Luca's patch ported
[cbs-scheduler.git] / include / linux / sched.h
blob31120aaf181447d2f51ae067a4630cf6754b15a6
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 #define SCHED_CBS 6
43 #ifdef __KERNEL__
45 struct sched_param {
46 int sched_priority;
47 int sched_ss_low_priority;
48 struct timespec sched_ss_repl_period;
49 struct timespec sched_ss_init_budget;
50 int sched_ss_max_repl;
53 #include <asm/param.h> /* for HZ */
55 #include <linux/capability.h>
56 #include <linux/threads.h>
57 #include <linux/kernel.h>
58 #include <linux/types.h>
59 #include <linux/timex.h>
60 #include <linux/jiffies.h>
61 #include <linux/rbtree.h>
62 #include <linux/thread_info.h>
63 #include <linux/cpumask.h>
64 #include <linux/errno.h>
65 #include <linux/nodemask.h>
66 #include <linux/mm_types.h>
68 #include <asm/system.h>
69 #include <asm/page.h>
70 #include <asm/ptrace.h>
71 #include <asm/cputime.h>
73 #include <linux/smp.h>
74 #include <linux/sem.h>
75 #include <linux/signal.h>
76 #include <linux/fs_struct.h>
77 #include <linux/compiler.h>
78 #include <linux/completion.h>
79 #include <linux/perf_counter.h>
80 #include <linux/pid.h>
81 #include <linux/percpu.h>
82 #include <linux/topology.h>
83 #include <linux/proportions.h>
84 #include <linux/seccomp.h>
85 #include <linux/rcupdate.h>
86 #include <linux/rtmutex.h>
88 #include <linux/time.h>
89 #include <linux/param.h>
90 #include <linux/resource.h>
91 #include <linux/timer.h>
92 #include <linux/hrtimer.h>
93 #include <linux/task_io_accounting.h>
94 #include <linux/kobject.h>
95 #include <linux/latencytop.h>
96 #include <linux/cred.h>
98 #include <asm/processor.h>
100 #ifdef CONFIG_PREEMPT
101 extern int kernel_preemption;
102 #else
103 # define kernel_preemption 0
104 #endif
105 #ifdef CONFIG_PREEMPT_VOLUNTARY
106 extern int voluntary_preemption;
107 #else
108 # define voluntary_preemption 0
109 #endif
110 #ifdef CONFIG_PREEMPT_SOFTIRQS
111 extern int softirq_preemption;
112 #else
113 # define softirq_preemption 0
114 #endif
116 #ifdef CONFIG_PREEMPT_HARDIRQS
117 extern int hardirq_preemption;
118 #else
119 # define hardirq_preemption 0
120 #endif
122 struct mem_cgroup;
123 struct exec_domain;
124 struct futex_pi_state;
125 struct robust_list_head;
126 struct bio;
127 struct bts_tracer;
130 * List of flags we want to share for kernel threads,
131 * if only because they are not used by them anyway.
133 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
136 * These are the constant used to fake the fixed-point load-average
137 * counting. Some notes:
138 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
139 * a load-average precision of 10 bits integer + 11 bits fractional
140 * - if you want to count load-averages more often, you need more
141 * precision, or rounding will get you. With 2-second counting freq,
142 * the EXP_n values would be 1981, 2034 and 2043 if still using only
143 * 11 bit fractions.
145 extern unsigned long avenrun[]; /* Load averages */
146 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
148 #define FSHIFT 11 /* nr of bits of precision */
149 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
150 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
151 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
152 #define EXP_5 2014 /* 1/exp(5sec/5min) */
153 #define EXP_15 2037 /* 1/exp(5sec/15min) */
155 #define CALC_LOAD(load,exp,n) \
156 load *= exp; \
157 load += n*(FIXED_1-exp); \
158 load >>= FSHIFT;
160 extern unsigned long total_forks;
161 extern int nr_threads;
162 DECLARE_PER_CPU(unsigned long, process_counts);
163 extern int nr_processes(void);
164 extern unsigned long nr_running(void);
165 extern unsigned long nr_uninterruptible(void);
166 extern unsigned long nr_iowait(void);
167 extern u64 cpu_nr_migrations(int cpu);
168 extern void calc_global_load(void);
170 extern unsigned long get_parent_ip(unsigned long addr);
172 struct seq_file;
173 struct cfs_rq;
174 struct task_group;
175 #ifdef CONFIG_SCHED_DEBUG
176 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
177 extern void proc_sched_set_task(struct task_struct *p);
178 extern void
179 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
180 #else
181 static inline void
182 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
185 static inline void proc_sched_set_task(struct task_struct *p)
188 static inline void
189 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
192 #endif
194 extern unsigned long long time_sync_thresh;
195 extern struct semaphore kernel_sem;
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
207 #define TASK_RUNNING 0
208 #define TASK_RUNNING_MUTEX 1
209 #define TASK_INTERRUPTIBLE 2
210 #define TASK_UNINTERRUPTIBLE 4
211 #define __TASK_STOPPED 8
212 #define __TASK_TRACED 16
213 /* in tsk->exit_state */
214 #define EXIT_ZOMBIE 32
215 #define EXIT_DEAD 64
216 /* in tsk->state again */
217 #define TASK_DEAD 128
218 #define TASK_WAKEKILL 256
220 /* Convenience macros for the sake of set_task_state */
221 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
222 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
223 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
225 /* Convenience macros for the sake of wake_up */
226 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
227 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
229 /* get_task_state() */
230 #define TASK_REPORT (TASK_RUNNING | TASK_RUNNING_MUTEX | \
231 TASK_INTERRUPTIBLE | \
232 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
233 __TASK_TRACED)
235 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
236 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
237 #define task_is_stopped_or_traced(task) \
238 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
239 #define task_contributes_to_load(task) \
240 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
241 (task->flags & PF_FROZEN) == 0)
243 #define __set_task_state(tsk, state_value) \
244 do { (tsk)->state = (state_value); } while (0)
245 #define set_task_state(tsk, state_value) \
246 set_mb((tsk)->state, (state_value))
248 // #define PREEMPT_DIRECT
250 #ifdef CONFIG_X86_LOCAL_APIC
251 extern void nmi_show_all_regs(void);
252 #else
253 # define nmi_show_all_regs() do { } while (0)
254 #endif
256 #include <linux/smp.h>
257 #include <linux/sem.h>
258 #include <linux/signal.h>
259 #include <linux/securebits.h>
260 #include <linux/fs_struct.h>
261 #include <linux/compiler.h>
262 #include <linux/completion.h>
263 #include <linux/pid.h>
264 #include <linux/percpu.h>
265 #include <linux/topology.h>
266 #include <linux/seccomp.h>
268 struct exec_domain;
271 * set_current_state() includes a barrier so that the write of current->state
272 * is correctly serialised wrt the caller's subsequent test of whether to
273 * actually sleep:
275 * set_current_state(TASK_UNINTERRUPTIBLE);
276 * if (do_i_need_to_sleep())
277 * schedule();
279 * If the caller does not need such serialisation then use __set_current_state()
281 #define __set_current_state(state_value) \
282 do { current->state = (state_value); } while (0)
283 #define set_current_state(state_value) \
284 set_mb(current->state, (state_value))
286 /* Task command name length */
287 #define TASK_COMM_LEN 16
289 #include <linux/spinlock.h>
292 * This serializes "schedule()" and also protects
293 * the run-queue from deletions/modifications (but
294 * _adding_ to the beginning of the run-queue has
295 * a separate lock).
297 extern rwlock_t tasklist_lock;
298 extern spinlock_t mmlist_lock;
300 struct task_struct;
302 extern void sched_init(void);
303 extern void sched_init_smp(void);
304 extern asmlinkage void schedule_tail(struct task_struct *prev);
305 extern void init_idle(struct task_struct *idle, int cpu);
306 extern void init_idle_bootup_task(struct task_struct *idle);
308 extern int runqueue_is_locked(void);
309 extern void task_rq_unlock_wait(struct task_struct *p);
311 extern cpumask_var_t nohz_cpu_mask;
312 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
313 extern int select_nohz_load_balancer(int cpu);
314 #else
315 static inline int select_nohz_load_balancer(int cpu)
317 return 0;
319 #endif
322 * Only dump TASK_* tasks. (0 for all tasks)
324 extern void show_state_filter(unsigned long state_filter);
326 static inline void show_state(void)
328 show_state_filter(0);
331 extern void show_regs(struct pt_regs *);
334 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
335 * task), SP is the stack pointer of the first frame that should be shown in the back
336 * trace (or NULL if the entire call-chain of the task should be shown).
