Resurrected incomplete Intel graphics driver in case anyone wants to
[cake.git] / compiler / mlib / k_cos.c
blobe57e66840bdddd7387a39df1cbb650e7394cec6f
2 /* @(#)k_cos.c 1.3 95/01/18 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_cos.c,v 1.10 2005/10/26 12:36:18 bde Exp $";
16 #endif
19 * __kernel_cos( x, y )
20 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
21 * Input x is assumed to be bounded by ~pi/4 in magnitude.
22 * Input y is the tail of x.
24 * Algorithm
25 * 1. Since cos(-x) = cos(x), we need only to consider positive x.
26 * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
27 * 3. cos(x) is approximated by a polynomial of degree 14 on
28 * [0,pi/4]
29 * 4 14
30 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
31 * where the remez error is
33 * | 2 4 6 8 10 12 14 | -58
34 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
35 * | |
37 * 4 6 8 10 12 14
38 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
39 * cos(x) ~ 1 - x*x/2 + r
40 * since cos(x+y) ~ cos(x) - sin(x)*y
41 * ~ cos(x) - x*y,
42 * a correction term is necessary in cos(x) and hence
43 * cos(x+y) = 1 - (x*x/2 - (r - x*y))
44 * For better accuracy, rearrange to
45 * cos(x+y) ~ w + (tmp + (r-x*y))
46 * where w = 1 - x*x/2 and tmp is a tiny correction term
47 * (1 - x*x/2 == w + tmp exactly in infinite precision).
48 * The exactness of w + tmp in infinite precision depends on w
49 * and tmp having the same precision as x. If they have extra
50 * precision due to compiler bugs, then the extra precision is
51 * only good provided it is retained in all terms of the final
52 * expression for cos(). Retention happens in all cases tested
53 * under FreeBSD, so don't pessimize things by forcibly clipping
54 * any extra precision in w.
57 #include "math.h"
58 #include "math_private.h"
60 static const double
61 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
62 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
63 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
64 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
65 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
66 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
67 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
69 double
70 __kernel_cos(double x, double y)
72 double hz,z,r,w;
74 z = x*x;
75 r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
76 hz = (float)0.5*z;
77 w = one-hz;
78 return w + (((one-w)-hz) + (z*r-x*y));