly 1.19MHz
251 * - each IO is going to take about 1us on real hardware,
252 * but we allow it to be much faster (by a factor of 10) or
253 * _slightly_ slower (ie we allow up to a 2us read+counter
254 * update - anything else implies a unacceptably slow CPU
255 * or PIT for the fast calibration to work.
257 * - with 256 PIT ticks to read the value, we have 214us to
258 * see the same MSB (and overhead like doing a single TSC
259 * read per MSB value etc).
261 * - We're doing 2 reads per loop (LSB, MSB), and we expect
262 * them each to take about a microsecond on real hardware.
263 * So we expect a count value of around 100. But we'll be
264 * generous, and accept anything over 50.
266 * - if the PIT is stuck, and we see *many* more reads, we
267 * return early (and the next caller of pit_expect_msb()
268 * then consider it a failure when they don't see the
269 * next expected value).
271 * These expectations mean that we know that we have seen the
272 * transition from one expected value to another with a fairly
273 * high accuracy, and we didn't miss any events. We can thus
274 * use the TSC value at the transitions to calculate a pretty
275 * good value for the TSC frequencty.
277 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
279 int count;
280 u64 tsc = 0;
282 for (count = 0; count < 50000; count++) {
283 /* Ignore LSB */
284 inb(0x42);
285 if (inb(0x42) != val)
286 break;
287 tsc = get_cycles();
289 *deltap = get_cycles() - tsc;
290 *tscp = tsc;
293 * We require _some_ success, but the quality control
294 * will be based on the error terms on the TSC values.
296 return count > 5;
300 * How many MSB values do we want to see? We aim for
301 * a maximum error rate of 500ppm (in practice the
302 * real error is much smaller), but refuse to spend
303 * more than 25ms on it.
305 #define MAX_QUICK_PIT_MS 25
306 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
308 static unsigned long quick_pit_calibrate(void)
310 int i;
311 u64 tsc, delta;
312 unsigned long d1, d2;
314 /* Set the Gate high, disable speaker */
315 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
318 * Counter 2, mode 0 (one-shot), binary count
320 * NOTE! Mode 2 decrements by two (and then the
321 * output is flipped each time, giving the same
322 * final output frequency as a decrement-by-one),
323 * so mode 0 is much better when looking at the
324 * individual counts.
326 outb(0xb0, 0x43);
328 /* Start at 0xffff */
329 outb(0xff, 0x42);
330 outb(0xff, 0x42);
333 * The PIT starts counting at the next edge, so we
334 * need to delay for a microsecond. The easiest way
335 * to do that is to just read back the 16-bit counter
336 * once from the PIT.
338 inb(0x42);
339 inb(0x42);
341 if (pit_expect_msb(0xff, &tsc, &d1)) {
342 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
343 if (!pit_expect_msb(0xff-i, &delta, &d2))
344 break;
347 * Iterate until the error is less than 500 ppm
349 delta -= tsc;
350 if (d1+d2 < delta >> 11)
351 goto success;
354 printk("Fast TSC calibration failed\n");
355 return 0;
357 success:
359 * Ok, if we get here, then we've seen the
360 * MSB of the PIT decrement 'i' times, and the
361 * error has shrunk to less than 500 ppm.
363 * As a result, we can depend on there not being
364 * any odd delays anywhere, and the TSC reads are
365 * reliable (within the error). We also adjust the
366 * delta to the middle of the error bars, just
367 * because it looks nicer.
369 * kHz = ticks / time-in-seconds / 1000;
370 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
371 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
373 delta += (long)(d2 - d1)/2;
374 delta *= PIT_TICK_RATE;
375 do_div(delta, i*256*1000);
376 printk("Fast TSC calibration using PIT\n");
377 return delta;
381 * native_calibrate_tsc - calibrate the tsc on boot
383 unsigned long native_calibrate_tsc(void)
385 u64 tsc1, tsc2, delta, ref1, ref2;
386 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
387 unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
388 int hpet = is_hpet_enabled(), i, loopmin;
390 tsc_khz = get_hypervisor_tsc_freq();
391 if (tsc_khz) {
392 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
393 return tsc_khz;
396 local_irq_save(flags);
397 fast_calibrate = quick_pit_calibrate();
398 local_irq_restore(flags);
399 if (fast_calibrate)
400 return fast_calibrate;
403 * Run 5 calibration loops to get the lowest frequency value
404 * (the best estimate). We use two different calibration modes
405 * here:
407 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
408 * load a timeout of 50ms. We read the time right after we
409 * started the timer and wait until the PIT count down reaches
410 * zero. In each wait loop iteration we read the TSC and check
411 * the delta to the previous read. We keep track of the min
412 * and max values of that delta. The delta is mostly defined
413 * by the IO time of the PIT access, so we can detect when a
414 * SMI/SMM disturbance happend between the two reads. If the
415 * maximum time is significantly larger than the minimum time,
416 * then we discard the result and have another try.