338 extern void show_stack(struct task_struct *task, unsigned long *sp);
340 void io_schedule(void);
341 long io_schedule_timeout(long timeout);
343 extern void cpu_init (void);
344 extern void trap_init(void);
345 extern void update_process_times(int user);
346 extern void scheduler_tick(void);
348 extern void sched_show_task(struct task_struct *p);
350 #ifdef CONFIG_GENERIC_HARDIRQS
351 extern int debug_direct_keyboard;
352 #else
353 # define debug_direct_keyboard 0
354 #endif
356 #ifdef CONFIG_DETECT_SOFTLOCKUP
357 extern void softlockup_tick(void);
358 extern void touch_softlockup_watchdog(void);
359 extern void touch_all_softlockup_watchdogs(void);
360 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
361 struct file *filp, void __user *buffer,
362 size_t *lenp, loff_t *ppos);
363 extern unsigned int softlockup_panic;
364 extern int softlockup_thresh;
365 #else
366 static inline void softlockup_tick(void)
369 static inline void touch_softlockup_watchdog(void)
372 static inline void touch_all_softlockup_watchdogs(void)
375 #endif
377 #ifdef CONFIG_DETECT_HUNG_TASK
378 extern unsigned int sysctl_hung_task_panic;
379 extern unsigned long sysctl_hung_task_check_count;
380 extern unsigned long sysctl_hung_task_timeout_secs;
381 extern unsigned long sysctl_hung_task_warnings;
382 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
383 struct file *filp, void __user *buffer,
384 size_t *lenp, loff_t *ppos);
385 #endif
387 /* Attach to any functions which should be ignored in wchan output. */
388 #define __sched __attribute__((__section__(".sched.text")))
390 /* Linker adds these: start and end of __sched functions */
391 extern char __sched_text_start[], __sched_text_end[];
393 /* Is this address in the __sched functions? */
394 extern int in_sched_functions(unsigned long addr);
396 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
397 extern signed long schedule_timeout(signed long timeout);
398 extern signed long schedule_timeout_interruptible(signed long timeout);
399 extern signed long schedule_timeout_killable(signed long timeout);
400 extern signed long schedule_timeout_uninterruptible(signed long timeout);
401 asmlinkage void __schedule(void);
402 asmlinkage void schedule(void);
403 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
405 * This one can be called with interrupts disabled, only
406 * to be used by lowlevel arch code!
408 asmlinkage void __sched __schedule(void);
410 struct nsproxy;
411 struct user_namespace;
413 /* Maximum number of active map areas.. This is a random (large) number */
414 #define DEFAULT_MAX_MAP_COUNT 65536
416 extern int sysctl_max_map_count;
418 #include <linux/aio.h>
420 extern unsigned long
421 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
422 unsigned long, unsigned long);
423 extern unsigned long
424 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
425 unsigned long len, unsigned long pgoff,
426 unsigned long flags);
427 extern void arch_unmap_area(struct mm_struct *, unsigned long);
428 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
430 #if USE_SPLIT_PTLOCKS
432 * The mm counters are not protected by its page_table_lock,
433 * so must be incremented atomically.
435 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
436 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
437 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
438 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
439 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
441 #else /* !USE_SPLIT_PTLOCKS */
443 * The mm counters are protected by its page_table_lock,
444 * so can be incremented directly.
446 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
447 #define get_mm_counter(mm, member) ((mm)->_##member)
448 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
449 #define inc_mm_counter(mm, member) (mm)->_##member++
450 #define dec_mm_counter(mm, member) (mm)->_##member--
452 #endif /* !USE_SPLIT_PTLOCKS */
454 #define get_mm_rss(mm) \
455 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
456 #define update_hiwater_rss(mm) do { \
457 unsigned long _rss = get_mm_rss(mm); \
458 if ((mm)->hiwater_rss < _rss) \
459 (mm)->hiwater_rss = _rss; \
460 } while (0)
461 #define update_hiwater_vm(mm) do { \
462 if ((mm)->hiwater_vm < (mm)->total_vm) \
463 (mm)->hiwater_vm = (mm)->total_vm; \
464 } while (0)
466 #define get_mm_hiwater_rss(mm) max((mm)->hiwater_rss, get_mm_rss(mm))
467 #define get_mm_hiwater_vm(mm) max((mm)->hiwater_vm, (mm)->total_vm)
469 extern void set_dumpable(struct mm_struct *mm, int value);
470 extern int get_dumpable(struct mm_struct *mm);
472 /* mm flags */
473 /* dumpable bits */
474 #define MMF_DUMPABLE 0 /* core dump is permitted */
475 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
476 #define MMF_DUMPABLE_BITS 2
478 /* coredump filter bits */
479 #define MMF_DUMP_ANON_PRIVATE 2
480 #define MMF_DUMP_ANON_SHARED 3
481 #define MMF_DUMP_MAPPED_PRIVATE 4
482 #define MMF_DUMP_MAPPED_SHARED 5
483 #define MMF_DUMP_ELF_HEADERS 6
484 #define MMF_DUMP_HUGETLB_PRIVATE 7
485 #define MMF_DUMP_HUGETLB_SHARED 8
486 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
487 #define MMF_DUMP_FILTER_BITS 7
488 #define MMF_DUMP_FILTER_MASK \
489 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
490 #define MMF_DUMP_FILTER_DEFAULT \
491 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
492 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
495 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
496 #else
497 # define MMF_DUMP_MASK_DEFAULT_ELF 0
498 #endif
500 struct sighand_struct {
501 atomic_t count;
502 struct k_sigaction action[_NSIG];
503 spinlock_t siglock;
504 wait_queue_head_t signalfd_wqh;
507 struct pacct_struct {
508 int ac_flag;
509 long ac_exitcode;
510 unsigned long ac_mem;
511 cputime_t ac_utime, ac_stime;
512 unsigned long ac_minflt, ac_majflt;
516 * struct task_cputime - collected CPU time counts
517 * @utime: time spent in user mode, in &cputime_t units
518 * @stime: time spent in kernel mode, in &cputime_t units
519 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
521 * This structure groups together three kinds of CPU time that are
522 * tracked for threads and thread groups. Most things considering
523 * CPU time want to group these counts together and treat all three
524 * of them in parallel.
526 struct task_cputime {
527 cputime_t utime;
528 cputime_t stime;
529 unsigned long long sum_exec_runtime;
531 /* Alternate field names when used to cache expirations. */
532 #define prof_exp stime
533 #define virt_exp utime
534 #define sched_exp sum_exec_runtime
536 #define INIT_CPUTIME \
537 (struct task_cputime) { \
538 .utime = cputime_zero, \
539 .stime = cputime_zero, \
540 .sum_exec_runtime = 0, \
544 * struct thread_group_cputimer - thread group interval timer counts
545 * @cputime: thread group interval timers.
546 * @running: non-zero when there are timers running and
547 * @cputime receives updates.
548 * @lock: lock for fields in this struct.
550 * This structure contains the version of task_cputime, above, that is
551 * used for thread group CPU timer calculations.
553 struct thread_group_cputimer {
554 struct task_cputime cputime;
555 int running;
556 raw_spinlock_t lock;
560 * NOTE! "signal_struct" does not have it's own
561 * locking, because a shared signal_struct always
562 * implies a shared sighand_struct, so locking
563 * sighand_struct is always a proper superset of
564 * the locking of signal_struct.
566 struct signal_struct {
567 atomic_t count;
568 atomic_t live;
570 wait_queue_head_t wait_chldexit; /* for wait4() */
572 /* current thread group signal load-balancing target: */
573 struct task_struct *curr_target;
575 /* shared signal handling: */
576 struct sigpending shared_pending;
578 /* thread group exit support */
579 int group_exit_code;
580 /* overloaded:
581 * - notify group_exit_task when ->count is equal to notify_count
582 * - everyone except group_exit_task is stopped during signal delivery
583 * of fatal signals, group_exit_task processes the signal.
585 int notify_count;
586 struct task_struct *group_exit_task;
588 /* thread group stop support, overloads group_exit_code too */
589 int group_stop_count;
590 unsigned int flags; /* see SIGNAL_* flags below */
592 /* POSIX.1b Interval Timers */
593 struct list_head posix_timers;
595 /* ITIMER_REAL timer for the process */
596 struct hrtimer real_timer;
597 struct pid *leader_pid;
598 ktime_t it_real_incr;
600 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
601 cputime_t it_prof_expires, it_virt_expires;
602 cputime_t it_prof_incr, it_virt_incr;
605 * Thread group totals for process CPU timers.
606 * See thread_group_cputimer(), et al, for details.
608 struct thread_group_cputimer cputimer;
610 /* Earliest-expiration cache. */
611 struct task_cputime cputime_expires;
613 struct list_head cpu_timers[3];
615 /* job control IDs */
618 * pgrp and session fields are deprecated.
619 * use the task_session_Xnr and task_pgrp_Xnr routines below
622 union {
623 pid_t pgrp __deprecated;
624 pid_t __pgrp;
627 struct pid *tty_old_pgrp;
629 union {
630 pid_t session __deprecated;
631 pid_t __session;
634 /* boolean value for session group leader */
635 int leader;
637 struct tty_struct *tty; /* NULL if no tty */
640 * Cumulative resource counters for dead threads in the group,
641 * and for reaped dead child processes forked by this group.
642 * Live threads maintain their own counters and add to these
643 * in __exit_signal, except for the group leader.
