Merge branch 'filterclavier' of ssh://repo.or.cz/srv/git/calf
[calf.git] / src / calf / modules.h
blob7a2edbcbef925b41252062f1b913720c69412029
1 /* Calf DSP Library
2 * Example audio modules
4 * Copyright (C) 2001-2007 Krzysztof Foltman
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General
17 * Public License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place, Suite 330,
19 * Boston, MA 02111-1307, USA.
21 #ifndef __CALF_MODULES_H
22 #define __CALF_MODULES_H
24 #include <assert.h>
25 #include "biquad.h"
26 #include "inertia.h"
27 #include "audio_fx.h"
28 #include "multichorus.h"
29 #include "giface.h"
30 #include "metadata.h"
31 #include "loudness.h"
32 #include "primitives.h"
34 namespace calf_plugins {
36 using namespace dsp;
38 struct ladspa_plugin_info;
40 #if 0
41 class amp_audio_module: public null_audio_module
43 public:
44 enum { in_count = 2, out_count = 2, param_count = 1, support_midi = false, require_midi = false, rt_capable = true };
45 float *ins[2];
46 float *outs[2];
47 float *params[1];
48 uint32_t srate;
49 static parameter_properties param_props[];
50 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
51 if (!inputs_mask)
52 return 0;
53 float gain = *params[0];
54 numsamples += offset;
55 for (uint32_t i = offset; i < numsamples; i++) {
56 outs[0][i] = ins[0][i] * gain;
57 outs[1][i] = ins[1][i] * gain;
59 return inputs_mask;
62 #endif
64 class flanger_audio_module: public audio_module<flanger_metadata>, public line_graph_iface
66 public:
67 dsp::simple_flanger<float, 2048> left, right;
68 float *ins[in_count];
69 float *outs[out_count];
70 float *params[param_count];
71 uint32_t srate;
72 bool clear_reset;
73 float last_r_phase;
74 bool is_active;
75 public:
76 flanger_audio_module() {
77 is_active = false;
79 void set_sample_rate(uint32_t sr);
80 void params_changed() {
81 float dry = *params[par_dryamount];
82 float wet = *params[par_amount];
83 float rate = *params[par_rate]; // 0.01*pow(1000.0f,*params[par_rate]);
84 float min_delay = *params[par_delay] / 1000.0;
85 float mod_depth = *params[par_depth] / 1000.0;
86 float fb = *params[par_fb];
87 left.set_dry(dry); right.set_dry(dry);
88 left.set_wet(wet); right.set_wet(wet);
89 left.set_rate(rate); right.set_rate(rate);
90 left.set_min_delay(min_delay); right.set_min_delay(min_delay);
91 left.set_mod_depth(mod_depth); right.set_mod_depth(mod_depth);
92 left.set_fb(fb); right.set_fb(fb);
93 float r_phase = *params[par_stereo] * (1.f / 360.f);
94 clear_reset = false;
95 if (*params[par_reset] >= 0.5) {
96 clear_reset = true;
97 left.reset_phase(0.f);
98 right.reset_phase(r_phase);
99 } else {
100 if (fabs(r_phase - last_r_phase) > 0.0001f) {
101 right.phase = left.phase;
102 right.inc_phase(r_phase);
103 last_r_phase = r_phase;
107 void params_reset()
109 if (clear_reset) {
110 *params[par_reset] = 0.f;
111 clear_reset = false;
114 void activate();
115 void deactivate();
116 uint32_t process(uint32_t offset, uint32_t nsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
117 left.process(outs[0] + offset, ins[0] + offset, nsamples);
118 right.process(outs[1] + offset, ins[1] + offset, nsamples);
119 return outputs_mask; // XXXKF allow some delay after input going blank
121 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
122 bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
123 float freq_gain(int subindex, float freq, float srate);
126 class phaser_audio_module: public audio_module<phaser_metadata>, public line_graph_iface
128 public:
129 float *ins[in_count];
130 float *outs[out_count];
131 float *params[param_count];
132 uint32_t srate;
133 bool clear_reset;
134 float last_r_phase;
135 dsp::simple_phaser<12> left, right;
136 bool is_active;
137 public:
