Call btrfs_cow_block while lowering tree level.
[btrfs-progs-unstable/devel.git] / ctree.c
blob0e2fe7f6f2077b6fdf026a317c524236f536ae09
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include "ctree.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
23 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
24 *root, struct btrfs_path *path, int level);
25 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
26 *root, struct btrfs_key *ins_key,
27 struct btrfs_path *path, int data_size, int extend);
28 static int push_node_left(struct btrfs_trans_handle *trans,
29 struct btrfs_root *root, struct extent_buffer *dst,
30 struct extent_buffer *src);
31 static int balance_node_right(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root,
33 struct extent_buffer *dst_buf,
34 struct extent_buffer *src_buf);
35 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
36 struct btrfs_path *path, int level, int slot);
38 inline void btrfs_init_path(struct btrfs_path *p)
40 memset(p, 0, sizeof(*p));
43 struct btrfs_path *btrfs_alloc_path(void)
45 struct btrfs_path *path;
46 path = kmalloc(sizeof(struct btrfs_path), GFP_NOFS);
47 if (path) {
48 btrfs_init_path(path);
49 path->reada = 0;
51 return path;
54 void btrfs_free_path(struct btrfs_path *p)
56 btrfs_release_path(NULL, p);
57 kfree(p);
60 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
62 int i;
63 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 if (!p->nodes[i])
65 break;
66 free_extent_buffer(p->nodes[i]);
68 memset(p, 0, sizeof(*p));
71 int btrfs_copy_root(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 struct extent_buffer *buf,
74 struct extent_buffer **cow_ret, u64 new_root_objectid)
76 struct extent_buffer *cow;
77 u32 nritems;
78 int ret = 0;
79 int level;
80 struct btrfs_key first_key;
81 struct btrfs_root *new_root;
83 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
84 if (!new_root)
85 return -ENOMEM;
87 memcpy(new_root, root, sizeof(*new_root));
88 new_root->root_key.objectid = new_root_objectid;
90 WARN_ON(root->ref_cows && trans->transid !=
91 root->fs_info->running_transaction->transid);
92 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
94 level = btrfs_header_level(buf);
95 nritems = btrfs_header_nritems(buf);
96 if (nritems) {
97 if (level == 0)
98 btrfs_item_key_to_cpu(buf, &first_key, 0);
99 else
100 btrfs_node_key_to_cpu(buf, &first_key, 0);
101 } else {
102 first_key.objectid = 0;
104 cow = __btrfs_alloc_free_block(trans, new_root, buf->len,
105 new_root_objectid,
106 trans->transid, first_key.objectid,
107 level, buf->start, 0);
108 if (IS_ERR(cow)) {
109 kfree(new_root);
110 return PTR_ERR(cow);
113 copy_extent_buffer(cow, buf, 0, 0, cow->len);
114 btrfs_set_header_bytenr(cow, cow->start);
115 btrfs_set_header_generation(cow, trans->transid);
116 btrfs_set_header_owner(cow, new_root_objectid);
118 WARN_ON(btrfs_header_generation(buf) > trans->transid);
119 ret = btrfs_inc_ref(trans, new_root, buf);
120 kfree(new_root);
122 if (ret)
123 return ret;
125 btrfs_mark_buffer_dirty(cow);
126 *cow_ret = cow;
127 return 0;
130 int __btrfs_cow_block(struct btrfs_trans_handle *trans,
131 struct btrfs_root *root,
132 struct extent_buffer *buf,
133 struct extent_buffer *parent, int parent_slot,
134 struct extent_buffer **cow_ret,
135 u64 search_start, u64 empty_size)
137 u64 root_gen;
138 struct extent_buffer *cow;
139 u32 nritems;
140 int ret = 0;
141 int different_trans = 0;
142 int level;
143 struct btrfs_key first_key;
145 if (root->ref_cows) {
146 root_gen = trans->transid;
147 } else {
148 root_gen = 0;
151 WARN_ON(root->ref_cows && trans->transid !=
152 root->fs_info->running_transaction->transid);
153 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
155 level = btrfs_header_level(buf);
156 nritems = btrfs_header_nritems(buf);
157 if (nritems) {
158 if (level == 0)
159 btrfs_item_key_to_cpu(buf, &first_key, 0);
160 else
161 btrfs_node_key_to_cpu(buf, &first_key, 0);
162 } else {
163 first_key.objectid = 0;
165 cow = __btrfs_alloc_free_block(trans, root, buf->len,
166 root->root_key.objectid,
167 root_gen, first_key.objectid, level,
168 search_start, empty_size);
169 if (IS_ERR(cow))
170 return PTR_ERR(cow);
172 copy_extent_buffer(cow, buf, 0, 0, cow->len);
173 btrfs_set_header_bytenr(cow, cow->start);
174 btrfs_set_header_generation(cow, trans->transid);
175 btrfs_set_header_owner(cow, root->root_key.objectid);
177 WARN_ON(btrfs_header_generation(buf) > trans->transid);
178 if (btrfs_header_generation(buf) != trans->transid) {
179 different_trans = 1;
180 ret = btrfs_inc_ref(trans, root, buf);
181 if (ret)
182 return ret;
183 } else {
184 clean_tree_block(trans, root, buf);
187 if (buf == root->node) {
188 root_gen = btrfs_header_generation(buf);
189 root->node = cow;
190 extent_buffer_get(cow);
191 if (buf != root->commit_root) {
192 btrfs_free_extent(trans, root, buf->start,
193 buf->len, root->root_key.objectid,
194 root_gen, 0, 0, 1);
196 free_extent_buffer(buf);
197 } else {
198 root_gen = btrfs_header_generation(parent);
199 btrfs_set_node_blockptr(parent, parent_slot,
200 cow->start);
201 WARN_ON(trans->transid == 0);
