Overhauled GRUB menus to reduce number of entries, mainly by making use
[cake.git] / compiler / libjpeg / main / jcdctmgr.c
blob45e0a773bce40c315c5d18fd69e1cbcec6adb2ca
1 /*
2 $Id$
3 */
5 /*
6 * jcdctmgr.c
8 * Copyright (C) 1994-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains the forward-DCT management logic.
13 * This code selects a particular DCT implementation to be used,
14 * and it performs related housekeeping chores including coefficient
15 * quantization.
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21 #include "jlossy.h" /* Private declarations for lossy codec */
22 #include "jdct.h" /* Private declarations for DCT subsystem */
25 /* Private subobject for this module */
27 typedef struct {
28 /* Pointer to the DCT routine actually in use */
29 forward_DCT_method_ptr do_dct;
31 /* The actual post-DCT divisors --- not identical to the quant table
32 * entries, because of scaling (especially for an unnormalized DCT).
33 * Each table is given in normal array order.
35 DCTELEM * divisors[NUM_QUANT_TBLS];
37 #ifdef DCT_FLOAT_SUPPORTED
38 /* Same as above for the floating-point case. */
39 float_DCT_method_ptr do_float_dct;
40 FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
41 #endif
42 } fdct_controller;
44 typedef fdct_controller * fdct_ptr;
48 * Initialize for a processing pass.
49 * Verify that all referenced Q-tables are present, and set up
50 * the divisor table for each one.
51 * In the current implementation, DCT of all components is done during
52 * the first pass, even if only some components will be output in the
53 * first scan. Hence all components should be examined here.
56 METHODDEF(void)
57 start_pass_fdctmgr (j_compress_ptr cinfo)
59 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
60 fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
61 int ci, qtblno, i;
62 jpeg_component_info *compptr;
63 JQUANT_TBL * qtbl;
64 DCTELEM * dtbl;
66 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
67 ci++, compptr++) {
68 qtblno = compptr->quant_tbl_no;
69 /* Make sure specified quantization table is present */
70 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
71 cinfo->quant_tbl_ptrs[qtblno] == NULL)
72 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
73 qtbl = cinfo->quant_tbl_ptrs[qtblno];
74 /* Compute divisors for this quant table */
75 /* We may do this more than once for same table, but it's not a big deal */
76 switch (cinfo->dct_method) {
77 #ifdef DCT_ISLOW_SUPPORTED
78 case JDCT_ISLOW:
79 /* For LL&M IDCT method, divisors are equal to raw quantization
80 * coefficients multiplied by 8 (to counteract scaling).
82 if (fdct->divisors[qtblno] == NULL) {
83 fdct->divisors[qtblno] = (DCTELEM *)
84 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
85 DCTSIZE2 * SIZEOF(DCTELEM));
87 dtbl = fdct->divisors[qtblno];
88 for (i = 0; i < DCTSIZE2; i++) {
89 dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
91 break;
92 #endif
93 #ifdef DCT_IFAST_SUPPORTED
94 case JDCT_IFAST:
96 /* For AA&N IDCT method, divisors are equal to quantization
97 * coefficients scaled by scalefactor[row]*scalefactor[col], where
98 * scalefactor[0] = 1
99 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
100 * We apply a further scale factor of 8.
102 #define CONST_BITS 14
103 static const INT16 aanscales[DCTSIZE2] = {
104 /* precomputed values scaled up by 14 bits */
105 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
106 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
107 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
108 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
109 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
110 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
111 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
112 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
114 SHIFT_TEMPS
116 if (fdct->divisors[qtblno] == NULL) {
117 fdct->divisors[qtblno] = (DCTELEM *)
118 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
119 DCTSIZE2 * SIZEOF(DCTELEM));
121 dtbl = fdct->divisors[qtblno];
122 for (i = 0; i < DCTSIZE2; i++) {
123 dtbl[i] = (DCTELEM)
124 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
125 (INT32) aanscales[i]),
126 CONST_BITS-3);
129 break;
130 #endif
131 #ifdef DCT_FLOAT_SUPPORTED
132 case JDCT_FLOAT:
134 /* For float AA&N IDCT method, divisors are equal to quantization
135 * coefficients scaled by scalefactor[row]*scalefactor[col], where
136 * scalefactor[0] = 1
137 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
138 * We apply a further scale factor of 8.