138 phaser_audio_module() {
139 is_active = false;
141 void params_changed() {
142 float dry = *params[par_dryamount];
143 float wet = *params[par_amount];
144 float rate = *params[par_rate]; // 0.01*pow(1000.0f,*params[par_rate]);
145 float base_frq = *params[par_freq];
146 float mod_depth = *params[par_depth];
147 float fb = *params[par_fb];
148 int stages = (int)*params[par_stages];
149 left.set_dry(dry); right.set_dry(dry);
150 left.set_wet(wet); right.set_wet(wet);
151 left.set_rate(rate); right.set_rate(rate);
152 left.set_base_frq(base_frq); right.set_base_frq(base_frq);
153 left.set_mod_depth(mod_depth); right.set_mod_depth(mod_depth);
154 left.set_fb(fb); right.set_fb(fb);
155 left.set_stages(stages); right.set_stages(stages);
156 float r_phase = *params[par_stereo] * (1.f / 360.f);
157 clear_reset = false;
158 if (*params[par_reset] >= 0.5) {
159 clear_reset = true;
160 left.reset_phase(0.f);
161 right.reset_phase(r_phase);
162 } else {
163 if (fabs(r_phase - last_r_phase) > 0.0001f) {
164 right.phase = left.phase;
165 right.inc_phase(r_phase);
166 last_r_phase = r_phase;
170 void params_reset()
172 if (clear_reset) {
173 *params[par_reset] = 0.f;
174 clear_reset = false;
177 void activate();
178 void set_sample_rate(uint32_t sr);
179 void deactivate();
180 uint32_t process(uint32_t offset, uint32_t nsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
181 left.process(outs[0] + offset, ins[0] + offset, nsamples);
182 right.process(outs[1] + offset, ins[1] + offset, nsamples);
183 return outputs_mask; // XXXKF allow some delay after input going blank
185 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
186 bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
187 float freq_gain(int subindex, float freq, float srate);
190 class reverb_audio_module: public audio_module<reverb_metadata>
192 public:
193 dsp::reverb<float> reverb;
194 dsp::simple_delay<16384, stereo_sample<float> > pre_delay;
195 dsp::onepole<float> left_lo, right_lo, left_hi, right_hi;
196 uint32_t srate;
197 gain_smoothing amount, dryamount;
198 int predelay_amt;
199 float *ins[in_count];
200 float *outs[out_count];
201 float *params[param_count];
203 void params_changed() {
204 //reverb.set_time(0.5*pow(8.0f, *params[par_decay]));
205 //reverb.set_cutoff(2000*pow(10.0f, *params[par_hfdamp]));
206 reverb.set_type_and_diffusion(fastf2i_drm(*params[par_roomsize]), *params[par_diffusion]);
207 reverb.set_time(*params[par_decay]);
208 reverb.set_cutoff(*params[par_hfdamp]);
209 amount.set_inertia(*params[par_amount]);
210 dryamount.set_inertia(*params[par_dry]);
211 left_lo.set_lp(dsp::clip(*params[par_treblecut], 20.f, (float)(srate * 0.49f)), srate);
212 left_hi.set_hp(dsp::clip(*params[par_basscut], 20.f, (float)(srate * 0.49f)), srate);
213 right_lo.copy_coeffs(left_lo);
214 right_hi.copy_coeffs(left_hi);
215 predelay_amt = srate * (*params[par_predelay]) * (1.0f / 1000.0f) + 1;
217 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
218 numsamples += offset;
220 for (uint32_t i = offset; i < numsamples; i++) {
221 float dry = dryamount.get();
222 float wet = amount.get();
223 stereo_sample<float> s(ins[0][i], ins[1][i]);
224 stereo_sample<float> s2 = pre_delay.process(s, predelay_amt);
226 float rl = s2.left, rr = s2.right;
227 rl = left_lo.process(left_hi.process(rl));
228 rr = right_lo.process(right_hi.process(rr));
229 reverb.process(rl, rr);
230 outs[0][i] = dry*s.left + wet*rl;
231 outs[1][i] = dry*s.right + wet*rr;
233 reverb.extra_sanitize();
234 left_lo.sanitize();
235 left_hi.sanitize();
236 right_lo.sanitize();
237 right_hi.sanitize();
238 return outputs_mask;
240 void activate();
241 void set_sample_rate(uint32_t sr);
242 void deactivate();