202 btrfs_set_node_ptr_generation(parent, parent_slot,
203 trans->transid);
204 btrfs_mark_buffer_dirty(parent);
205 WARN_ON(btrfs_header_generation(parent) != trans->transid);
206 btrfs_free_extent(trans, root, buf->start, buf->len,
207 btrfs_header_owner(parent), root_gen,
208 0, 0, 1);
210 free_extent_buffer(buf);
211 btrfs_mark_buffer_dirty(cow);
212 *cow_ret = cow;
213 return 0;
216 int btrfs_cow_block(struct btrfs_trans_handle *trans,
217 struct btrfs_root *root, struct extent_buffer *buf,
218 struct extent_buffer *parent, int parent_slot,
219 struct extent_buffer **cow_ret)
221 u64 search_start;
222 int ret;
224 if (trans->transaction != root->fs_info->running_transaction) {
225 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
226 root->fs_info->running_transaction->transid);
227 WARN_ON(1);
230 if (trans->transid != root->fs_info->generation) {
231 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
232 root->fs_info->generation);
233 WARN_ON(1);
235 if (btrfs_header_generation(buf) == trans->transid) {
236 *cow_ret = buf;
237 return 0;
240 search_start = buf->start & ~((u64)BTRFS_BLOCK_GROUP_SIZE - 1);
241 ret = __btrfs_cow_block(trans, root, buf, parent,
242 parent_slot, cow_ret, search_start, 0);
243 return ret;
247 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
249 if (blocknr < other && other - (blocknr + blocksize) < 32768)
250 return 1;
251 if (blocknr > other && blocknr - (other + blocksize) < 32768)
252 return 1;
253 return 0;
258 * compare two keys in a memcmp fashion
260 int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
262 struct btrfs_key k1;
264 btrfs_disk_key_to_cpu(&k1, disk);
266 if (k1.objectid > k2->objectid)
267 return 1;
268 if (k1.objectid < k2->objectid)
269 return -1;
270 if (k1.type > k2->type)
271 return 1;
272 if (k1.type < k2->type)
273 return -1;
274 if (k1.offset > k2->offset)
275 return 1;
276 if (k1.offset < k2->offset)
277 return -1;
278 return 0;
282 #if 0
283 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
284 struct btrfs_root *root, struct extent_buffer *parent,
285 int start_slot, int cache_only, u64 *last_ret,
286 struct btrfs_key *progress)
288 struct extent_buffer *cur;
289 struct extent_buffer *tmp;
290 u64 blocknr;
291 u64 search_start = *last_ret;
292 u64 last_block = 0;
293 u64 other;
294 u32 parent_nritems;
295 int end_slot;
296 int i;
297 int err = 0;
298 int parent_level;
299 int uptodate;
300 u32 blocksize;
301 int progress_passed = 0;
302 struct btrfs_disk_key disk_key;
304 parent_level = btrfs_header_level(parent);
305 if (cache_only && parent_level != 1)
306 return 0;
308 if (trans->transaction != root->fs_info->running_transaction) {
309 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
310 root->fs_info->running_transaction->transid);
311 WARN_ON(1);
313 if (trans->transid != root->fs_info->generation) {
314 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
315 root->fs_info->generation);
316 WARN_ON(1);
319 parent_nritems = btrfs_header_nritems(parent);
320 blocksize = btrfs_level_size(root, parent_level - 1);
321 end_slot = parent_nritems;
323 if (parent_nritems == 1)
324 return 0;
326 for (i = start_slot; i < end_slot; i++) {
327 int close = 1;
329 if (!parent->map_token) {
330 map_extent_buffer(parent,
331 btrfs_node_key_ptr_offset(i),
332 sizeof(struct btrfs_key_ptr),
333 &parent->map_token, &parent->kaddr,
334 &parent->map_start, &parent->map_len,
335 KM_USER1);
337 btrfs_node_key(parent, &disk_key, i);
338 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
339 continue;
341 progress_passed = 1;
342 blocknr = btrfs_node_blockptr(parent, i);
343 if (last_block == 0)
344 last_block = blocknr;
346 if (i > 0) {
347 other = btrfs_node_blockptr(parent, i - 1);
348 close = close_blocks(blocknr, other, blocksize);
350 if (close && i < end_slot - 2) {
351 other = btrfs_node_blockptr(parent, i + 1);
352 close = close_blocks(blocknr, other, blocksize);
354 if (close) {
355 last_block = blocknr;
356 continue;
358 if (parent->map_token) {
359 unmap_extent_buffer(parent, parent->map_token,
360 KM_USER1);
361 parent->map_token = NULL;
364 cur = btrfs_find_tree_block(root, blocknr, blocksize);
365 if (cur)
366 uptodate = btrfs_buffer_uptodate(cur);
367 else
368 uptodate = 0;
369 if (!cur || !uptodate) {
370 if (cache_only) {
371 free_extent_buffer(cur);
372 continue;
374 if (!cur) {
375 cur = read_tree_block(root, blocknr,
376 blocksize);
377 } else if (!uptodate) {
378 btrfs_read_buffer(cur);
381 if (search_start == 0)
382 search_start = last_block;
384 err = __btrfs_cow_block(trans, root, cur, parent, i,
385 &tmp, search_start,
386 min(16 * blocksize,
387 (end_slot - i) * blocksize));
388 if (err) {
389 free_extent_buffer(cur);
390 break;
392 search_start = tmp->start;
393 last_block = tmp->start;
394 *last_ret = search_start;
395 if (parent_level == 1)
396 btrfs_clear_buffer_defrag(tmp);
397 free_extent_buffer(tmp);
399 if (parent->map_token) {
400 unmap_extent_buffer(parent, parent->map_token,
401 KM_USER1);
402 parent->map_token = NULL;
404 return err;
406 #endif
409 * The leaf data grows from end-to-front in the node.