645 cputime_t utime, stime, cutime, cstime;
646 cputime_t gtime;
647 cputime_t cgtime;
648 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
649 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
650 unsigned long inblock, oublock, cinblock, coublock;
651 struct task_io_accounting ioac;
654 * Cumulative ns of schedule CPU time fo dead threads in the
655 * group, not including a zombie group leader, (This only differs
656 * from jiffies_to_ns(utime + stime) if sched_clock uses something
657 * other than jiffies.)
659 unsigned long long sum_sched_runtime;
662 * We don't bother to synchronize most readers of this at all,
663 * because there is no reader checking a limit that actually needs
664 * to get both rlim_cur and rlim_max atomically, and either one
665 * alone is a single word that can safely be read normally.
666 * getrlimit/setrlimit use task_lock(current->group_leader) to
667 * protect this instead of the siglock, because they really
668 * have no need to disable irqs.
670 struct rlimit rlim[RLIM_NLIMITS];
672 #ifdef CONFIG_BSD_PROCESS_ACCT
673 struct pacct_struct pacct; /* per-process accounting information */
674 #endif
675 #ifdef CONFIG_TASKSTATS
676 struct taskstats *stats;
677 #endif
678 #ifdef CONFIG_AUDIT
679 unsigned audit_tty;
680 struct tty_audit_buf *tty_audit_buf;
681 #endif
684 /* Context switch must be unlocked if interrupts are to be enabled */
685 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
686 # define __ARCH_WANT_UNLOCKED_CTXSW
687 #endif
690 * Bits in flags field of signal_struct.
692 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
693 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
694 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
695 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
697 * Pending notifications to parent.
699 #define SIGNAL_CLD_STOPPED 0x00000010
700 #define SIGNAL_CLD_CONTINUED 0x00000020
701 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
703 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
705 /* If true, all threads except ->group_exit_task have pending SIGKILL */
706 static inline int signal_group_exit(const struct signal_struct *sig)
708 return (sig->flags & SIGNAL_GROUP_EXIT) ||
709 (sig->group_exit_task != NULL);
713 * Some day this will be a full-fledged user tracking system..
715 struct user_struct {
716 atomic_t __count; /* reference count */
717 atomic_t processes; /* How many processes does this user have? */
718 atomic_t files; /* How many open files does this user have? */
719 atomic_t sigpending; /* How many pending signals does this user have? */
720 #ifdef CONFIG_INOTIFY_USER
721 atomic_t inotify_watches; /* How many inotify watches does this user have? */
722 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
723 #endif
724 #ifdef CONFIG_EPOLL
725 atomic_t epoll_watches; /* The number of file descriptors currently watched */
726 #endif
727 #ifdef CONFIG_POSIX_MQUEUE
728 /* protected by mq_lock */
729 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
730 #endif
731 unsigned long locked_shm; /* How many pages of mlocked shm ? */
733 #ifdef CONFIG_KEYS
734 struct key *uid_keyring; /* UID specific keyring */
735 struct key *session_keyring; /* UID's default session keyring */
736 #endif
738 /* Hash table maintenance information */
739 struct hlist_node uidhash_node;
740 uid_t uid;
741 struct user_namespace *user_ns;
743 #ifdef CONFIG_USER_SCHED
744 struct task_group *tg;
745 #ifdef CONFIG_SYSFS
746 struct kobject kobj;
747 struct work_struct work;
748 #endif
749 #endif
752 extern int uids_sysfs_init(void);
754 extern struct user_struct *find_user(uid_t);
756 extern struct user_struct root_user;
757 #define INIT_USER (&root_user)
760 struct backing_dev_info;
761 struct reclaim_state;
763 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
764 struct sched_info {
765 /* cumulative counters */
766 unsigned long pcount; /* # of times run on this cpu */
767 unsigned long long run_delay; /* time spent waiting on a runqueue */
769 /* timestamps */
770 unsigned long long last_arrival,/* when we last ran on a cpu */
771 last_queued; /* when we were last queued to run */
772 #ifdef CONFIG_SCHEDSTATS
773 /* BKL stats */
774 unsigned int bkl_count;
775 #endif
777 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
779 #ifdef CONFIG_TASK_DELAY_ACCT
780 struct task_delay_info {
781 spinlock_t lock;
782 unsigned int flags; /* Private per-task flags */
784 /* For each stat XXX, add following, aligned appropriately
786 * struct timespec XXX_start, XXX_end;
787 * u64 XXX_delay;
788 * u32 XXX_count;
790 * Atomicity of updates to XXX_delay, XXX_count protected by
791 * single lock above (split into XXX_lock if contention is an issue).
795 * XXX_count is incremented on every XXX operation, the delay
796 * associated with the operation is added to XXX_delay.
797 * XXX_delay contains the accumulated delay time in nanoseconds.
799 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
800 u64 blkio_delay; /* wait for sync block io completion */
801 u64 swapin_delay; /* wait for swapin block io completion */
802 u32 blkio_count; /* total count of the number of sync block */
803 /* io operations performed */
804 u32 swapin_count; /* total count of the number of swapin block */
805 /* io operations performed */
807 struct timespec freepages_start, freepages_end;
808 u64 freepages_delay; /* wait for memory reclaim */
809 u32 freepages_count; /* total count of memory reclaim */
811 #endif /* CONFIG_TASK_DELAY_ACCT */
813 static inline int sched_info_on(void)
815 #ifdef CONFIG_SCHEDSTATS
816 return 1;
817 #elif defined(CONFIG_TASK_DELAY_ACCT)
818 extern int delayacct_on;
819 return delayacct_on;
820 #else
821 return 0;
822 #endif
825 enum cpu_idle_type {
826 CPU_IDLE,
827 CPU_NOT_IDLE,
828 CPU_NEWLY_IDLE,
829 CPU_MAX_IDLE_TYPES
833 * sched-domains (multiprocessor balancing) declarations:
837 * Increase resolution of nice-level calculations:
839 #define SCHED_LOAD_SHIFT 10
840 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
842 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
844 #ifdef CONFIG_SMP
845 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
846 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
847 #define SD_BALANCE_EXEC 4 /* Balance on exec */
848 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
849 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
850 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
851 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
852 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
853 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
854 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
855 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
856 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
858 enum powersavings_balance_level {
859 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
860 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
861 * first for long running threads
863 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
864 * cpu package for power savings
866 MAX_POWERSAVINGS_BALANCE_LEVELS
869 extern int sched_mc_power_savings, sched_smt_power_savings;
871 static inline int sd_balance_for_mc_power(void)
873 if (sched_smt_power_savings)
874 return SD_POWERSAVINGS_BALANCE;
876 return 0;
879 static inline int sd_balance_for_package_power(void)
881 if (sched_mc_power_savings | sched_smt_power_savings)
882 return SD_POWERSAVINGS_BALANCE;
884 return 0;
888 * Optimise SD flags for power savings:
889 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
890 * Keep default SD flags if sched_{smt,mc}_power_saving=0
893 static inline int sd_power_saving_flags(void)
895 if (sched_mc_power_savings | sched_smt_power_savings)
896 return SD_BALANCE_NEWIDLE;
898 return 0;
901 struct sched_group {
902 struct sched_group *next; /* Must be a circular list */
905 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
906 * single CPU. This is read only (except for setup, hotplug CPU).