245 class vintage_delay_audio_module: public audio_module<vintage_delay_metadata>
247 public:
248 // 1MB of delay memory per channel... uh, RAM is cheap
249 enum { MAX_DELAY = 262144, ADDR_MASK = MAX_DELAY - 1 };
250 float *ins[in_count];
251 float *outs[out_count];
252 float *params[param_count];
253 float buffers[2][MAX_DELAY];
254 int bufptr, deltime_l, deltime_r, mixmode, medium, old_medium;
255 gain_smoothing amt_left, amt_right, fb_left, fb_right;
256 float dry;
258 dsp::biquad_d2<float> biquad_left[2], biquad_right[2];
260 uint32_t srate;
262 vintage_delay_audio_module()
264 old_medium = -1;
267 void params_changed()
269 float unit = 60.0 * srate / (*params[par_bpm] * *params[par_divide]);
270 deltime_l = dsp::fastf2i_drm(unit * *params[par_time_l]);
271 deltime_r = dsp::fastf2i_drm(unit * *params[par_time_r]);
272 amt_left.set_inertia(*params[par_amount]); amt_right.set_inertia(*params[par_amount]);
273 float fb = *params[par_feedback];
274 dry = *params[par_dryamount];
275 mixmode = dsp::fastf2i_drm(*params[par_mixmode]);
276 medium = dsp::fastf2i_drm(*params[par_medium]);
277 if (mixmode == 0)
279 fb_left.set_inertia(fb);
280 fb_right.set_inertia(pow(fb, *params[par_time_r] / *params[par_time_l]));
281 } else {
282 fb_left.set_inertia(fb);
283 fb_right.set_inertia(fb);
285 if (medium != old_medium)
286 calc_filters();
288 void activate() {
289 bufptr = 0;
291 void deactivate() {
293 void set_sample_rate(uint32_t sr) {
294 srate = sr;
295 old_medium = -1;
296 amt_left.set_sample_rate(sr); amt_right.set_sample_rate(sr);
297 fb_left.set_sample_rate(sr); fb_right.set_sample_rate(sr);
298 params_changed();
300 void calc_filters()
302 // parameters are heavily influenced by gordonjcp and his tape delay unit
303 // although, don't blame him if it sounds bad - I've messed with them too :)
304 biquad_left[0].set_lp_rbj(6000, 0.707, srate);
305 biquad_left[1].set_bp_rbj(4500, 0.250, srate);
306 biquad_right[0].copy_coeffs(biquad_left[0]);
307 biquad_right[1].copy_coeffs(biquad_left[1]);
309 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
310 uint32_t ostate = 3; // XXXKF optimize!
311 uint32_t end = offset + numsamples;
312 int v = mixmode ? 1 : 0;
313 int orig_bufptr = bufptr;
314 for(uint32_t i = offset; i < end; i++)
316 float in_left = buffers[v][(bufptr - deltime_l) & ADDR_MASK], in_right = buffers[1 - v][(bufptr - deltime_r) & ADDR_MASK], out_left, out_right, del_left, del_right;
317 dsp::sanitize(in_left), dsp::sanitize(in_right);
319 out_left = dry * ins[0][i] + in_left * amt_left.get();
320 out_right = dry * ins[1][i] + in_right * amt_right.get();
321 del_left = ins[0][i] + in_left * fb_left.get();
322 del_right = ins[1][i] + in_right * fb_right.get();
324 outs[0][i] = out_left; outs[1][i] = out_right; buffers[0][bufptr] = del_left; buffers[1][bufptr] = del_right;
325 bufptr = (bufptr + 1) & (MAX_DELAY - 1);
327 if (medium > 0) {
328 bufptr = orig_bufptr;
329 if (medium == 2)
331 for(uint32_t i = offset; i < end; i++)
333 buffers[0][bufptr] = biquad_left[0].process_lp(biquad_left[1].process(buffers[0][bufptr]));
334 buffers[1][bufptr] = biquad_right[0].process_lp(biquad_right[1].process(buffers[1][bufptr]));
335 bufptr = (bufptr + 1) & (MAX_DELAY - 1);
337 biquad_left[0].sanitize();biquad_right[0].sanitize();
338 } else {
339 for(uint32_t i = offset; i < end; i++)
341 buffers[0][bufptr] = biquad_left[1].process(buffers[0][bufptr]);
342 buffers[1][bufptr] = biquad_right[1].process(buffers[1][bufptr]);
343 bufptr = (bufptr + 1) & (MAX_DELAY - 1);
346 biquad_left[1].sanitize();biquad_right[1].sanitize();
349 return ostate;
353 class rotary_speaker_audio_module: public audio_module<rotary_speaker_metadata>
355 public:
356 float *ins[in_count];
357 float *outs[out_count];
358 float *params[param_count];