418 * 2) Reference counter. If available we use the HPET or the
419 * PMTIMER as a reference to check the sanity of that value.
420 * We use separate TSC readouts and check inside of the
421 * reference read for a SMI/SMM disturbance. We dicard
422 * disturbed values here as well. We do that around the PIT
423 * calibration delay loop as we have to wait for a certain
424 * amount of time anyway.
427 /* Preset PIT loop values */
428 latch = CAL_LATCH;
429 ms = CAL_MS;
430 loopmin = CAL_PIT_LOOPS;
432 for (i = 0; i < 3; i++) {
433 unsigned long tsc_pit_khz;
436 * Read the start value and the reference count of
437 * hpet/pmtimer when available. Then do the PIT
438 * calibration, which will take at least 50ms, and
439 * read the end value.
441 local_irq_save(flags);
442 tsc1 = tsc_read_refs(&ref1, hpet);
443 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
444 tsc2 = tsc_read_refs(&ref2, hpet);
445 local_irq_restore(flags);
447 /* Pick the lowest PIT TSC calibration so far */
448 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
450 /* hpet or pmtimer available ? */
451 if (!hpet && !ref1 && !ref2)
452 continue;
454 /* Check, whether the sampling was disturbed by an SMI */
455 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
456 continue;
458 tsc2 = (tsc2 - tsc1) * 1000000LL;
459 if (hpet)
460 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
461 else
462 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
464 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
466 /* Check the reference deviation */
467 delta = ((u64) tsc_pit_min) * 100;
468 do_div(delta, tsc_ref_min);
471 * If both calibration results are inside a 10% window
472 * then we can be sure, that the calibration
473 * succeeded. We break out of the loop right away. We
474 * use the reference value, as it is more precise.
476 if (delta >= 90 && delta <= 110) {
477 printk(KERN_INFO
478 "TSC: PIT calibration matches %s. %d loops\n",
479 hpet ? "HPET" : "PMTIMER", i + 1);
480 return tsc_ref_min;
484 * Check whether PIT failed more than once. This
485 * happens in virtualized environments. We need to
486 * give the virtual PC a slightly longer timeframe for
487 * the HPET/PMTIMER to make the result precise.
489 if (i == 1 && tsc_pit_min == ULONG_MAX) {
490 latch = CAL2_LATCH;
491 ms = CAL2_MS;
492 loopmin = CAL2_PIT_LOOPS;
497 * Now check the results.
499 if (tsc_pit_min == ULONG_MAX) {
500 /* PIT gave no useful value */
501 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
503 /* We don't have an alternative source, disable TSC */
504 if (!hpet && !ref1 && !ref2) {
505 printk("TSC: No reference (HPET/PMTIMER) available\n");
506 return 0;
509 /* The alternative source failed as well, disable TSC */
510 if (tsc_ref_min == ULONG_MAX) {
511 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
512 "failed.\n");
513 return 0;
516 /* Use the alternative source */
517 printk(KERN_INFO "TSC: using %s reference calibration\n",
518 hpet ? "HPET" : "PMTIMER");
520 return tsc_ref_min;
523 /* We don't have an alternative source, use the PIT calibration value */
524 if (!hpet && !ref1 && !ref2) {
525 printk(KERN_INFO "TSC: Using PIT calibration value\n");
526 return tsc_pit_min;
529 /* The alternative source failed, use the PIT calibration value */
530 if (tsc_ref_min == ULONG_MAX) {
531 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
532 "Using PIT calibration\n");
533 return tsc_pit_min;
537 * The calibration values differ too much. In doubt, we use
538 * the PIT value as we know that there are PMTIMERs around
539 * running at double speed. At least we let the user know:
541 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
542 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
543 printk(KERN_INFO "TSC: Using PIT calibration value\n");
544 return tsc_pit_min;
547 #ifdef CONFIG_X86_32
548 /* Only called from the Powernow K7 cpu freq driver */
549 int recalibrate_cpu_khz(void)
551 #ifndef CONFIG_SMP
552 unsigned long cpu_khz_old = cpu_khz;
554 if (cpu_has_tsc) {
555 tsc_khz = calibrate_tsc();
556 cpu_khz = tsc_khz;
557 cpu_data(0).loops_per_jiffy =
558 cpufreq_scale(cpu_data(0).loops_per_jiffy,
559 cpu_khz_old, cpu_khz);
560 return 0;
561 } else
562 return -ENODEV;
563 #else
564 return -ENODEV;
565 #endif
568 EXPORT_SYMBOL(recalibrate_cpu_khz);
570 #endif /* CONFIG_X86_32 */
572 /* Accelerators for sched_clock()
573 * convert from cycles(64bits) => nanoseconds (64bits)
574 * basic equation:
575 * ns = cycles / (freq / ns_per_sec)
576 * ns = cycles * (ns_per_sec / freq)
577 * ns = cycles * (10^9 / (cpu_khz * 10^3))
578 * ns = cycles * (10^6 / cpu_khz)
580 * Then we use scaling math (suggested by george@mvista.com) to get:
581 * ns = cycles * (10^6 * SC / cpu_khz) / SC
582 * ns = cycles * cyc2ns_scale / SC
584 * And since SC is a constant power of two, we can convert the div
585 * into a shift.