907 * Note : Never change cpu_power without recompute its reciprocal
909 unsigned int __cpu_power;
911 * reciprocal value of cpu_power to avoid expensive divides
912 * (see include/linux/reciprocal_div.h)
914 u32 reciprocal_cpu_power;
916 unsigned long cpumask[];
919 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
921 return to_cpumask(sg->cpumask);
924 enum sched_domain_level {
925 SD_LV_NONE = 0,
926 SD_LV_SIBLING,
927 SD_LV_MC,
928 SD_LV_CPU,
929 SD_LV_NODE,
930 SD_LV_ALLNODES,
931 SD_LV_MAX
934 struct sched_domain_attr {
935 int relax_domain_level;
938 #define SD_ATTR_INIT (struct sched_domain_attr) { \
939 .relax_domain_level = -1, \
942 struct sched_domain {
943 /* These fields must be setup */
944 struct sched_domain *parent; /* top domain must be null terminated */
945 struct sched_domain *child; /* bottom domain must be null terminated */
946 struct sched_group *groups; /* the balancing groups of the domain */
947 unsigned long min_interval; /* Minimum balance interval ms */
948 unsigned long max_interval; /* Maximum balance interval ms */
949 unsigned int busy_factor; /* less balancing by factor if busy */
950 unsigned int imbalance_pct; /* No balance until over watermark */
951 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
952 unsigned int busy_idx;
953 unsigned int idle_idx;
954 unsigned int newidle_idx;
955 unsigned int wake_idx;
956 unsigned int forkexec_idx;
957 int flags; /* See SD_* */
958 enum sched_domain_level level;
960 /* Runtime fields. */
961 unsigned long last_balance; /* init to jiffies. units in jiffies */
962 unsigned int balance_interval; /* initialise to 1. units in ms. */
963 unsigned int nr_balance_failed; /* initialise to 0 */
965 u64 last_update;
967 #ifdef CONFIG_SCHEDSTATS
968 /* load_balance() stats */
969 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
970 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
972 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
973 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
974 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
975 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
976 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
978 /* Active load balancing */
979 unsigned int alb_count;
980 unsigned int alb_failed;
981 unsigned int alb_pushed;
983 /* SD_BALANCE_EXEC stats */
984 unsigned int sbe_count;
985 unsigned int sbe_balanced;
986 unsigned int sbe_pushed;
988 /* SD_BALANCE_FORK stats */
989 unsigned int sbf_count;
990 unsigned int sbf_balanced;
991 unsigned int sbf_pushed;
993 /* try_to_wake_up() stats */
994 unsigned int ttwu_wake_remote;
995 unsigned int ttwu_move_affine;
996 unsigned int ttwu_move_balance;
997 #endif
998 #ifdef CONFIG_SCHED_DEBUG
999 char *name;
1000 #endif
1002 /* span of all CPUs in this domain */
1003 unsigned long span[];
1006 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1008 return to_cpumask(sd->span);
1011 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1012 struct sched_domain_attr *dattr_new);
1014 /* Test a flag in parent sched domain */
1015 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1017 if (sd->parent && (sd->parent->flags & flag))
1018 return 1;
1020 return 0;
1023 #else /* CONFIG_SMP */
1025 struct sched_domain_attr;
1027 static inline void
1028 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1029 struct sched_domain_attr *dattr_new)
1032 #endif /* !CONFIG_SMP */
1034 struct io_context; /* See blkdev.h */
1037 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1038 extern void prefetch_stack(struct task_struct *t);
1039 #else
1040 static inline void prefetch_stack(struct task_struct *t) { }
1041 #endif
1043 struct audit_context; /* See audit.c */
1044 struct mempolicy;
1045 struct pipe_inode_info;
1046 struct uts_namespace;
1048 struct rq;
1049 struct sched_domain;
1051 struct sched_class {
1052 const struct sched_class *next;
1054 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1055 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1056 void (*yield_task) (struct rq *rq);
1058 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1060 struct task_struct * (*pick_next_task) (struct rq *rq);
1061 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1063 #ifdef CONFIG_SMP
1064 int (*select_task_rq)(struct task_struct *p, int sync);
1066 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1067 struct rq *busiest, unsigned long max_load_move,
1068 struct sched_domain *sd, enum cpu_idle_type idle,
1069 int *all_pinned, int *this_best_prio);
1071 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1072 struct rq *busiest, struct sched_domain *sd,
1073 enum cpu_idle_type idle);
1074 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1075 int (*needs_post_schedule) (struct rq *this_rq);
1076 void (*post_schedule) (struct rq *this_rq);
1077 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1079 void (*set_cpus_allowed)(struct task_struct *p,
1080 const struct cpumask *newmask);
1082 void (*rq_online)(struct rq *rq);
1083 void (*rq_offline)(struct rq *rq);
1084 #endif
1086 void (*set_curr_task) (struct rq *rq);
1087 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1088 void (*task_new) (struct rq *rq, struct task_struct *p);
1090 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1091 int running);
1092 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1093 int running);
1094 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1095 int oldprio, int running);
1097 #ifdef CONFIG_FAIR_GROUP_SCHED
1098 void (*moved_group) (struct task_struct *p);
1099 #endif
1102 struct load_weight {
1103 unsigned long weight, inv_weight;
1107 * CFS stats for a schedulable entity (task, task-group etc)
1109 * Current field usage histogram:
1111 * 4 se->block_start
1112 * 4 se->run_node
1113 * 4 se->sleep_start
1114 * 6 se->load.weight
1116 struct sched_entity {
1117 struct load_weight load; /* for load-balancing */
1118 struct rb_node run_node;
1119 struct list_head group_node;
1120 unsigned int on_rq;
1122 u64 exec_start;
1123 u64 sum_exec_runtime;
1124 u64 vruntime;
1125 u64 prev_sum_exec_runtime;
1127 u64 last_wakeup;
1128 u64 avg_overlap;
1130 u64 nr_migrations;
1132 u64 start_runtime;
1133 u64 avg_wakeup;
1135 #ifdef CONFIG_SCHEDSTATS
1136 u64 wait_start;
1137 u64 wait_max;
1138 u64 wait_count;
1139 u64 wait_sum;
1141 u64 sleep_start;
1142 u64 sleep_max;
1143 s64 sum_sleep_runtime;
1145 u64 block_start;
1146 u64 block_max;
1147 u64 exec_max;
1148 u64 slice_max;
1150 u64 nr_migrations_cold;
1151 u64 nr_failed_migrations_affine;
1152 u64 nr_failed_migrations_running;
1153 u64 nr_failed_migrations_hot;
1154 u64 nr_forced_migrations;
1155 u64 nr_forced2_migrations;
1157 u64 nr_wakeups;
1158 u64 nr_wakeups_sync;
1159 u64 nr_wakeups_migrate;
1160 u64 nr_wakeups_local;
1161 u64 nr_wakeups_remote;
1162 u64 nr_wakeups_affine;
1163 u64 nr_wakeups_affine_attempts;
1164 u64 nr_wakeups_passive;
1165 u64 nr_wakeups_idle;
1166 #endif
1168 #ifdef CONFIG_FAIR_GROUP_SCHED
1169 struct sched_entity *parent;
1170 /* rq on which this entity is (to be) queued: */
1171 struct cfs_rq *cfs_rq;
1172 /* rq "owned" by this entity/group: */
1173 struct cfs_rq *my_q;
1174 #endif
1177 struct sched_rt_entity {
1178 struct list_head run_list;
1179 unsigned long timeout;
1180 unsigned int time_slice;
1181 int nr_cpus_allowed;
1183 struct sched_rt_entity *back;
1184 #ifdef CONFIG_RT_GROUP_SCHED
1185 struct sched_rt_entity *parent;
1186 /* rq on which this entity is (to be) queued: */
1187 struct rt_rq *rt_rq;
1188 /* rq "owned" by this entity/group: */
1189 struct rt_rq *my_q;
1190 #endif
1193 #ifdef CONFIG_SCHED_CBS
1194 struct sched_cbs_entity { /*TODO: maybe merge with sched_entity? */
1195 struct rb_node run_node;
1196 int on_rq;
1197 u64 max_budget;
1198 u64 period;
1199 s64 budget;
1200 u64 deadline;
1201 u64 exec_start;
1203 #endif
1205 struct task_struct {
1206 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1207 void *stack;
1208 atomic_t usage;
1209 unsigned int flags; /* per process flags, defined below */
1210 unsigned int ptrace;
1212 int lock_depth; /* BKL lock depth */
1214 #ifdef CONFIG_SMP
1215 int oncpu;
1216 #endif
1218 int prio, static_prio, normal_prio;
1219 unsigned int rt_priority;
1220 const struct sched_class *sched_class;
1221 struct sched_entity se;
1222 struct sched_rt_entity rt;
1224 #ifdef CONFIG_SCHED_CBS
1225 struct sched_cbs_entity cbs_se;
1226 #endif
1228 #ifdef CONFIG_PREEMPT_NOTIFIERS
1229 /* list of struct preempt_notifier: */
1230 struct hlist_head preempt_notifiers;
1231 #endif
1234 * fpu_counter contains the number of consecutive context switches
1235 * that the FPU is used. If this is over a threshold, the lazy fpu
1236 * saving becomes unlazy to save the trap. This is an unsigned char
1237 * so that after 256 times the counter wraps and the behavior turns
1238 * lazy again; this to deal with bursty apps that only use FPU for
1239 * a short time
1241 unsigned char fpu_counter;
1242 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1243 #ifdef CONFIG_BLK_DEV_IO_TRACE
1244 unsigned int btrace_seq;
1245 #endif
1247 unsigned int policy;
1248 cpumask_t cpus_allowed;
1250 #ifdef CONFIG_PREEMPT_RCU
1251 int rcu_read_lock_nesting;
1252 int rcu_flipctr_idx;
1253 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1255 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1256 struct sched_info sched_info;
1257 #endif
1259 struct list_head tasks;
1260 struct plist_node pushable_tasks;
1262 struct mm_struct *mm, *active_mm;
1264 /* task state */
1265 struct linux_binfmt *binfmt;
1266 int exit_state;
1267 int exit_code, exit_signal;
1268 int pdeath_signal; /* The signal sent when the parent dies */
1269 /* ??? */
1270 unsigned int personality;
1271 unsigned did_exec:1;
1272 pid_t pid;
1273 pid_t tgid;
1275 /* Canary value for the -fstack-protector gcc feature */
1276 unsigned long stack_canary;
1279 * pointers to (original) parent process, youngest child, younger sibling,
1280 * older sibling, respectively. (p->father can be replaced with
1281 * p->real_parent->pid)
1283 struct task_struct *real_parent; /* real parent process */
1284 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1286 * children/sibling forms the list of my natural children
1288 struct list_head children; /* list of my children */
1289 struct list_head sibling; /* linkage in my parent's children list */
1290 struct task_struct *group_leader; /* threadgroup leader */
1293 * ptraced is the list of tasks this task is using ptrace on.