139 * What's actually stored is 1/divisor so that the inner loop can
140 * use a multiplication rather than a division.
142 FAST_FLOAT * fdtbl;
143 int row, col;
144 static const double aanscalefactor[DCTSIZE] = {
145 1.0, 1.387039845, 1.306562965, 1.175875602,
146 1.0, 0.785694958, 0.541196100, 0.275899379
149 if (fdct->float_divisors[qtblno] == NULL) {
150 fdct->float_divisors[qtblno] = (FAST_FLOAT *)
151 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
152 DCTSIZE2 * SIZEOF(FAST_FLOAT));
154 fdtbl = fdct->float_divisors[qtblno];
155 i = 0;
156 for (row = 0; row < DCTSIZE; row++) {
157 for (col = 0; col < DCTSIZE; col++) {
158 fdtbl[i] = (FAST_FLOAT)
159 (1.0 / (((double) qtbl->quantval[i] *
160 aanscalefactor[row] * aanscalefactor[col] * 8.0)));
161 i++;
165 break;
166 #endif
167 default:
168 ERREXIT(cinfo, JERR_NOT_COMPILED);
169 break;
176 * Perform forward DCT on one or more blocks of a component.
178 * The input samples are taken from the sample_data[] array starting at
179 * position start_row/start_col, and moving to the right for any additional
180 * blocks. The quantized coefficients are returned in coef_blocks[].
183 METHODDEF(void)
184 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
185 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
186 JDIMENSION start_row, JDIMENSION start_col,
187 JDIMENSION num_blocks)
188 /* This version is used for integer DCT implementations. */
190 /* This routine is heavily used, so it's worth coding it tightly. */
191 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
192 fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
193 forward_DCT_method_ptr do_dct = fdct->do_dct;
194 DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
195 DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
196 JDIMENSION bi;
198 sample_data += start_row; /* fold in the vertical offset once */
200 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
201 /* Load data into workspace, applying unsigned->signed conversion */
202 { register DCTELEM *workspaceptr;
203 register JSAMPROW elemptr;
204 register int elemr;
206 workspaceptr = workspace;
207 for (elemr = 0; elemr < DCTSIZE; elemr++) {
208 elemptr = sample_data[elemr] + start_col;
209 #if DCTSIZE == 8 /* unroll the inner loop */
210 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
214 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
215 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
216 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
217 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
218 #else
219 { register int elemc;
220 for (elemc = DCTSIZE; elemc > 0; elemc--) {
221 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
224 #endif
228 /* Perform the DCT */
229 (*do_dct) (workspace);
231 /* Quantize/descale the coefficients, and store into coef_blocks[] */
232 { register DCTELEM temp, qval;
233 register int i;
234 register JCOEFPTR output_ptr = coef_blocks[bi];
236 for (i = 0; i < DCTSIZE2; i++) {
237 qval = divisors[i];
238 temp = workspace[i];
239 /* Divide the coefficient value by qval, ensuring proper rounding.
240 * Since C does not specify the direction of rounding for negative
241 * quotients, we have to force the dividend positive for portability.
243 * In most files, at least half of the output values will be zero
244 * (at default quantization settings, more like three-quarters...)
245 * so we should ensure that this case is fast. On many machines,
246 * a comparison is enough cheaper than a divide to make a special test
247 * a win. Since both inputs will be nonnegative, we need only test
248 * for a < b to discover whether a/b is 0.
249 * If your machine's division is fast enough, define FAST_DIVIDE.