587 * We can use khz divisor instead of mhz to keep a better precision, since
588 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
589 * (mathieu.desnoyers@polymtl.ca)
591 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
594 DEFINE_PER_CPU(unsigned long, cyc2ns);
596 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
598 unsigned long long tsc_now, ns_now;
599 unsigned long flags, *scale;
601 local_irq_save(flags);
602 sched_clock_idle_sleep_event();
604 scale = &per_cpu(cyc2ns, cpu);
606 rdtscll(tsc_now);
607 ns_now = __cycles_2_ns(tsc_now);
609 if (cpu_khz)
610 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
612 sched_clock_idle_wakeup_event(0);
613 local_irq_restore(flags);
616 #ifdef CONFIG_CPU_FREQ
618 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
619 * changes.
621 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
622 * not that important because current Opteron setups do not support
623 * scaling on SMP anyroads.
625 * Should fix up last_tsc too. Currently gettimeofday in the
626 * first tick after the change will be slightly wrong.
629 static unsigned int ref_freq;
630 static unsigned long loops_per_jiffy_ref;
631 static unsigned long tsc_khz_ref;
633 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
634 void *data)
636 struct cpufreq_freqs *freq = data;
637 unsigned long *lpj, dummy;
639 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
640 return 0;
642 lpj = &dummy;
643 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
644 #ifdef CONFIG_SMP
645 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
646 #else
647 lpj = &boot_cpu_data.loops_per_jiffy;
648 #endif
650 if (!ref_freq) {
651 ref_freq = freq->old;
652 loops_per_jiffy_ref = *lpj;
653 tsc_khz_ref = tsc_khz;
655 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
656 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
657 (val == CPUFREQ_RESUMECHANGE)) {
658 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
660 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
661 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
662 mark_tsc_unstable("cpufreq changes");
665 set_cyc2ns_scale(tsc_khz, freq->cpu);
667 return 0;
670 static struct notifier_block time_cpufreq_notifier_block = {
671 .notifier_call = time_cpufreq_notifier
674 static int __init cpufreq_tsc(void)
676 if (!cpu_has_tsc)
677 return 0;
678 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
679 return 0;
680 cpufreq_register_notifier(&time_cpufreq_notifier_block,
681 CPUFREQ_TRANSITION_NOTIFIER);
682 return 0;
685 core_initcall(cpufreq_tsc);
687 #endif /* CONFIG_CPU_FREQ */
689 /* clocksource code */
691 static struct clocksource clocksource_tsc;
694 * We compare the TSC to the cycle_last value in the clocksource
695 * structure to avoid a nasty time-warp. This can be observed in a
696 * very small window right after one CPU updated cycle_last under
697 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
698 * is smaller than the cycle_last reference value due to a TSC which
699 * is slighty behind. This delta is nowhere else observable, but in
700 * that case it results in a forward time jump in the range of hours
701 * due to the unsigned delta calculation of the time keeping core
702 * code, which is necessary to support wrapping clocksources like pm
703 * timer.
705 static cycle_t read_tsc(void)
707 cycle_t ret = (cycle_t)get_cycles();
709 return ret >= clocksource_tsc.cycle_last ?