1294 * This includes both natural children and PTRACE_ATTACH targets.
1295 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1297 struct list_head ptraced;
1298 struct list_head ptrace_entry;
1300 #ifdef CONFIG_X86_PTRACE_BTS
1302 * This is the tracer handle for the ptrace BTS extension.
1303 * This field actually belongs to the ptracer task.
1305 struct bts_tracer *bts;
1307 * The buffer to hold the BTS data.
1309 void *bts_buffer;
1310 size_t bts_size;
1311 #endif /* CONFIG_X86_PTRACE_BTS */
1313 /* PID/PID hash table linkage. */
1314 struct pid_link pids[PIDTYPE_MAX];
1315 struct list_head thread_group;
1317 struct completion *vfork_done; /* for vfork() */
1318 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1319 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1321 cputime_t utime, stime, utimescaled, stimescaled;
1322 cputime_t gtime;
1323 cputime_t prev_utime, prev_stime;
1324 unsigned long nvcsw, nivcsw; /* context switch counts */
1325 struct timespec start_time; /* monotonic time */
1326 struct timespec real_start_time; /* boot based time */
1327 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1328 unsigned long min_flt, maj_flt;
1330 struct task_cputime cputime_expires;
1331 struct list_head cpu_timers[3];
1333 struct task_struct* posix_timer_list;
1335 /* process credentials */
1336 const struct cred *real_cred; /* objective and real subjective task
1337 * credentials (COW) */
1338 const struct cred *cred; /* effective (overridable) subjective task
1339 * credentials (COW) */
1340 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1342 char comm[TASK_COMM_LEN]; /* executable name excluding path
1343 - access with [gs]et_task_comm (which lock
1344 it with task_lock())
1345 - initialized normally by flush_old_exec */
1346 /* file system info */
1347 int link_count, total_link_count;
1348 #ifdef CONFIG_SYSVIPC
1349 /* ipc stuff */
1350 struct sysv_sem sysvsem;
1351 #endif
1352 #ifdef CONFIG_DETECT_HUNG_TASK
1353 /* hung task detection */
1354 unsigned long last_switch_count;
1355 #endif
1356 /* CPU-specific state of this task */
1357 struct thread_struct thread;
1358 /* filesystem information */
1359 struct fs_struct *fs;
1360 /* open file information */
1361 struct files_struct *files;
1362 /* namespaces */
1363 struct nsproxy *nsproxy;
1364 /* signal handlers */
1365 struct signal_struct *signal;
1366 struct sighand_struct *sighand;
1367 struct sigqueue *sigqueue_cache;
1369 sigset_t blocked, real_blocked;
1370 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1371 struct sigpending pending;
1373 unsigned long sas_ss_sp;
1374 size_t sas_ss_size;
1375 int (*notifier)(void *priv);
1376 void *notifier_data;
1377 sigset_t *notifier_mask;
1378 struct audit_context *audit_context;
1379 #ifdef CONFIG_AUDITSYSCALL
1380 uid_t loginuid;
1381 unsigned int sessionid;
1382 #endif
1383 seccomp_t seccomp;
1385 /* Thread group tracking */
1386 u32 parent_exec_id;
1387 u32 self_exec_id;
1388 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1389 spinlock_t alloc_lock;
1391 /* Protection of the PI data structures: */
1392 raw_spinlock_t pi_lock;
1394 #ifdef CONFIG_RT_MUTEXES
1395 /* PI waiters blocked on a rt_mutex held by this task */
1396 struct plist_head pi_waiters;
1397 /* Deadlock detection and priority inheritance handling */
1398 struct rt_mutex_waiter *pi_blocked_on;
1399 #endif
1401 #ifdef CONFIG_DEBUG_MUTEXES
1402 /* mutex deadlock detection */
1403 struct mutex_waiter *blocked_on;
1404 #endif
1405 int pagefault_disabled;
1406 #ifdef CONFIG_TRACE_IRQFLAGS
1407 unsigned int irq_events;
1408 int hardirqs_enabled;
1409 unsigned long hardirq_enable_ip;
1410 unsigned int hardirq_enable_event;
1411 unsigned long hardirq_disable_ip;
1412 unsigned int hardirq_disable_event;
1413 int softirqs_enabled;
1414 unsigned long softirq_disable_ip;
1415 unsigned int softirq_disable_event;
1416 unsigned long softirq_enable_ip;
1417 unsigned int softirq_enable_event;
1418 int hardirq_context;
1419 int softirq_context;
1420 #endif
1421 #ifdef CONFIG_LOCKDEP
1422 # define MAX_LOCK_DEPTH 48UL
1423 u64 curr_chain_key;
1424 int lockdep_depth;
1425 unsigned int lockdep_recursion;
1426 struct held_lock held_locks[MAX_LOCK_DEPTH];
1427 gfp_t lockdep_reclaim_gfp;
1428 #endif
1430 /* realtime bits */
1432 #define MAX_PREEMPT_TRACE 25
1433 #define MAX_LOCK_STACK MAX_PREEMPT_TRACE
1434 #ifdef CONFIG_DEBUG_PREEMPT
1435 atomic_t lock_count;
1436 # ifdef CONFIG_PREEMPT_RT
1437 struct rt_mutex *owned_lock[MAX_LOCK_STACK];
1438 # endif
1439 #endif
1440 #ifdef CONFIG_DETECT_SOFTLOCKUP
1441 unsigned long softlockup_count; /* Count to keep track how long the
1442 * thread is in the kernel without
1443 * sleeping.
1445 #endif
1446 #ifdef CONFIG_DEBUG_RT_MUTEXES
1447 void *last_kernel_lock;
1448 #endif
1450 /* journalling filesystem info */
1451 void *journal_info;
1453 /* stacked block device info */
1454 struct bio *bio_list, **bio_tail;
1456 /* VM state */
1457 struct reclaim_state *reclaim_state;
1459 struct backing_dev_info *backing_dev_info;
1461 struct io_context *io_context;
1463 unsigned long ptrace_message;
1464 siginfo_t *last_siginfo; /* For ptrace use. */
1465 struct task_io_accounting ioac;
1466 #if defined(CONFIG_TASK_XACCT)
1467 u64 acct_rss_mem1; /* accumulated rss usage */
1468 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1469 cputime_t acct_timexpd; /* stime + utime since last update */
1470 #endif
1471 #ifdef CONFIG_CPUSETS
1472 nodemask_t mems_allowed;
1473 int cpuset_mems_generation;
1474 int cpuset_mem_spread_rotor;
1475 #endif
1476 #ifdef CONFIG_CGROUPS
1477 /* Control Group info protected by css_set_lock */
1478 struct css_set *cgroups;
1479 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1480 struct list_head cg_list;
1481 #endif
1482 #ifdef CONFIG_FUTEX
1483 struct robust_list_head __user *robust_list;
1484 #ifdef CONFIG_COMPAT
1485 struct compat_robust_list_head __user *compat_robust_list;
1486 #endif
1487 struct list_head pi_state_list;
1488 struct futex_pi_state *pi_state_cache;
1489 struct task_struct *futex_wakeup;
1490 #endif
1491 struct perf_counter_context perf_counter_ctx;
1492 #ifdef CONFIG_NUMA
1493 struct mempolicy *mempolicy;
1494 short il_next;
1495 #endif
1496 atomic_t fs_excl; /* holding fs exclusive resources */
1497 struct rcu_head rcu;
1500 * cache last used pipe for splice
1502 struct pipe_inode_info *splice_pipe;
1503 #ifdef CONFIG_TASK_DELAY_ACCT
1504 struct task_delay_info *delays;
1505 #endif
1506 #ifdef CONFIG_FAULT_INJECTION
1507 int make_it_fail;
1508 #endif
1509 struct prop_local_single dirties;
1510 #ifdef CONFIG_LATENCYTOP
1511 int latency_record_count;
1512 struct latency_record latency_record[LT_SAVECOUNT];
1513 #endif
1515 * time slack values; these are used to round up poll() and
1516 * select() etc timeout values. These are in nanoseconds.
1518 unsigned long timer_slack_ns;
1519 unsigned long default_timer_slack_ns;
1521 struct list_head *scm_work_list;
1522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1523 /* Index of current stored adress in ret_stack */
1524 int curr_ret_stack;
1525 /* Stack of return addresses for return function tracing */
1526 struct ftrace_ret_stack *ret_stack;
1527 /* time stamp for last schedule */
1528 unsigned long long ftrace_timestamp;
1530 * Number of functions that haven't been traced
1531 * because of depth overrun.
1533 atomic_t trace_overrun;
1534 /* Pause for the tracing */
1535 atomic_t tracing_graph_pause;
1536 #endif
1537 #ifdef CONFIG_TRACING
1538 /* state flags for use by tracers */
1539 unsigned long trace;
1540 #endif
1541 #ifdef CONFIG_PREEMPT_RT
1543 * Temporary hack, until we find a solution to
1544 * handle printk in atomic operations.