359 /// Current phases and phase deltas for bass and treble rotors
360 uint32_t phase_l, dphase_l, phase_h, dphase_h;
361 dsp::simple_delay<1024, float> delay;
362 dsp::biquad_d2<float> crossover1l, crossover1r, crossover2l, crossover2r;
363 dsp::simple_delay<8, float> phaseshift;
364 uint32_t srate;
365 int vibrato_mode;
366 /// Current CC1 (Modulation) value, normalized to [0, 1]
367 float mwhl_value;
368 /// Current CC64 (Hold) value, normalized to [0, 1]
369 float hold_value;
370 /// Current rotation speed for bass rotor - automatic mode
371 float aspeed_l;
372 /// Current rotation speed for treble rotor - automatic mode
373 float aspeed_h;
374 /// Desired speed (0=slow, 1=fast) - automatic mode
375 float dspeed;
376 /// Current rotation speed for bass rotor - manual mode
377 float maspeed_l;
378 /// Current rotation speed for treble rotor - manual mode
379 float maspeed_h;
381 rotary_speaker_audio_module();
382 void set_sample_rate(uint32_t sr);
383 void setup();
384 void activate();
385 void deactivate();
387 void params_changed() {
388 set_vibrato();
390 void set_vibrato()
392 vibrato_mode = fastf2i_drm(*params[par_speed]);
393 // manual vibrato - do not recalculate speeds as they're not used anyway
394 if (vibrato_mode == 5)
395 return;
396 if (!vibrato_mode)
397 dspeed = -1;
398 else {
399 float speed = vibrato_mode - 1;
400 if (vibrato_mode == 3)
401 speed = hold_value;
402 if (vibrato_mode == 4)
403 speed = mwhl_value;
404 dspeed = (speed < 0.5f) ? 0 : 1;
406 update_speed();
408 /// Convert RPM speed to delta-phase
409 inline uint32_t rpm2dphase(float rpm)
411 return (uint32_t)((rpm / (60.0 * srate)) * (1 << 30)) << 2;
413 /// Set delta-phase variables based on current calculated (and interpolated) RPM speed
414 void update_speed()
416 float speed_h = aspeed_h >= 0 ? (48 + (400-48) * aspeed_h) : (48 * (1 + aspeed_h));
417 float speed_l = aspeed_l >= 0 ? 40 + (342-40) * aspeed_l : (40 * (1 + aspeed_l));
418 dphase_h = rpm2dphase(speed_h);
419 dphase_l = rpm2dphase(speed_l);
421 void update_speed_manual(float delta)
423 float ts = *params[par_treblespeed];
424 float bs = *params[par_bassspeed];
425 incr_towards(maspeed_h, ts, delta * 200, delta * 200);
426 incr_towards(maspeed_l, bs, delta * 200, delta * 200);
427 dphase_h = rpm2dphase(maspeed_h);
428 dphase_l = rpm2dphase(maspeed_l);
430 /// map a ramp [int] to a sinusoid-like function [0, 65536]
431 static inline int pseudo_sine_scl(int counter)
433 // premature optimization is a root of all evil; it can be done with integers only - but later :)
434 double v = counter * (1.0 / (65536.0 * 32768.0));
435 return 32768 + 32768 * (v - v*v*v) * (1.0 / 0.3849);
437 /// Increase or decrease aspeed towards raspeed, with required negative and positive rate
438 inline bool incr_towards(float &aspeed, float raspeed, float delta_decc, float delta_acc)
440 if (aspeed < raspeed) {
441 aspeed = std::min(raspeed, aspeed + delta_acc);
442 return true;
444 else if (aspeed > raspeed)
446 aspeed = std::max(raspeed, aspeed - delta_decc);
447 return true;
449 return false;
451 uint32_t process(uint32_t offset, uint32_t nsamples, uint32_t inputs_mask, uint32_t outputs_mask)
453 int shift = (int)(300000 * (*params[par_shift])), pdelta = (int)(300000 * (*params[par_spacing]));
454 int md = (int)(100 * (*params[par_moddepth]));
455 float mix = 0.5 * (1.0 - *params[par_micdistance]);
456 float mix2 = *params[par_reflection];
457 float mix3 = mix2 * mix2;
458 for (unsigned int i = 0; i < nsamples; i++) {
459 float in_l = ins[0][i + offset], in_r = ins[1][i + offset];
460 float in_mono = 0.5f * (in_l + in_r);
462 int xl = pseudo_sine_scl(phase_l), yl = pseudo_sine_scl(phase_l + 0x40000000);