710 ret : clocksource_tsc.cycle_last;
713 #ifdef CONFIG_X86_64
714 static cycle_t __vsyscall_fn vread_tsc(void)
716 cycle_t ret = (cycle_t)vget_cycles();
718 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
719 ret : __vsyscall_gtod_data.clock.cycle_last;
721 #endif
723 static struct clocksource clocksource_tsc = {
724 .name = "tsc",
725 .rating = 300,
726 .read = read_tsc,
727 .mask = CLOCKSOURCE_MASK(64),
728 .shift = 22,
729 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
730 CLOCK_SOURCE_MUST_VERIFY,
731 #ifdef CONFIG_X86_64
732 .vread = vread_tsc,
733 #endif
736 void mark_tsc_unstable(char *reason)
738 if (!tsc_unstable) {
739 tsc_unstable = 1;
740 printk("Marking TSC unstable due to %s\n", reason);
741 /* Change only the rating, when not registered */
742 if (clocksource_tsc.mult)
743 clocksource_change_rating(&clocksource_tsc, 0);
744 else
745 clocksource_tsc.rating = 0;
749 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
751 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
753 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
754 d->ident);
755 tsc_unstable = 1;
756 return 0;
759 /* List of systems that have known TSC problems */
760 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
762 .callback = dmi_mark_tsc_unstable,
763 .ident = "IBM Thinkpad 380XD",
764 .matches = {
765 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
766 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
772 static void __init check_system_tsc_reliable(void)
774 #ifdef CONFIG_MGEODE_LX
775 /* RTSC counts during suspend */
776 #define RTSC_SUSP 0x100
777 unsigned long res_low, res_high;
779 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
780 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
781 if (res_low & RTSC_SUSP)
782 tsc_clocksource_reliable = 1;
783 #endif
784 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
785 tsc_clocksource_reliable = 1;
789 * Make an educated guess if the TSC is trustworthy and synchronized
790 * over all CPUs.
792 __cpuinit int unsynchronized_tsc(void)
794 if (!cpu_has_tsc || tsc_unstable)
795 return 1;
797 #ifdef CONFIG_SMP
798 if (apic_is_clustered_box())
799 return 1;
800 #endif
802 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
803 return 0;
805 * Intel systems are normally all synchronized.
806 * Exceptions must mark TSC as unstable:
808 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
809 /* assume multi socket systems are not synchronized: */
810 if (num_possible_cpus() > 1)
811 tsc_unstable = 1;
814 return tsc_unstable;
817 static void __init init_tsc_clocksource(void)
819 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
820 clocksource_tsc.shift);
821 if (tsc_clocksource_reliable)
822 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
823 /* lower the rating if we already know its unstable: */
824 if (check_tsc_unstable()) {
825 clocksource_tsc.rating = 0;
826 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
828 clocksource_register(&clocksource_tsc);
831 void __init tsc_init(void)
833 u64 lpj;
834 int cpu;
836 if (!cpu_has_tsc)
837 return;
839 tsc_khz = calibrate_tsc();
840 cpu_khz = tsc_khz;
842 if (!tsc_khz) {
843 mark_tsc_unstable("could not calculate TSC khz");
844 return;
847 #ifdef CONFIG_X86_64
848 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
849 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
850 cpu_khz = calibrate_cpu();
851 #endif
853 printk("Detected %lu.%03lu MHz processor.\n",
854 (unsigned long)cpu_khz / 1000,
855 (unsigned long)cpu_khz % 1000);
858 * Secondary CPUs do not run through tsc_init(), so set up
859 * all the scale factors for all CPUs, assuming the same
860 * speed as the bootup CPU. (cpufreq notifiers will fix this
861 * up if their speed diverges)
863 for_each_possible_cpu(cpu)
864 set_cyc2ns_scale(cpu_khz, cpu);
866 if (tsc_disabled > 0)
867 return;
869 /* now allow native_sched_clock() to use rdtsc */
870 tsc_disabled = 0;
872 lpj = ((u64)tsc_khz * 1000);
873 do_div(lpj, HZ);
874 lpj_fine = lpj;
876 use_tsc_delay();
877 /* Check and install the TSC clocksource */
878 dmi_check_system(bad_tsc_dmi_table);
880 if (unsynchronized_tsc())
881 mark_tsc_unstable("TSCs unsynchronized");
883 check_system_tsc_reliable();
884 init_tsc_clocksource();