410 * this returns the address of the start of the last item,
411 * which is the stop of the leaf data stack
413 static inline unsigned int leaf_data_end(struct btrfs_root *root,
414 struct extent_buffer *leaf)
416 u32 nr = btrfs_header_nritems(leaf);
417 if (nr == 0)
418 return BTRFS_LEAF_DATA_SIZE(root);
419 return btrfs_item_offset_nr(leaf, nr - 1);
422 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
423 int level)
425 struct extent_buffer *parent = NULL;
426 struct extent_buffer *node = path->nodes[level];
427 struct btrfs_disk_key parent_key;
428 struct btrfs_disk_key node_key;
429 int parent_slot;
430 int slot;
431 struct btrfs_key cpukey;
432 u32 nritems = btrfs_header_nritems(node);
434 if (path->nodes[level + 1])
435 parent = path->nodes[level + 1];
437 slot = path->slots[level];
438 BUG_ON(nritems == 0);
439 if (parent) {
440 parent_slot = path->slots[level + 1];
441 btrfs_node_key(parent, &parent_key, parent_slot);
442 btrfs_node_key(node, &node_key, 0);
443 BUG_ON(memcmp(&parent_key, &node_key,
444 sizeof(struct btrfs_disk_key)));
445 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
446 btrfs_header_bytenr(node));
448 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
449 if (slot != 0) {
450 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
451 btrfs_node_key(node, &node_key, slot);
452 BUG_ON(btrfs_comp_keys(&node_key, &cpukey) <= 0);
454 if (slot < nritems - 1) {
455 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
456 btrfs_node_key(node, &node_key, slot);
457 BUG_ON(btrfs_comp_keys(&node_key, &cpukey) >= 0);
459 return 0;
462 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
463 int level)
465 struct extent_buffer *leaf = path->nodes[level];
466 struct extent_buffer *parent = NULL;
467 int parent_slot;
468 struct btrfs_key cpukey;
469 struct btrfs_disk_key parent_key;
470 struct btrfs_disk_key leaf_key;
471 int slot = path->slots[0];
473 u32 nritems = btrfs_header_nritems(leaf);
475 if (path->nodes[level + 1])
476 parent = path->nodes[level + 1];
478 if (nritems == 0)
479 return 0;
481 if (parent) {
482 parent_slot = path->slots[level + 1];
483 btrfs_node_key(parent, &parent_key, parent_slot);
484 btrfs_item_key(leaf, &leaf_key, 0);
486 BUG_ON(memcmp(&parent_key, &leaf_key,
487 sizeof(struct btrfs_disk_key)));
488 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
489 btrfs_header_bytenr(leaf));
491 #if 0
492 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
493 btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
494 btrfs_item_key(leaf, &leaf_key, i);
495 if (comp_keys(&leaf_key, &cpukey) >= 0) {
496 btrfs_print_leaf(root, leaf);
497 printk("slot %d offset bad key\n", i);
498 BUG_ON(1);
500 if (btrfs_item_offset_nr(leaf, i) !=
501 btrfs_item_end_nr(leaf, i + 1)) {
502 btrfs_print_leaf(root, leaf);
503 printk("slot %d offset bad\n", i);
504 BUG_ON(1);
506 if (i == 0) {
507 if (btrfs_item_offset_nr(leaf, i) +
508 btrfs_item_size_nr(leaf, i) !=
509 BTRFS_LEAF_DATA_SIZE(root)) {
510 btrfs_print_leaf(root, leaf);
511 printk("slot %d first offset bad\n", i);
512 BUG_ON(1);
516 if (nritems > 0) {
517 if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
518 btrfs_print_leaf(root, leaf);
519 printk("slot %d bad size \n", nritems - 1);
520 BUG_ON(1);
523 #endif
524 if (slot != 0 && slot < nritems - 1) {
525 btrfs_item_key(leaf, &leaf_key, slot);
526 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
527 if (btrfs_comp_keys(&leaf_key, &cpukey) <= 0) {
528 btrfs_print_leaf(root, leaf);
529 printk("slot %d offset bad key\n", slot);
530 BUG_ON(1);
532 if (btrfs_item_offset_nr(leaf, slot - 1) !=
533 btrfs_item_end_nr(leaf, slot)) {
534 btrfs_print_leaf(root, leaf);
535 printk("slot %d offset bad\n", slot);
536 BUG_ON(1);
539 if (slot < nritems - 1) {
540 btrfs_item_key(leaf, &leaf_key, slot);
541 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
542 BUG_ON(btrfs_comp_keys(&leaf_key, &cpukey) >= 0);
543 if (btrfs_item_offset_nr(leaf, slot) !=
544 btrfs_item_end_nr(leaf, slot + 1)) {
545 btrfs_print_leaf(root, leaf);
546 printk("slot %d offset bad\n", slot);
547 BUG_ON(1);
550 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
551 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
552 return 0;
555 static int noinline check_block(struct btrfs_root *root,
556 struct btrfs_path *path, int level)
558 return 0;
559 #if 0
560 struct extent_buffer *buf = path->nodes[level];
562 if (memcmp_extent_buffer(buf, root->fs_info->fsid,
563 (unsigned long)btrfs_header_fsid(buf),
564 BTRFS_FSID_SIZE)) {
565 printk("warning bad block %Lu\n", buf->start);
566 return 1;
568 #endif
569 if (level == 0)
570 return check_leaf(root, path, level);
571 return check_node(root, path, level);
575 * search for key in the extent_buffer. The items start at offset p,
576 * and they are item_size apart. There are 'max' items in p.
578 * the slot in the array is returned via slot, and it points to
579 * the place where you would insert key if it is not found in
580 * the array.