463 int xh = pseudo_sine_scl(phase_h), yh = pseudo_sine_scl(phase_h + 0x40000000);
464 // printf("%d %d %d\n", shift, pdelta, shift + pdelta + 20 * xl);
466 // float out_hi_l = in_mono - delay.get_interp_1616(shift + md * xh) + delay.get_interp_1616(shift + md * 65536 + pdelta - md * yh) - delay.get_interp_1616(shift + md * 65536 + pdelta + pdelta - md * xh);
467 // float out_hi_r = in_mono + delay.get_interp_1616(shift + md * 65536 - md * yh) - delay.get_interp_1616(shift + pdelta + md * xh) + delay.get_interp_1616(shift + pdelta + pdelta + md * yh);
468 float out_hi_l = in_mono + delay.get_interp_1616(shift + md * xh) - mix2 * delay.get_interp_1616(shift + md * 65536 + pdelta - md * yh) + mix3 * delay.get_interp_1616(shift + md * 65536 + pdelta + pdelta - md * xh);
469 float out_hi_r = in_mono + delay.get_interp_1616(shift + md * 65536 - md * yh) - mix2 * delay.get_interp_1616(shift + pdelta + md * xh) + mix3 * delay.get_interp_1616(shift + pdelta + pdelta + md * yh);
471 float out_lo_l = in_mono + delay.get_interp_1616(shift + md * xl); // + delay.get_interp_1616(shift + md * 65536 + pdelta - md * yl);
472 float out_lo_r = in_mono + delay.get_interp_1616(shift + md * yl); // - delay.get_interp_1616(shift + pdelta + md * yl);
474 out_hi_l = crossover2l.process(out_hi_l); // sanitize(out_hi_l);
475 out_hi_r = crossover2r.process(out_hi_r); // sanitize(out_hi_r);
476 out_lo_l = crossover1l.process(out_lo_l); // sanitize(out_lo_l);
477 out_lo_r = crossover1r.process(out_lo_r); // sanitize(out_lo_r);
479 float out_l = out_hi_l + out_lo_l;
480 float out_r = out_hi_r + out_lo_r;
482 float mic_l = out_l + mix * (out_r - out_l);
483 float mic_r = out_r + mix * (out_l - out_r);
485 outs[0][i + offset] = mic_l * 0.5f;
486 outs[1][i + offset] = mic_r * 0.5f;
487 delay.put(in_mono);
488 phase_l += dphase_l;
489 phase_h += dphase_h;
491 crossover1l.sanitize();
492 crossover1r.sanitize();
493 crossover2l.sanitize();
494 crossover2r.sanitize();
495 float delta = nsamples * 1.0 / srate;
496 if (vibrato_mode == 5)
497 update_speed_manual(delta);
498 else
500 bool u1 = incr_towards(aspeed_l, dspeed, delta * 0.2, delta * 0.14);
501 bool u2 = incr_towards(aspeed_h, dspeed, delta, delta * 0.5);
502 if (u1 || u2)
503 set_vibrato();
505 return outputs_mask;
507 virtual void control_change(int ctl, int val);
510 /// Compose two filters in series
511 template<class F1, class F2>
512 class filter_compose {
513 public:
514 typedef std::complex<float> cfloat;
515 F1 f1;
516 F2 f2;
517 public:
518 float process(float value) {
519 return f2.process(f1.process(value));
522 cfloat h_z(const cfloat &z) {
523 return f1.h_z(z) * f2.h_z(z);
526 /// Return the filter's gain at frequency freq
527 /// @param freq Frequency to look up
528 /// @param sr Filter sample rate (used to convert frequency to angular frequency)
529 float freq_gain(float freq, float sr)
531 typedef std::complex<double> cfloat;
532 freq *= 2.0 * M_PI / sr;
533 cfloat z = 1.0 / exp(cfloat(0.0, freq));
535 return std::abs(h_z(z));
538 void sanitize() {
539 f1.sanitize();
540 f2.sanitize();
544 /// Compose two filters in parallel
545 template<class F1, class F2>
546 class filter_sum {
547 public:
548 typedef std::complex<double> cfloat;
549 F1 f1;
550 F2 f2;
551 public:
552 float process(float value) {
553 return f2.process(value) + f1.process(value);
556 inline cfloat h_z(const cfloat &z) {
557 return f1.h_z(z) + f2.h_z(z);
560 /// Return the filter's gain at frequency freq
561 /// @param freq Frequency to look up
562 /// @param sr Filter sample rate (used to convert frequency to angular frequency)
563 float freq_gain(float freq, float sr)
565 typedef std::complex<double> cfloat;
566 freq *= 2.0 * M_PI / sr;
567 cfloat z = 1.0 / exp(cfloat(0.0, freq));