1546 int in_printk;
1547 #endif
1550 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1551 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1553 #ifdef CONFIG_PREEMPT_RT
1554 # define set_printk_might_sleep(x) do { current->in_printk = x; } while(0)
1555 #else
1556 # define set_printk_might_sleep(x) do { } while(0)
1557 #endif
1560 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1561 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1562 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1563 * values are inverted: lower p->prio value means higher priority.
1565 * The MAX_USER_RT_PRIO value allows the actual maximum
1566 * RT priority to be separate from the value exported to
1567 * user-space. This allows kernel threads to set their
1568 * priority to a value higher than any user task. Note:
1569 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1572 #define MAX_USER_RT_PRIO 100
1573 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1575 #define MAX_PRIO (MAX_RT_PRIO + 40)
1576 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1578 static inline int rt_prio(int prio)
1580 if (unlikely(prio < MAX_RT_PRIO))
1581 return 1;
1582 return 0;
1585 static inline int rt_task(struct task_struct *p)
1587 return rt_prio(p->prio);
1590 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1592 tsk->signal->__session = session;
1595 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1597 tsk->signal->__pgrp = pgrp;
1600 static inline struct pid *task_pid(struct task_struct *task)
1602 return task->pids[PIDTYPE_PID].pid;
1605 static inline struct pid *task_tgid(struct task_struct *task)
1607 return task->group_leader->pids[PIDTYPE_PID].pid;
1610 static inline struct pid *task_pgrp(struct task_struct *task)
1612 return task->group_leader->pids[PIDTYPE_PGID].pid;
1615 static inline struct pid *task_session(struct task_struct *task)
1617 return task->group_leader->pids[PIDTYPE_SID].pid;
1620 struct pid_namespace;
1623 * the helpers to get the task's different pids as they are seen
1624 * from various namespaces
1626 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1627 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1628 * current.
1629 * task_xid_nr_ns() : id seen from the ns specified;
1631 * set_task_vxid() : assigns a virtual id to a task;
1633 * see also pid_nr() etc in include/linux/pid.h
1636 static inline pid_t task_pid_nr(struct task_struct *tsk)
1638 return tsk->pid;
1641 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1643 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1645 return pid_vnr(task_pid(tsk));
1649 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1651 return tsk->tgid;
1654 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1656 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1658 return pid_vnr(task_tgid(tsk));
1662 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1664 return tsk->signal->__pgrp;
1667 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1669 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1671 return pid_vnr(task_pgrp(tsk));
1675 static inline pid_t task_session_nr(struct task_struct *tsk)
1677 return tsk->signal->__session;
1680 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1682 static inline pid_t task_session_vnr(struct task_struct *tsk)
1684 return pid_vnr(task_session(tsk));
1689 * pid_alive - check that a task structure is not stale
1690 * @p: Task structure to be checked.
1692 * Test if a process is not yet dead (at most zombie state)
1693 * If pid_alive fails, then pointers within the task structure
1694 * can be stale and must not be dereferenced.
1696 static inline int pid_alive(struct task_struct *p)
1698 return p->pids[PIDTYPE_PID].pid != NULL;
1702 * is_global_init - check if a task structure is init
1703 * @tsk: Task structure to be checked.
1705 * Check if a task structure is the first user space task the kernel created.
1707 static inline int is_global_init(struct task_struct *tsk)
1709 return tsk->pid == 1;
1713 * is_container_init:
1714 * check whether in the task is init in its own pid namespace.
1716 extern int is_container_init(struct task_struct *tsk);
1718 extern struct pid *cad_pid;
1720 extern void free_task(struct task_struct *tsk);
1721 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1723 #ifdef CONFIG_PREEMPT_RT
1724 extern void __put_task_struct_cb(struct rcu_head *rhp);
1726 static inline void put_task_struct(struct task_struct *t)
1728 if (atomic_dec_and_test(&t->usage))
1729 call_rcu(&t->rcu, __put_task_struct_cb);
1731 #else
1732 extern void __put_task_struct(struct task_struct *t);
1734 static inline void put_task_struct(struct task_struct *t)
1736 if (atomic_dec_and_test(&t->usage))
1737 __put_task_struct(t);
1739 #endif
1741 extern cputime_t task_utime(struct task_struct *p);
1742 extern cputime_t task_stime(struct task_struct *p);
1743 extern cputime_t task_gtime(struct task_struct *p);
1746 * Per process flags
1748 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1749 /* Not implemented yet, only for 486*/
1750 #define PF_STARTING 0x00000002 /* being created */
1751 #define PF_EXITING 0x00000004 /* getting shut down */
1752 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1753 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1754 #define PF_NOSCHED 0x00000020 /* Userspace does not expect scheduling */
1755 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1756 #define PF_HARDIRQ 0x00000080 /* hardirq context */
1757 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1758 #define PF_DUMPCORE 0x00000200 /* dumped core */
1759 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1760 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1761 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1762 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1763 #define PF_KMAP 0x00004000 /* this context has a kmap */
1764 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1765 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1766 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1767 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1768 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1769 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1770 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1771 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1772 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1773 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1774 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1775 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1776 #define PF_SOFTIRQ 0x08000000 /* softirq context */
1777 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1778 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1779 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1780 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1783 * Only the _current_ task can read/write to tsk->flags, but other
1784 * tasks can access tsk->flags in readonly mode for example
1785 * with tsk_used_math (like during threaded core dumping).
1786 * There is however an exception to this rule during ptrace
1787 * or during fork: the ptracer task is allowed to write to the
1788 * child->flags of its traced child (same goes for fork, the parent
1789 * can write to the child->flags), because we're guaranteed the
1790 * child is not running and in turn not changing child->flags
1791 * at the same time the parent does it.
1793 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1794 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1795 #define clear_used_math() clear_stopped_child_used_math(current)
1796 #define set_used_math() set_stopped_child_used_math(current)
1797 #define conditional_stopped_child_used_math(condition, child) \
1798 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1799 #define conditional_used_math(condition) \
1800 conditional_stopped_child_used_math(condition, current)
1801 #define copy_to_stopped_child_used_math(child) \
1802 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1803 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1804 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1805 #define used_math() tsk_used_math(current)
1807 #ifdef CONFIG_SMP
1808 extern int set_cpus_allowed_ptr(struct task_struct *p,
1809 const struct cpumask *new_mask);
1810 #else
1811 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1812 const struct cpumask *new_mask)
1814 if (!cpumask_test_cpu(0, new_mask))
1815 return -EINVAL;
1816 return 0;
1818 #endif
1819 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1821 return set_cpus_allowed_ptr(p, &new_mask);
1825 * Architectures can set this to 1 if they have specified
1826 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1827 * but then during bootup it turns out that sched_clock()
1828 * is reliable after all:
1830 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1831 extern int sched_clock_stable;
1832 #endif
1834 extern unsigned long long sched_clock(void);
1836 extern void sched_clock_init(void);
1837 extern u64 sched_clock_cpu(int cpu);
1839 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1840 static inline void sched_clock_tick(void)
1844 static inline void sched_clock_idle_sleep_event(void)
1848 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1851 #else
1852 extern void sched_clock_tick(void);
1853 extern void sched_clock_idle_sleep_event(void);
1854 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1855 #endif
1858 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1859 * clock constructed from sched_clock():
1861 extern unsigned long long cpu_clock(int cpu);
1863 extern unsigned long long
1864 task_sched_runtime(struct task_struct *task);
1865 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1867 /* sched_exec is called by processes performing an exec */
1868 #ifdef CONFIG_SMP
1869 extern void sched_exec(void);
1870 #else
1871 #define sched_exec() {}
1872 #endif
1874 extern void sched_clock_idle_sleep_event(void);
1875 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1877 #ifdef CONFIG_HOTPLUG_CPU
1878 extern void idle_task_exit(void);
1879 #else
1880 static inline void idle_task_exit(void) {}
1881 #endif
1883 extern void sched_idle_next(void);
1885 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1886 extern void wake_up_idle_cpu(int cpu);
1887 #else
1888 static inline void wake_up_idle_cpu(int cpu) { }
1889 #endif
1891 extern unsigned int sysctl_sched_latency;
1892 extern unsigned int sysctl_sched_min_granularity;
1893 extern unsigned int sysctl_sched_wakeup_granularity;
1894 extern unsigned int sysctl_sched_shares_ratelimit;
1895 extern unsigned int sysctl_sched_shares_thresh;
1896 #ifdef CONFIG_SCHED_DEBUG
1897 extern unsigned int sysctl_sched_child_runs_first;
1898 extern unsigned int sysctl_sched_features;
1899 extern unsigned int sysctl_sched_migration_cost;
1900 extern unsigned int sysctl_sched_nr_migrate;
1902 int sched_nr_latency_handler(struct ctl_table *table, int write,
1903 struct file *file, void __user *buffer, size_t *length,
1904 loff_t *ppos);
1905 #endif
1906 extern unsigned int sysctl_sched_rt_period;
1907 extern int sysctl_sched_rt_runtime;
1909 int sched_rt_handler(struct ctl_table *table, int write,
1910 struct file *filp, void __user *buffer, size_t *lenp,
1911 loff_t *ppos);
1913 extern unsigned int sysctl_sched_compat_yield;
1915 extern void task_setprio(struct task_struct *p, int prio);
1917 #ifdef CONFIG_RT_MUTEXES
1918 extern int rt_mutex_getprio(struct task_struct *p);
1919 static inline void rt_mutex_setprio(struct task_struct *p, int prio)
1921 task_setprio(p, prio);
1923 extern void rt_mutex_adjust_pi(struct task_struct *p);
1924 #else
1925 static inline int rt_mutex_getprio(struct task_struct *p)
1927 return p->normal_prio;
1929 # define rt_mutex_adjust_pi(p) do { } while (0)
1930 #endif
1932 extern void set_user_nice(struct task_struct *p, long nice);
1933 extern int task_prio(const struct task_struct *p);
1934 extern int task_nice(const struct task_struct *p);
1935 extern int can_nice(const struct task_struct *p, const int nice);
1936 extern int task_curr(const struct task_struct *p);
1937 extern int idle_cpu(int cpu);
1938 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1939 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1940 struct sched_param *);
1941 extern struct task_struct *idle_task(int cpu);
1942 extern struct task_struct *curr_task(int cpu);
1943 extern void set_curr_task(int cpu, struct task_struct *p);
1945 void yield(void);
1946 void __yield(void);
1949 * The default (Linux) execution domain.