582 * slot may point to max if the key is bigger than all of the keys
584 static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
585 int item_size, struct btrfs_key *key,
586 int max, int *slot)
588 int low = 0;
589 int high = max;
590 int mid;
591 int ret;
592 unsigned long offset;
593 struct btrfs_disk_key *tmp;
595 while(low < high) {
596 mid = (low + high) / 2;
597 offset = p + mid * item_size;
599 tmp = (struct btrfs_disk_key *)(eb->data + offset);
600 ret = btrfs_comp_keys(tmp, key);
602 if (ret < 0)
603 low = mid + 1;
604 else if (ret > 0)
605 high = mid;
606 else {
607 *slot = mid;
608 return 0;
611 *slot = low;
612 return 1;
616 * simple bin_search frontend that does the right thing for
617 * leaves vs nodes
619 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
620 int level, int *slot)
622 if (level == 0) {
623 return generic_bin_search(eb,
624 offsetof(struct btrfs_leaf, items),
625 sizeof(struct btrfs_item),
626 key, btrfs_header_nritems(eb),
627 slot);
628 } else {
629 return generic_bin_search(eb,
630 offsetof(struct btrfs_node, ptrs),
631 sizeof(struct btrfs_key_ptr),
632 key, btrfs_header_nritems(eb),
633 slot);
635 return -1;
638 static struct extent_buffer *read_node_slot(struct btrfs_root *root,
639 struct extent_buffer *parent, int slot)
641 if (slot < 0)
642 return NULL;
643 if (slot >= btrfs_header_nritems(parent))
644 return NULL;
645 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
646 btrfs_level_size(root, btrfs_header_level(parent) - 1));
649 static int balance_level(struct btrfs_trans_handle *trans,
650 struct btrfs_root *root,
651 struct btrfs_path *path, int level)
653 struct extent_buffer *right = NULL;
654 struct extent_buffer *mid;
655 struct extent_buffer *left = NULL;
656 struct extent_buffer *parent = NULL;
657 int ret = 0;
658 int wret;
659 int pslot;
660 int orig_slot = path->slots[level];
661 int err_on_enospc = 0;
662 u64 orig_ptr;
664 if (level == 0)
665 return 0;
667 mid = path->nodes[level];
668 WARN_ON(btrfs_header_generation(mid) != trans->transid);
670 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
672 if (level < BTRFS_MAX_LEVEL - 1)
673 parent = path->nodes[level + 1];
674 pslot = path->slots[level + 1];
677 * deal with the case where there is only one pointer in the root
678 * by promoting the node below to a root
680 if (!parent) {
681 struct extent_buffer *child;
683 if (btrfs_header_nritems(mid) != 1)
684 return 0;
686 /* promote the child to a root */
687 child = read_node_slot(root, mid, 0);
688 BUG_ON(!child);
689 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
690 BUG_ON(ret);
692 root->node = child;
693 path->nodes[level] = NULL;
694 clean_tree_block(trans, root, mid);
695 wait_on_tree_block_writeback(root, mid);
696 /* once for the path */
697 free_extent_buffer(mid);
698 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
699 root->root_key.objectid,
700 btrfs_header_generation(mid), 0, 0, 1);
701 /* once for the root ptr */
702 free_extent_buffer(mid);
703 return ret;
705 if (btrfs_header_nritems(mid) >
706 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
707 return 0;
709 if (btrfs_header_nritems(mid) < 2)
710 err_on_enospc = 1;
712 left = read_node_slot(root, parent, pslot - 1);
713 if (left) {
714 wret = btrfs_cow_block(trans, root, left,
715 parent, pslot - 1, &left);
716 if (wret) {
717 ret = wret;
718 goto enospc;
721 right = read_node_slot(root, parent, pslot + 1);
722 if (right) {
723 wret = btrfs_cow_block(trans, root, right,
724 parent, pslot + 1, &right);
725 if (wret) {
726 ret = wret;
727 goto enospc;
731 /* first, try to make some room in the middle buffer */
732 if (left) {
733 orig_slot += btrfs_header_nritems(left);
734 wret = push_node_left(trans, root, left, mid);
735 if (wret < 0)
736 ret = wret;
737 if (btrfs_header_nritems(mid) < 2)
738 err_on_enospc = 1;
742 * then try to empty the right most buffer into the middle
744 if (right) {
745 wret = push_node_left(trans, root, mid, right);
746 if (wret < 0 && wret != -ENOSPC)
747 ret = wret;
748 if (btrfs_header_nritems(right) == 0) {
749 u64 bytenr = right->start;
750 u64 generation = btrfs_header_generation(parent);
751 u32 blocksize = right->len;
753 clean_tree_block(trans, root, right);
754 wait_on_tree_block_writeback(root, right);
755 free_extent_buffer(right);
756 right = NULL;
757 wret = del_ptr(trans, root, path, level + 1, pslot +
759 if (wret)
760 ret = wret;
761 wret = btrfs_free_extent(trans, root, bytenr,
762 blocksize,
763 btrfs_header_owner(parent),
764 generation, 0, 0, 1);
765 if (wret)
766 ret = wret;
767 } else {
768 struct btrfs_disk_key right_key;
769 btrfs_node_key(right, &right_key, 0);
770 btrfs_set_node_key(parent, &right_key, pslot + 1);
771 btrfs_mark_buffer_dirty(parent);
774 if (btrfs_header_nritems(mid) == 1) {
776 * we're not allowed to leave a node with one item in the
777 * tree during a delete. A deletion from lower in the tree
778 * could try to delete the only pointer in this node.
779 * So, pull some keys from the left.
780 * There has to be a left pointer at this point because
781 * otherwise we would have pulled some pointers from the
782 * right
784 BUG_ON(!left);
785 wret = balance_node_right(trans, root, mid, left);
786 if (wret < 0) {
787 ret = wret;
788 goto enospc;
790 BUG_ON(wret == 1);
792 if (btrfs_header_nritems(mid) == 0) {
793 /* we've managed to empty the middle node, drop it */
794 u64 root_gen = btrfs_header_generation(parent);
795 u64 bytenr = mid->start;
796 u32 blocksize = mid->len;
797 clean_tree_block(trans, root, mid);
798 wait_on_tree_block_writeback(root, mid);
799 free_extent_buffer(mid);
800 mid = NULL;
801 wret = del_ptr(trans, root, path, level + 1, pslot);
802 if (wret)
803 ret = wret;
804 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
805 btrfs_header_owner(parent),
806 root_gen, 0, 0, 1);