251 #ifdef FAST_DIVIDE
252 #define DIVIDE_BY(a,b) a /= b
253 #else
254 #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
255 #endif
256 if (temp < 0) {
257 temp = -temp;
258 temp += qval>>1; /* for rounding */
259 DIVIDE_BY(temp, qval);
260 temp = -temp;
261 } else {
262 temp += qval>>1; /* for rounding */
263 DIVIDE_BY(temp, qval);
265 output_ptr[i] = (JCOEF) temp;
272 #ifdef DCT_FLOAT_SUPPORTED
274 METHODDEF(void)
275 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
276 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
277 JDIMENSION start_row, JDIMENSION start_col,
278 JDIMENSION num_blocks)
279 /* This version is used for floating-point DCT implementations. */
281 /* This routine is heavily used, so it's worth coding it tightly. */
282 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
283 fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
284 float_DCT_method_ptr do_dct = fdct->do_float_dct;
285 FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
286 FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
287 JDIMENSION bi;
289 sample_data += start_row; /* fold in the vertical offset once */
291 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
292 /* Load data into workspace, applying unsigned->signed conversion */
293 { register FAST_FLOAT *workspaceptr;
294 register JSAMPROW elemptr;
295 register int elemr;
297 workspaceptr = workspace;
298 for (elemr = 0; elemr < DCTSIZE; elemr++) {
299 elemptr = sample_data[elemr] + start_col;
300 #if DCTSIZE == 8 /* unroll the inner loop */
301 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
304 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
305 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
306 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
307 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
308 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
309 #else
310 { register int elemc;
311 for (elemc = DCTSIZE; elemc > 0; elemc--) {
312 *workspaceptr++ = (FAST_FLOAT)
313 (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
316 #endif
320 /* Perform the DCT */
321 (*do_dct) (workspace);
323 /* Quantize/descale the coefficients, and store into coef_blocks[] */
324 { register FAST_FLOAT temp;
325 register int i;
326 register JCOEFPTR output_ptr = coef_blocks[bi];
328 for (i = 0; i < DCTSIZE2; i++) {
329 /* Apply the quantization and scaling factor */
330 temp = workspace[i] * divisors[i];
331 /* Round to nearest integer.
332 * Since C does not specify the direction of rounding for negative
333 * quotients, we have to force the dividend positive for portability.
334 * The maximum coefficient size is +-16K (for 12-bit data), so this
335 * code should work for either 16-bit or 32-bit ints.
337 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
343 #endif /* DCT_FLOAT_SUPPORTED */
347 * Initialize FDCT manager.
350 JGLOBAL(void)
351 jinit_forward_dct (j_compress_ptr cinfo)
353 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
354 fdct_ptr fdct;
355 int i;
357 fdct = (fdct_ptr)
358 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
359 SIZEOF(fdct_controller));
360 lossyc->fdct_private = (struct jpeg_forward_dct *) fdct;
361 lossyc->fdct_start_pass = start_pass_fdctmgr;
363 switch (cinfo->dct_method) {
364 #ifdef DCT_ISLOW_SUPPORTED
365 case JDCT_ISLOW:
366 lossyc->fdct_forward_DCT = forward_DCT;
367 fdct->do_dct = jpeg_fdct_islow;
368 break;
369 #endif
370 #ifdef DCT_IFAST_SUPPORTED
371 case JDCT_IFAST:
372 lossyc->fdct_forward_DCT = forward_DCT;
373 fdct->do_dct = jpeg_fdct_ifast;
374 break;
375 #endif
376 #ifdef DCT_FLOAT_SUPPORTED
377 case JDCT_FLOAT:
378 lossyc->fdct_forward_DCT = forward_DCT_float;
379 fdct->do_float_dct = jpeg_fdct_float;
380 break;
381 #endif
382 default:
383 ERREXIT(cinfo, JERR_NOT_COMPILED);
384 break;
387 /* Mark divisor tables unallocated */
388 for (i = 0; i < NUM_QUANT_TBLS; i++) {
389 fdct->divisors[i] = NULL;
390 #ifdef DCT_FLOAT_SUPPORTED
391 fdct->float_divisors[i] = NULL;
392 #endif