1951 extern struct exec_domain default_exec_domain;
1953 union thread_union {
1954 struct thread_info thread_info;
1955 unsigned long stack[THREAD_SIZE/sizeof(long)];
1958 #ifndef __HAVE_ARCH_KSTACK_END
1959 static inline int kstack_end(void *addr)
1961 /* Reliable end of stack detection:
1962 * Some APM bios versions misalign the stack
1964 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1966 #endif
1968 extern union thread_union init_thread_union;
1969 extern struct task_struct init_task;
1971 extern struct mm_struct init_mm;
1973 extern struct pid_namespace init_pid_ns;
1976 * find a task by one of its numerical ids
1978 * find_task_by_pid_type_ns():
1979 * it is the most generic call - it finds a task by all id,
1980 * type and namespace specified
1981 * find_task_by_pid_ns():
1982 * finds a task by its pid in the specified namespace
1983 * find_task_by_vpid():
1984 * finds a task by its virtual pid
1986 * see also find_vpid() etc in include/linux/pid.h
1989 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1990 struct pid_namespace *ns);
1992 extern struct task_struct *find_task_by_vpid(pid_t nr);
1993 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1994 struct pid_namespace *ns);
1996 extern void __set_special_pids(struct pid *pid);
1998 /* per-UID process charging. */
1999 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2000 static inline struct user_struct *get_uid(struct user_struct *u)
2002 atomic_inc(&u->__count);
2003 return u;
2005 extern void free_uid(struct user_struct *);
2006 extern void release_uids(struct user_namespace *ns);
2008 #include <asm/current.h>
2010 extern void do_timer(unsigned long ticks);
2012 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2013 extern int wake_up_process(struct task_struct *tsk);
2014 extern int wake_up_process_mutex(struct task_struct * tsk);
2015 extern int wake_up_process_sync(struct task_struct * tsk);
2016 extern int wake_up_process_mutex_sync(struct task_struct * tsk);
2017 extern void wake_up_new_task(struct task_struct *tsk,
2018 unsigned long clone_flags);
2019 #ifdef CONFIG_SMP
2020 extern void kick_process(struct task_struct *tsk);
2021 #else
2022 static inline void kick_process(struct task_struct *tsk) { }
2023 #endif
2024 extern void sched_fork(struct task_struct *p, int clone_flags);
2025 extern void sched_dead(struct task_struct *p);
2027 extern void proc_caches_init(void);
2028 extern void flush_signals(struct task_struct *);
2029 extern void ignore_signals(struct task_struct *);
2030 extern void flush_signal_handlers(struct task_struct *, int force_default);
2031 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2033 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2035 unsigned long flags;
2036 int ret;
2038 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2039 ret = dequeue_signal(tsk, mask, info);
2040 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2042 return ret;
2045 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2046 sigset_t *mask);
2047 extern void unblock_all_signals(void);
2048 extern void release_task(struct task_struct * p);
2049 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2050 extern int force_sigsegv(int, struct task_struct *);
2051 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2052 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2053 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2054 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2055 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2056 extern int kill_pid(struct pid *pid, int sig, int priv);
2057 extern int kill_proc_info(int, struct siginfo *, pid_t);
2058 extern int do_notify_parent(struct task_struct *, int);
2059 extern void force_sig(int, struct task_struct *);
2060 extern void force_sig_specific(int, struct task_struct *);
2061 extern int send_sig(int, struct task_struct *, int);
2062 extern void zap_other_threads(struct task_struct *p);
2063 extern struct sigqueue *sigqueue_alloc(void);
2064 extern void sigqueue_free(struct sigqueue *);
2065 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2066 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2067 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2069 static inline int kill_cad_pid(int sig, int priv)
2071 return kill_pid(cad_pid, sig, priv);
2074 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2075 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2076 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2077 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2079 static inline int is_si_special(const struct siginfo *info)
2081 return info <= SEND_SIG_FORCED;
2084 /* True if we are on the alternate signal stack. */
2086 static inline int on_sig_stack(unsigned long sp)
2088 return (sp - current->sas_ss_sp < current->sas_ss_size);
2091 static inline int sas_ss_flags(unsigned long sp)
2093 return (current->sas_ss_size == 0 ? SS_DISABLE
2094 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2098 * Routines for handling mm_structs
2100 extern struct mm_struct * mm_alloc(void);
2102 /* mmdrop drops the mm and the page tables */
2103 extern void __mmdrop(struct mm_struct *);
2104 extern void __mmdrop_delayed(struct mm_struct *);
2106 static inline void mmdrop(struct mm_struct * mm)
2108 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2109 __mmdrop(mm);
2112 static inline void mmdrop_delayed(struct mm_struct * mm)
2114 if (atomic_dec_and_test(&mm->mm_count))
2115 __mmdrop_delayed(mm);
2118 /* mmput gets rid of the mappings and all user-space */
2119 extern void mmput(struct mm_struct *);
2120 /* Grab a reference to a task's mm, if it is not already going away */
2121 extern struct mm_struct *get_task_mm(struct task_struct *task);
2122 /* Remove the current tasks stale references to the old mm_struct */
2123 extern void mm_release(struct task_struct *, struct mm_struct *);
2124 /* Allocate a new mm structure and copy contents from tsk->mm */
2125 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2127 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
2128 extern void flush_thread(void);
2129 extern void exit_thread(void);
2131 extern void exit_files(struct task_struct *);
2132 extern void __cleanup_signal(struct signal_struct *);
2133 extern void __cleanup_sighand(struct sighand_struct *);
2135 extern void exit_itimers(struct signal_struct *);
2136 extern void flush_itimer_signals(void);
2138 extern NORET_TYPE void do_group_exit(int);
2140 extern void daemonize(const char *, ...);
2141 extern int allow_signal(int);
2142 extern int disallow_signal(int);
2144 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2145 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2146 struct task_struct *fork_idle(int);
2148 extern void set_task_comm(struct task_struct *tsk, char *from);
2149 extern char *get_task_comm(char *to, struct task_struct *tsk);
2151 #ifdef CONFIG_SMP
2152 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2153 #else
2154 static inline unsigned long wait_task_inactive(struct task_struct *p,
2155 long match_state)
2157 return 1;
2159 #endif
2161 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
2163 #define for_each_process(p) \
2164 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2166 extern bool is_single_threaded(struct task_struct *);
2169 * Careful: do_each_thread/while_each_thread is a double loop so
2170 * 'break' will not work as expected - use goto instead.
2172 #define do_each_thread(g, t) \
2173 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2175 #define while_each_thread(g, t) \
2176 while ((t = next_thread(t)) != g)
2178 /* de_thread depends on thread_group_leader not being a pid based check */
2179 #define thread_group_leader(p) (p == p->group_leader)
2181 /* Do to the insanities of de_thread it is possible for a process
2182 * to have the pid of the thread group leader without actually being
2183 * the thread group leader. For iteration through the pids in proc
2184 * all we care about is that we have a task with the appropriate
2185 * pid, we don't actually care if we have the right task.
2187 static inline int has_group_leader_pid(struct task_struct *p)
2189 return p->pid == p->tgid;
2192 static inline
2193 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2195 return p1->tgid == p2->tgid;
2198 static inline struct task_struct *next_thread(const struct task_struct *p)
2200 return list_entry(rcu_dereference(p->thread_group.next),
2201 struct task_struct, thread_group);
2204 static inline int thread_group_empty(struct task_struct *p)
2206 return list_empty(&p->thread_group);
2209 #define delay_group_leader(p) \
2210 (thread_group_leader(p) && !thread_group_empty(p))
2213 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2214 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2215 * pins the final release of task.io_context. Also protects ->cpuset and
2216 * ->cgroup.subsys[].