807 if (wret)
808 ret = wret;
809 } else {
810 /* update the parent key to reflect our changes */
811 struct btrfs_disk_key mid_key;
812 btrfs_node_key(mid, &mid_key, 0);
813 btrfs_set_node_key(parent, &mid_key, pslot);
814 btrfs_mark_buffer_dirty(parent);
817 /* update the path */
818 if (left) {
819 if (btrfs_header_nritems(left) > orig_slot) {
820 extent_buffer_get(left);
821 path->nodes[level] = left;
822 path->slots[level + 1] -= 1;
823 path->slots[level] = orig_slot;
824 if (mid)
825 free_extent_buffer(mid);
826 } else {
827 orig_slot -= btrfs_header_nritems(left);
828 path->slots[level] = orig_slot;
831 /* double check we haven't messed things up */
832 check_block(root, path, level);
833 if (orig_ptr !=
834 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
835 BUG();
836 enospc:
837 if (right)
838 free_extent_buffer(right);
839 if (left)
840 free_extent_buffer(left);
841 return ret;
844 /* returns zero if the push worked, non-zero otherwise */
845 static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root,
847 struct btrfs_path *path, int level)
849 struct extent_buffer *right = NULL;
850 struct extent_buffer *mid;
851 struct extent_buffer *left = NULL;
852 struct extent_buffer *parent = NULL;
853 int ret = 0;
854 int wret;
855 int pslot;
856 int orig_slot = path->slots[level];
857 u64 orig_ptr;
859 if (level == 0)
860 return 1;
862 mid = path->nodes[level];
863 WARN_ON(btrfs_header_generation(mid) != trans->transid);
864 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
866 if (level < BTRFS_MAX_LEVEL - 1)
867 parent = path->nodes[level + 1];
868 pslot = path->slots[level + 1];
870 if (!parent)
871 return 1;
873 left = read_node_slot(root, parent, pslot - 1);
875 /* first, try to make some room in the middle buffer */
876 if (left) {
877 u32 left_nr;
878 left_nr = btrfs_header_nritems(left);
879 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
880 wret = 1;
881 } else {
882 ret = btrfs_cow_block(trans, root, left, parent,
883 pslot - 1, &left);
884 if (ret)
885 wret = 1;
886 else {
887 wret = push_node_left(trans, root,
888 left, mid);
891 if (wret < 0)
892 ret = wret;
893 if (wret == 0) {
894 struct btrfs_disk_key disk_key;
895 orig_slot += left_nr;
896 btrfs_node_key(mid, &disk_key, 0);
897 btrfs_set_node_key(parent, &disk_key, pslot);
898 btrfs_mark_buffer_dirty(parent);
899 if (btrfs_header_nritems(left) > orig_slot) {
900 path->nodes[level] = left;
901 path->slots[level + 1] -= 1;
902 path->slots[level] = orig_slot;
903 free_extent_buffer(mid);
904 } else {
905 orig_slot -=
906 btrfs_header_nritems(left);
907 path->slots[level] = orig_slot;
908 free_extent_buffer(left);
910 return 0;
912 free_extent_buffer(left);
914 right= read_node_slot(root, parent, pslot + 1);
917 * then try to empty the right most buffer into the middle
919 if (right) {
920 u32 right_nr;
921 right_nr = btrfs_header_nritems(right);
922 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
923 wret = 1;
924 } else {
925 ret = btrfs_cow_block(trans, root, right,
926 parent, pslot + 1,
927 &right);
928 if (ret)
929 wret = 1;
930 else {
931 wret = balance_node_right(trans, root,
932 right, mid);
935 if (wret < 0)
936 ret = wret;
937 if (wret == 0) {
938 struct btrfs_disk_key disk_key;
940 btrfs_node_key(right, &disk_key, 0);
941 btrfs_set_node_key(parent, &disk_key, pslot + 1);
942 btrfs_mark_buffer_dirty(parent);
944 if (btrfs_header_nritems(mid) <= orig_slot) {
945 path->nodes[level] = right;
946 path->slots[level + 1] += 1;
947 path->slots[level] = orig_slot -
948 btrfs_header_nritems(mid);
949 free_extent_buffer(mid);
950 } else {
951 free_extent_buffer(right);
953 return 0;
955 free_extent_buffer(right);
957 return 1;
961 * readahead one full node of leaves
963 static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
964 int level, int slot, u64 objectid)
966 struct extent_buffer *node;
967 struct btrfs_disk_key disk_key;
968 u32 nritems;
969 u64 search;
970 u64 lowest_read;
971 u64 highest_read;
972 u64 nread = 0;
973 int direction = path->reada;
974 struct extent_buffer *eb;
975 u32 nr;
976 u32 blocksize;
977 u32 nscan = 0;
979 if (level != 1)
980 return;
982 if (!path->nodes[level])
983 return;
985 node = path->nodes[level];
986 search = btrfs_node_blockptr(node, slot);
987 blocksize = btrfs_level_size(root, level - 1);
988 eb = btrfs_find_tree_block(root, search, blocksize);
989 if (eb) {
990 free_extent_buffer(eb);
991 return;
994 highest_read = search;
995 lowest_read = search;
997 nritems = btrfs_header_nritems(node);
998 nr = slot;
999 while(1) {
1000 if (direction < 0) {
1001 if (nr == 0)
1002 break;
1003 nr--;
1004 } else if (direction > 0) {
1005 nr++;
1006 if (nr >= nritems)
1007 break;
1009 if (path->reada < 0 && objectid) {
1010 btrfs_node_key(node, &disk_key, nr);
1011 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1012 break;
1014 search = btrfs_node_blockptr(node, nr);
1015 if ((search >= lowest_read && search <= highest_read) ||
1016 (search < lowest_read && lowest_read - search <= 32768) ||
1017 (search > highest_read && search - highest_read <= 32768)) {
1018 readahead_tree_block(root, search, blocksize);
1019 nread += blocksize;
1021 nscan++;
1022 if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
1023 break;
1024 if(nread > (1024 * 1024) || nscan > 128)
1025 break;
1027 if (search < lowest_read)
1028 lowest_read = search;
1029 if (search > highest_read)
1030 highest_read = search;
1035 * look for key in the tree. path is filled in with nodes along the way
1036 * if key is found, we return zero and you can find the item in the leaf
1037 * level of the path (level 0)
1039 * If the key isn't found, the path points to the slot where it should
1040 * be inserted, and 1 is returned. If there are other errors during the
1041 * search a negative error number is returned.