569 return std::abs(h_z(z));
572 void sanitize() {
573 f1.sanitize();
574 f2.sanitize();
578 template<typename FilterClass, typename Metadata>
579 class filter_module_with_inertia: public FilterClass
581 public:
582 typedef filter_module_with_inertia inertia_filter_module;
584 float *ins[Metadata::in_count];
585 float *outs[Metadata::out_count];
586 float *params[Metadata::param_count];
588 inertia<exponential_ramp> inertia_cutoff, inertia_resonance;
589 once_per_n timer;
590 bool is_active;
592 filter_module_with_inertia()
593 : inertia_cutoff(exponential_ramp(128), 20)
594 , inertia_resonance(exponential_ramp(128), 20)
595 , timer(128)
597 is_active = false;
600 void calculate_filter()
602 float freq = inertia_cutoff.get_last();
603 // printf("freq=%g inr.cnt=%d timer.left=%d\n", freq, inertia_cutoff.count, timer.left);
604 // XXXKF this is resonance of a single stage, obviously for three stages, resonant gain will be different
605 float q = inertia_resonance.get_last();
606 int mode = dsp::fastf2i_drm(*params[Metadata::par_mode]);
607 // printf("freq = %f q = %f mode = %d\n", freq, q, mode);
609 int inertia = dsp::fastf2i_drm(*params[Metadata::par_inertia]);
610 if (inertia != inertia_cutoff.ramp.length()) {
611 inertia_cutoff.ramp.set_length(inertia);
612 inertia_resonance.ramp.set_length(inertia);
615 FilterClass::calculate_filter(freq, q, mode);
618 void params_changed()
620 inertia_cutoff.set_inertia(*params[Metadata::par_cutoff]);
621 inertia_resonance.set_inertia(*params[Metadata::par_resonance]);
622 calculate_filter();
625 void on_timer()
627 inertia_cutoff.step();
628 inertia_resonance.step();
629 calculate_filter();
632 void activate()
634 params_changed();
635 FilterClass::filter_activate();
636 timer = once_per_n(FilterClass::srate / 1000);
637 timer.start();
638 is_active = true;
641 void set_sample_rate(uint32_t sr)
643 FilterClass::srate = sr;
647 void deactivate()
649 is_active = false;
652 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
653 // printf("sr=%d cutoff=%f res=%f mode=%f\n", FilterClass::srate, *params[Metadata::par_cutoff], *params[Metadata::par_resonance], *params[Metadata::par_mode]);
654 uint32_t ostate = 0;
655 numsamples += offset;
656 while(offset < numsamples) {
657 uint32_t numnow = numsamples - offset;
658 // if inertia's inactive, we can calculate the whole buffer at once
659 if (inertia_cutoff.active() || inertia_resonance.active())
660 numnow = timer.get(numnow);
662 if (outputs_mask & 1) {
663 ostate |= FilterClass::process_channel(0, ins[0] + offset, outs[0] + offset, numnow, inputs_mask & 1);
665 if (outputs_mask & 2) {
666 ostate |= FilterClass::process_channel(1, ins[1] + offset, outs[1] + offset, numnow, inputs_mask & 2);
669 if (timer.elapsed()) {
670 on_timer();
672 offset += numnow;
674 return ostate;
678 class filter_audio_module:
679 public audio_module<filter_metadata>,
680 public filter_module_with_inertia<biquad_filter_module, filter_metadata>,
681 public line_graph_iface
683 public:
684 void params_changed()
686 inertia_filter_module::params_changed();
689 void activate()
691 inertia_filter_module::activate();
694 void set_sample_rate(uint32_t sr)
696 inertia_filter_module::set_sample_rate(sr);
700 void deactivate()
702 inertia_filter_module::deactivate();
706 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
707 bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
710 /// A multitap stereo chorus thing - processing
711 class multichorus_audio_module: public audio_module<multichorus_metadata>, public line_graph_iface
713 public:
714 float *ins[in_count];
715 float *outs[out_count];
716 float *params[param_count];
717 uint32_t srate;
718 dsp::multichorus<float, sine_multi_lfo<float, 8>, filter_sum<dsp::biquad_d2<>, dsp::biquad_d2<> >, 4096> left, right;