2218 * Nests both inside and outside of read_lock(&tasklist_lock).
2219 * It must not be nested with write_lock_irq(&tasklist_lock),
2220 * neither inside nor outside.
2222 static inline void task_lock(struct task_struct *p)
2224 spin_lock(&p->alloc_lock);
2227 static inline void task_unlock(struct task_struct *p)
2229 spin_unlock(&p->alloc_lock);
2232 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2233 unsigned long *flags);
2235 static inline void unlock_task_sighand(struct task_struct *tsk,
2236 unsigned long *flags)
2238 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2241 #ifndef __HAVE_THREAD_FUNCTIONS
2243 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2244 #define task_stack_page(task) ((task)->stack)
2246 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2248 *task_thread_info(p) = *task_thread_info(org);
2249 task_thread_info(p)->task = p;
2252 static inline unsigned long *end_of_stack(struct task_struct *p)
2254 return (unsigned long *)(task_thread_info(p) + 1);
2257 #endif
2259 static inline int object_is_on_stack(void *obj)
2261 void *stack = task_stack_page(current);
2263 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2266 extern void thread_info_cache_init(void);
2268 #ifdef CONFIG_DEBUG_STACK_USAGE
2269 static inline unsigned long stack_not_used(struct task_struct *p)
2271 unsigned long *n = end_of_stack(p);
2273 do { /* Skip over canary */
2274 n++;
2275 } while (!*n);
2277 return (unsigned long)n - (unsigned long)end_of_stack(p);
2279 #endif
2281 /* set thread flags in other task's structures
2282 * - see asm/thread_info.h for TIF_xxxx flags available
2284 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2286 set_ti_thread_flag(task_thread_info(tsk), flag);
2289 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2291 clear_ti_thread_flag(task_thread_info(tsk), flag);
2294 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2296 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2299 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2301 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2304 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2306 return test_ti_thread_flag(task_thread_info(tsk), flag);
2309 static inline void set_tsk_need_resched(struct task_struct *tsk)
2311 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2314 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2316 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2319 static inline int test_tsk_need_resched(struct task_struct *tsk)
2321 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2324 static inline int signal_pending(struct task_struct *p)
2326 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2329 extern int __fatal_signal_pending(struct task_struct *p);
2331 static inline int fatal_signal_pending(struct task_struct *p)
2333 return signal_pending(p) && __fatal_signal_pending(p);
2336 static inline int signal_pending_state(long state, struct task_struct *p)
2338 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2339 return 0;
2340 if (!signal_pending(p))
2341 return 0;
2343 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2346 static inline int need_resched(void)
2348 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2352 * cond_resched() and cond_resched_lock(): latency reduction via
2353 * explicit rescheduling in places that are safe. The return
2354 * value indicates whether a reschedule was done in fact.
2355 * cond_resched_lock() will drop the spinlock before scheduling,
2356 * cond_resched_softirq() will enable bhs before scheduling.
2358 extern int _cond_resched(void);
2359 #ifdef CONFIG_PREEMPT_BKL
2360 static inline int cond_resched(void)
2362 return 0;
2364 #else
2365 static inline int cond_resched(void)
2367 return _cond_resched();
2369 #endif
2370 extern int __cond_resched_raw_spinlock(raw_spinlock_t *lock);
2371 extern int __cond_resched_spinlock(spinlock_t *spinlock);
2373 #define cond_resched_lock(lock) \
2374 PICK_SPIN_OP_RET(__cond_resched_raw_spinlock, __cond_resched_spinlock,\
2375 lock)
2377 extern int cond_resched_softirq(void);
2378 static inline int cond_resched_bkl(void)
2380 return _cond_resched();
2382 extern int cond_resched_softirq_context(void);
2383 extern int cond_resched_hardirq_context(void);
2386 * Does a critical section need to be broken due to another
2387 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2388 * but a general need for low latency)
2390 static inline int __raw_spin_needbreak(raw_spinlock_t *lock)
2392 #ifdef CONFIG_PREEMPT
2393 return spin_is_contended(lock);
2394 #else
2395 return 0;
2396 #endif
2400 * Thread group CPU time accounting.
2402 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2403 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2405 static inline void thread_group_cputime_init(struct signal_struct *sig)
2407 sig->cputimer.cputime = INIT_CPUTIME;
2408 spin_lock_init(&sig->cputimer.lock);
2409 sig->cputimer.running = 0;
2412 static inline void thread_group_cputime_free(struct signal_struct *sig)
2416 #ifdef CONFIG_PREEMPT_RT
2417 static inline int __spin_needbreak(spinlock_t *lock)
2419 struct task_struct *tsk = current;
2421 /* break if we are priority boosted */
2422 return tsk->prio < tsk->normal_prio;
2424 #else
2425 static inline int __spin_needbreak(spinlock_t *lock)
2427 /* should never be call outside of RT */
2428 BUG();
2429 return 0;
2431 #endif
2433 #define spin_needbreak(lock) \
2434 PICK_SPIN_OP_RET(__raw_spin_needbreak, __spin_needbreak, lock)
2436 static inline int softirq_need_resched(void)
2438 if (softirq_preemption && (current->flags & PF_SOFTIRQ))
2439 return need_resched();
2440 return 0;
2443 static inline int hardirq_need_resched(void)
2445 if (hardirq_preemption && (current->flags & PF_HARDIRQ))
2446 return need_resched();
2447 return 0;
2451 * Reevaluate whether the task has signals pending delivery.
2452 * Wake the task if so.
2453 * This is required every time the blocked sigset_t changes.
2454 * callers must hold sighand->siglock.
2456 extern void recalc_sigpending_and_wake(struct task_struct *t);
2457 extern void recalc_sigpending(void);
2459 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2462 * Wrappers for p->thread_info->cpu access. No-op on UP.
2464 #ifdef CONFIG_SMP
2466 static inline unsigned int task_cpu(const struct task_struct *p)
2468 return task_thread_info(p)->cpu;
2471 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2473 #else
2475 static inline unsigned int task_cpu(const struct task_struct *p)
2477 return 0;
2480 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2484 #endif /* CONFIG_SMP */
2486 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2488 #ifdef CONFIG_TRACING
2489 extern void
2490 __trace_special(void *__tr, void *__data,
2491 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2492 #else
2493 static inline void
2494 __trace_special(void *__tr, void *__data,
2495 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2498 #endif
2500 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2501 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2503 extern void normalize_rt_tasks(void);
2505 #ifdef CONFIG_GROUP_SCHED
2507 extern struct task_group init_task_group;
2508 #ifdef CONFIG_USER_SCHED
2509 extern struct task_group root_task_group;
2510 extern void set_tg_uid(struct user_struct *user);
2511 #endif
2513 extern struct task_group *sched_create_group(struct task_group *parent);
2514 extern void sched_destroy_group(struct task_group *tg);
2515 extern void sched_move_task(struct task_struct *tsk);
2516 #ifdef CONFIG_FAIR_GROUP_SCHED
2517 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2518 extern unsigned long sched_group_shares(struct task_group *tg);
2519 #endif
2520 #ifdef CONFIG_RT_GROUP_SCHED
2521 extern int sched_group_set_rt_runtime(struct task_group *tg,
2522 long rt_runtime_us);
2523 extern long sched_group_rt_runtime(struct task_group *tg);
2524 extern int sched_group_set_rt_period(struct task_group *tg,
2525 long rt_period_us);
2526 extern long sched_group_rt_period(struct task_group *tg);
2527 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2528 #endif
2529 #endif
2531 extern int task_can_switch_user(struct user_struct *up,
2532 struct task_struct *tsk);
2534 #ifdef CONFIG_TASK_XACCT
2535 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2537 tsk->ioac.rchar += amt;
2540 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2542 tsk->ioac.wchar += amt;
2545 static inline void inc_syscr(struct task_struct *tsk)
2547 tsk->ioac.syscr++;
2550 static inline void inc_syscw(struct task_struct *tsk)
2552 tsk->ioac.syscw++;
2554 #else
2555 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2559 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2563 static inline void inc_syscr(struct task_struct *tsk)
2567 static inline void inc_syscw(struct task_struct *tsk)
2570 #endif
2572 #ifndef TASK_SIZE_OF
2573 #define TASK_SIZE_OF(tsk) TASK_SIZE
2574 #endif
2577 * Call the function if the target task is executing on a CPU right now:
2579 extern void task_oncpu_function_call(struct task_struct *p,
2580 void (*func) (void *info), void *info);
2583 #ifdef CONFIG_MM_OWNER
2584 extern void mm_update_next_owner(struct mm_struct *mm);
2585 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2586 #else
2587 static inline void mm_update_next_owner(struct mm_struct *mm)
2591 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2594 #endif /* CONFIG_MM_OWNER */
2596 #define TASK_STATE_TO_CHAR_STR "RMSDTtZX"
2598 #ifdef CONFIG_SMP
2599 static inline int task_is_current(struct task_struct *task)
2601 return task->oncpu;
2603 #endif
2605 #endif /* __KERNEL__ */
2607 #endif