1043 * if ins_len > 0, nodes and leaves will be split as we walk down the
1044 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1045 * possible)
1047 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1048 *root, struct btrfs_key *key, struct btrfs_path *p, int
1049 ins_len, int cow)
1051 struct extent_buffer *b;
1052 u64 bytenr;
1053 u64 ptr_gen;
1054 int slot;
1055 int ret;
1056 int level;
1057 int should_reada = p->reada;
1058 u8 lowest_level = 0;
1060 lowest_level = p->lowest_level;
1061 WARN_ON(lowest_level && ins_len);
1062 WARN_ON(p->nodes[0] != NULL);
1064 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1066 again:
1067 b = root->node;
1068 extent_buffer_get(b);
1069 while (b) {
1070 level = btrfs_header_level(b);
1071 if (cow) {
1072 int wret;
1073 wret = btrfs_cow_block(trans, root, b,
1074 p->nodes[level + 1],
1075 p->slots[level + 1],
1076 &b);
1077 if (wret) {
1078 free_extent_buffer(b);
1079 return wret;
1082 BUG_ON(!cow && ins_len);
1083 if (level != btrfs_header_level(b))
1084 WARN_ON(1);
1085 level = btrfs_header_level(b);
1086 p->nodes[level] = b;
1087 ret = check_block(root, p, level);
1088 if (ret)
1089 return -1;
1090 ret = bin_search(b, key, level, &slot);
1091 if (level != 0) {
1092 if (ret && slot > 0)
1093 slot -= 1;
1094 p->slots[level] = slot;
1095 if (ins_len > 0 && btrfs_header_nritems(b) >=
1096 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1097 int sret = split_node(trans, root, p, level);
1098 BUG_ON(sret > 0);
1099 if (sret)
1100 return sret;
1101 b = p->nodes[level];
1102 slot = p->slots[level];
1103 } else if (ins_len < 0) {
1104 int sret = balance_level(trans, root, p,
1105 level);
1106 if (sret)
1107 return sret;
1108 b = p->nodes[level];
1109 if (!b) {
1110 btrfs_release_path(NULL, p);
1111 goto again;
1113 slot = p->slots[level];
1114 BUG_ON(btrfs_header_nritems(b) == 1);
1116 /* this is only true while dropping a snapshot */
1117 if (level == lowest_level)
1118 break;
1119 bytenr = btrfs_node_blockptr(b, slot);
1120 ptr_gen = btrfs_node_ptr_generation(b, slot);
1121 if (should_reada)
1122 reada_for_search(root, p, level, slot,
1123 key->objectid);
1124 b = read_tree_block(root, bytenr,
1125 btrfs_level_size(root, level - 1));
1126 if (ptr_gen != btrfs_header_generation(b)) {
1127 printk("block %llu bad gen wanted %llu "
1128 "found %llu\n",
1129 (unsigned long long)b->start,
1130 (unsigned long long)ptr_gen,
1131 (unsigned long long)btrfs_header_generation(b));
1133 } else {
1134 p->slots[level] = slot;
1135 if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
1136 sizeof(struct btrfs_item) + ins_len) {
1137 int sret = split_leaf(trans, root, key,
1138 p, ins_len, ret == 0);
1139 BUG_ON(sret > 0);
1140 if (sret)
1141 return sret;
1143 return ret;
1146 return 1;
1150 * adjust the pointers going up the tree, starting at level
1151 * making sure the right key of each node is points to 'key'.
1152 * This is used after shifting pointers to the left, so it stops
1153 * fixing up pointers when a given leaf/node is not in slot 0 of the
1154 * higher levels
1156 * If this fails to write a tree block, it returns -1, but continues
1157 * fixing up the blocks in ram so the tree is consistent.
1159 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root, struct btrfs_path *path,
1161 struct btrfs_disk_key *key, int level)
1163 int i;
1164 int ret = 0;
1165 struct extent_buffer *t;
1167 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1168 int tslot = path->slots[i];
1169 if (!path->nodes[i])
1170 break;
1171 t = path->nodes[i];
1172 btrfs_set_node_key(t, key, tslot);
1173 btrfs_mark_buffer_dirty(path->nodes[i]);
1174 if (tslot != 0)
1175 break;
1177 return ret;
1181 * try to push data from one node into the next node left in the
1182 * tree.
1184 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1185 * error, and > 0 if there was no room in the left hand block.
1187 static int push_node_left(struct btrfs_trans_handle *trans,
1188 struct btrfs_root *root, struct extent_buffer *dst,
1189 struct extent_buffer *src)
1191 int push_items = 0;
1192 int src_nritems;
1193 int dst_nritems;
1194 int ret = 0;
1196 src_nritems = btrfs_header_nritems(src);
1197 dst_nritems = btrfs_header_nritems(dst);
1198 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1199 WARN_ON(btrfs_header_generation(src) != trans->transid);
1200 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1202 if (push_items <= 0) {
1203 return 1;
1206 if (src_nritems < push_items)
1207 push_items = src_nritems;
1209 copy_extent_buffer(dst, src,
1210 btrfs_node_key_ptr_offset(dst_nritems),
1211 btrfs_node_key_ptr_offset(0),
1212 push_items * sizeof(struct btrfs_key_ptr));
1214 if (push_items < src_nritems) {
1215 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1216 btrfs_node_key_ptr_offset(push_items),
1217 (src_nritems - push_items) *
1218 sizeof(struct btrfs_key_ptr));
1220 btrfs_set_header_nritems(src, src_nritems - push_items);
1221 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1222 btrfs_mark_buffer_dirty(src);
1223 btrfs_mark_buffer_dirty(dst);
1224 return ret;
1228 * try to push data from one node into the next node right in the
1229 * tree.
1231 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1232 * error, and > 0 if there was no room in the right hand block.
1234 * this will only push up to 1/2 the contents of the left node over
1236 static int balance_node_right(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct extent_buffer *dst,
1239 struct extent_buffer *src)
1241 int push_items = 0;
1242 int max_push;
1243 int src_nritems;
1244 int dst_nritems;
1245 int ret = 0;
1247 WARN_ON(btrfs_header_generation(src) != trans->transid);
1248 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1250 src_nritems = btrfs_header_nritems(src);
1251 dst_nritems = btrfs_header_nritems(dst);
1252 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1253 if (push_items <= 0)
1254 return 1;
1256 max_push = src_nritems / 2 + 1;
1257 /* don't try to empty the node */
1258 if (max_push >= src_nritems)
1259 return 1;
1261 if (max_push < push_items)
1262 push_items = max_push;
1264 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1265 btrfs_node_key_ptr_offset(0),
1266 (dst_nritems) *
1267 sizeof(struct btrfs_key_ptr));
1269 copy_extent_buffer(dst, src,
1270 btrfs_node_key_ptr_offset(0),
1271 btrfs_node_key_ptr_offset(src_nritems - push_items),
1272 push_items * sizeof(struct btrfs_key_ptr));
1274 btrfs_set_header_nritems(src, src_nritems - push_items);
1275 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1277 btrfs_mark_buffer_dirty(src);
1278 btrfs_mark_buffer_dirty(dst);
1279 return ret;
1283 * helper function to insert a new root level in the tree.
1284 * A new node is allocated, and a single item is inserted to
1285 * point to the existing root
1287 * returns zero on success or < 0 on failure.