719 float last_r_phase;
720 float cutoff;
721 bool is_active;
723 public:
724 multichorus_audio_module()
726 is_active = false;
729 void params_changed()
731 // delicious copy-pasta from flanger module - it'd be better to keep it common or something
732 float dry = *params[par_dryamount];
733 float wet = *params[par_amount];
734 float rate = *params[par_rate];
735 float min_delay = *params[par_delay] / 1000.0;
736 float mod_depth = *params[par_depth] / 1000.0;
737 left.set_dry(dry); right.set_dry(dry);
738 left.set_wet(wet); right.set_wet(wet);
739 left.set_rate(rate); right.set_rate(rate);
740 left.set_min_delay(min_delay); right.set_min_delay(min_delay);
741 left.set_mod_depth(mod_depth); right.set_mod_depth(mod_depth);
742 int voices = (int)*params[par_voices];
743 left.lfo.set_voices(voices); right.lfo.set_voices(voices);
744 float vphase = *params[par_vphase] * (1.f / 360.f);
745 left.lfo.vphase = right.lfo.vphase = vphase * (4096 / std::max(voices - 1, 1));
746 float r_phase = *params[par_stereo] * (1.f / 360.f);
747 if (fabs(r_phase - last_r_phase) > 0.0001f) {
748 right.lfo.phase = left.lfo.phase;
749 right.lfo.phase += chorus_phase(r_phase * 4096);
750 last_r_phase = r_phase;
752 left.post.f1.set_bp_rbj(*params[par_freq], *params[par_q], srate);
753 left.post.f2.set_bp_rbj(*params[par_freq2], *params[par_q], srate);
754 right.post.f1.copy_coeffs(left.post.f1);
755 right.post.f2.copy_coeffs(left.post.f2);
757 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
758 left.process(outs[0] + offset, ins[0] + offset, numsamples);
759 right.process(outs[1] + offset, ins[1] + offset, numsamples);
760 return outputs_mask; // XXXKF allow some delay after input going blank
762 void activate();
763 void deactivate();
764 void set_sample_rate(uint32_t sr);
765 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
766 float freq_gain(int subindex, float freq, float srate);
767 bool get_dot(int index, int subindex, float &x, float &y, int &size, cairo_iface *context);
768 bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
771 class compressor_audio_module: public audio_module<compressor_metadata>, public line_graph_iface {
772 private:
773 float linSlope, peak, detected, kneeSqrt, kneeStart, linKneeStart, kneeStop, threshold, ratio, knee, makeup, compressedKneeStop, adjKneeStart;
774 uint32_t clip;
775 aweighter awL, awR;
776 public:
777 float *ins[in_count];
778 float *outs[out_count];
779 float *params[param_count];
780 uint32_t srate;
781 bool is_active;
782 compressor_audio_module();
783 void activate();
784 void deactivate();
785 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask);
787 inline float output_level(float slope) {
788 return slope * output_gain(slope, false) * makeup;
791 inline float output_gain(float linSlope, bool rms) {
792 if(linSlope > (rms ? adjKneeStart : linKneeStart)) {
793 float slope = log(linSlope);
794 if(rms) slope *= 0.5f;
796 float gain = 0.f;
797 float delta = 0.f;
798 if(IS_FAKE_INFINITY(ratio)) {
799 gain = threshold;
800 delta = 0.f;
801 } else {
802 gain = (slope - threshold) / ratio + threshold;
803 delta = 1.f / ratio;
806 if(knee > 1.f && slope < kneeStop) {
807 gain = hermite_interpolation(slope, kneeStart, kneeStop, kneeStart, compressedKneeStop, 1.f, delta);
810 return exp(gain - slope);
813 return 1.f;
816 void set_sample_rate(uint32_t sr);
818 virtual bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
819 virtual bool get_dot(int index, int subindex, float &x, float &y, int &size, cairo_iface *context);
820 virtual bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
823 extern std::string get_builtin_modules_rdf();
827 #include "modules_synths.h"
829 #endif