1289 static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1290 struct btrfs_root *root,
1291 struct btrfs_path *path, int level)
1293 u64 root_gen;
1294 u64 lower_gen;
1295 struct extent_buffer *lower;
1296 struct extent_buffer *c;
1297 struct btrfs_disk_key lower_key;
1299 BUG_ON(path->nodes[level]);
1300 BUG_ON(path->nodes[level-1] != root->node);
1302 if (root->ref_cows)
1303 root_gen = trans->transid;
1304 else
1305 root_gen = 0;
1307 lower = path->nodes[level-1];
1308 if (level == 1)
1309 btrfs_item_key(lower, &lower_key, 0);
1310 else
1311 btrfs_node_key(lower, &lower_key, 0);
1313 c = __btrfs_alloc_free_block(trans, root, root->nodesize,
1314 root->root_key.objectid,
1315 root_gen, lower_key.objectid, level,
1316 root->node->start, 0);
1317 if (IS_ERR(c))
1318 return PTR_ERR(c);
1319 memset_extent_buffer(c, 0, 0, root->nodesize);
1320 btrfs_set_header_nritems(c, 1);
1321 btrfs_set_header_level(c, level);
1322 btrfs_set_header_bytenr(c, c->start);
1323 btrfs_set_header_generation(c, trans->transid);
1324 btrfs_set_header_owner(c, root->root_key.objectid);
1326 write_extent_buffer(c, root->fs_info->fsid,
1327 (unsigned long)btrfs_header_fsid(c),
1328 BTRFS_FSID_SIZE);
1329 btrfs_set_node_key(c, &lower_key, 0);
1330 btrfs_set_node_blockptr(c, 0, lower->start);
1331 lower_gen = btrfs_header_generation(lower);
1332 WARN_ON(lower_gen == 0);
1334 btrfs_set_node_ptr_generation(c, 0, lower_gen);
1336 btrfs_mark_buffer_dirty(c);
1338 /* the super has an extra ref to root->node */
1339 free_extent_buffer(root->node);
1340 root->node = c;
1341 extent_buffer_get(c);
1342 path->nodes[level] = c;
1343 path->slots[level] = 0;
1345 if (root->ref_cows && lower_gen != trans->transid) {
1346 struct btrfs_path *back_path = btrfs_alloc_path();
1347 int ret;
1348 ret = btrfs_insert_extent_backref(trans,
1349 root->fs_info->extent_root,
1350 path, lower->start,
1351 root->root_key.objectid,
1352 trans->transid, 0, 0);
1353 BUG_ON(ret);
1354 btrfs_free_path(back_path);
1356 return 0;
1360 * worker function to insert a single pointer in a node.
1361 * the node should have enough room for the pointer already
1363 * slot and level indicate where you want the key to go, and
1364 * blocknr is the block the key points to.
1366 * returns zero on success and < 0 on any error
1368 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1369 *root, struct btrfs_path *path, struct btrfs_disk_key
1370 *key, u64 bytenr, int slot, int level)
1372 struct extent_buffer *lower;
1373 int nritems;
1375 BUG_ON(!path->nodes[level]);
1376 lower = path->nodes[level];
1377 nritems = btrfs_header_nritems(lower);
1378 if (slot > nritems)
1379 BUG();
1380 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1381 BUG();
1382 if (slot != nritems) {
1383 memmove_extent_buffer(lower,
1384 btrfs_node_key_ptr_offset(slot + 1),
1385 btrfs_node_key_ptr_offset(slot),
1386 (nritems - slot) * sizeof(struct btrfs_key_ptr));
1388 btrfs_set_node_key(lower, key, slot);
1389 btrfs_set_node_blockptr(lower, slot, bytenr);
1390 WARN_ON(trans->transid == 0);
1391 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1392 btrfs_set_header_nritems(lower, nritems + 1);
1393 btrfs_mark_buffer_dirty(lower);
1394 return 0;
1398 * split the node at the specified level in path in two.
1399 * The path is corrected to point to the appropriate node after the split
1401 * Before splitting this tries to make some room in the node by pushing
1402 * left and right, if either one works, it returns right away.
1404 * returns 0 on success and < 0 on failure
1406 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1407 *root, struct btrfs_path *path, int level)
1409 u64 root_gen;
1410 struct extent_buffer *c;
1411 struct extent_buffer *split;
1412 struct btrfs_disk_key disk_key;
1413 int mid;
1414 int ret;
1415 int wret;
1416 u32 c_nritems;
1418 c = path->nodes[level];
1419 WARN_ON(btrfs_header_generation(c) != trans->transid);
1420 if (c == root->node) {
1421 /* trying to split the root, lets make a new one */
1422 ret = insert_new_root(trans, root, path, level + 1);
1423 if (ret)
1424 return ret;
1425 } else {
1426 ret = push_nodes_for_insert(trans, root, path, level);
1427 c = path->nodes[level];
1428 if (!ret && btrfs_header_nritems(c) <
1429 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
1430 return 0;
1431 if (ret < 0)
1432 return ret;
1435 c_nritems = btrfs_header_nritems(c);
1436 if (root->ref_cows)
1437 root_gen = trans->transid;
1438 else
1439 root_gen = 0;
1441 btrfs_node_key(c, &disk_key, 0);
1442 split = __btrfs_alloc_free_block(trans, root, root->nodesize,
1443 root->root_key.objectid,
1444 root_gen,
1445 btrfs_disk_key_objectid(&disk_key),
1446 level, c->start, 0);
1447 if (IS_ERR(split))
1448 return PTR_ERR(split);
1450 btrfs_set_header_flags(split, btrfs_header_flags(c));
1451 btrfs_set_header_level(split, btrfs_header_level(c));
1452 btrfs_set_header_bytenr(split, split->start);
1453 btrfs_set_header_generation(split, trans->transid);
1454 btrfs_set_header_owner(split, root->root_key.objectid);
1455 write_extent_buffer(split, root->fs_info->fsid,
1456 (unsigned long)btrfs_header_fsid(split),
1457 BTRFS_FSID_SIZE);
1459 mid = (c_nritems + 1) / 2;
1461 copy_extent_buffer(split, c,
1462 btrfs_node_key_ptr_offset(0),
1463 btrfs_node_key_ptr_offset(mid),
1464 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1465 btrfs_set_header_nritems(split, c_nritems - mid);
1466 btrfs_set_header_nritems(c, mid);
1467 ret = 0;
1469 btrfs_mark_buffer_dirty(c);
1470 btrfs_mark_buffer_dirty(split);
1472 btrfs_node_key(split, &disk_key, 0);
1473 wret = insert_ptr(trans, root, path, &disk_key, split->start,
1474 path->slots[level + 1] + 1,
1475 level + 1);
1476 if (wret)
1477 ret = wret;
1479 if (path->slots[level] >= mid) {
1480 path->slots[level] -= mid;
1481 free_extent_buffer(c);
1482 path->nodes[level] = split;
1483 path->slots[level + 1] += 1;
1484 } else {
1485 free_extent_buffer(split);
1487 return ret;
1491 * how many bytes are required to store the items in a leaf. start
1492 * and nr indicate which items in the leaf to check. This totals up the
1493 * space used both by the item structs and the item data
1495 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
1497 int data_len;
1498 int nritems = btrfs_header_nritems(l);
1499 int end = min(nritems, start + nr) - 1;
1501 if (!nr)
1502 return 0;
1503 data_len = btrfs_item_end_nr(l, start);
1504 data_len = data_len - btrfs_item_offset_nr(l, end);
1505 data_len += sizeof(struct btrfs_item) * nr;
1506 WARN_ON(data_len < 0);
1507 return data_len;
1511 * The space between the end of the leaf items and
1512 * the start of the leaf data. IOW, how much room
1513 * the leaf has left for both items and data
1515 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
1517 int nritems = btrfs_header_nritems(leaf);
1518 int ret;
1519 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1520 if (ret < 0) {
1521 printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
1522 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
1523 leaf_space_used(leaf, 0, nritems), nritems);
1525 return ret;
1529 * push some data in the path leaf to the right, trying to free up at
1530 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1532 * returns 1 if the push failed because the other node didn't have enough
1533 * room, 0 if everything worked out and < 0 if there were major errors.
1535 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1536 *root, struct btrfs_path *path, int data_size,
1537 int empty)
1539 struct extent_buffer *left = path->nodes[0];
1540 struct extent_buffer *right;
1541 struct extent_buffer *upper;
1542 struct btrfs_disk_key disk_key;
1543 int slot;
1544 u32 i;
1545 int free_space;
1546 int push_space = 0;
1547 int push_items = 0;
1548 struct btrfs_item *item;
1549 u32 left_nritems;
1550 u32 nr;
1551 u32 right_nritems;
1552 u32 data_end;
1553 u32 this_item_size;
1554 int ret;
1556 slot = path->slots[1];
1557 if (!path->nodes[1]) {
1558 return 1;
1560 upper = path->nodes[1];
1561 if (slot >= btrfs_header_nritems(upper) - 1)
1562 return 1;
1564 right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1),
1565 root->leafsize);
1566 free_space = btrfs_leaf_free_space(root, right);
1567 if (free_space < data_size + sizeof(struct btrfs_item)) {
1568 free_extent_buffer(right);
1569 return 1;
1572 /* cow and double check */
1573 ret = btrfs_cow_block(trans, root, right, upper,
1574 slot + 1, &right);
1575 if (ret) {
1576 free_extent_buffer(right);
1577 return 1;
1579 free_space = btrfs_leaf_free_space(root, right);
1580 if (free_space < data_size + sizeof(struct btrfs_item)) {
1581 free_extent_buffer(right);
1582 return 1;
1585 left_nritems = btrfs_header_nritems(left);
1586 if (left_nritems == 0) {
1587 free_extent_buffer(right);
1588 return 1;
1591 if (empty)
1592 nr = 0;
1593 else
1594 nr = 1;
1596 i = left_nritems - 1;
1597 while (i >= nr) {
1598 item = btrfs_item_nr(left, i);
1600 if (path->slots[0] == i)
1601 push_space += data_size + sizeof(*item);
1603 this_item_size = btrfs_item_size(left, item);
1604 if (this_item_size + sizeof(*item) + push_space > free_space)
1605 break;
1606 push_items++;
1607 push_space += this_item_size + sizeof(*item);
1608 if (i == 0)
1609 break;
1610 i--;
1613 if (push_items == 0) {
1614 free_extent_buffer(right);
1615 return 1;
1618 if (!empty && push_items == left_nritems)
1619 WARN_ON(1);
1621 /* push left to right */
1622 right_nritems = btrfs_header_nritems(right);
1624 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
1625 push_space -= leaf_data_end(root, left);
1627 /* make room in the right data area */
1628 data_end = leaf_data_end(root, right);
1629 memmove_extent_buffer(right,
1630 btrfs_leaf_data(right) + data_end - push_space,
1631 btrfs_leaf_data(right) + data_end,
1632 BTRFS_LEAF_DATA_SIZE(root) - data_end);
1634 /* copy from the left data area */
1635 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
1636 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1637 btrfs_leaf_data(left) + leaf_data_end(root, left),
1638 push_space);
1640 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
1641 btrfs_item_nr_offset(0),
1642 right_nritems * sizeof(struct btrfs_item));
1644 /* copy the items from left to right */
1645 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
1646 btrfs_item_nr_offset(left_nritems - push_items),
1647 push_items * sizeof(struct btrfs_item));
1649 /* update the item pointers */
1650 right_nritems += push_items;
1651 btrfs_set_header_nritems(right, right_nritems);
1652 push_space = BTRFS_LEAF_DATA_SIZE(root);
1653 for (i = 0; i < right_nritems; i++) {
1654 item = btrfs_item_nr(right, i);
1655 push_space -= btrfs_item_size(right, item);
1656 btrfs_set_item_offset(right, item, push_space);
1659 left_nritems -= push_items;
1660 btrfs_set_header_nritems(left, left_nritems);
1662 if (left_nritems)
1663 btrfs_mark_buffer_dirty(left);
1664 btrfs_mark_buffer_dirty(right);
1666 btrfs_item_key(right, &disk_key, 0);
1667 btrfs_set_node_key(upper, &disk_key, slot + 1);
1668 btrfs_mark_buffer_dirty(upper);
1670 /* then fixup the leaf pointer in the path */
1671 if (path->slots[0] >= left_nritems) {
1672 path->slots[0] -= left_nritems;
1673 free_extent_buffer(path->nodes[0]);
1674 path->nodes[0] = right;
1675 path->slots[1] += 1;
1676 } else {
1677 free_extent_buffer(right);
1679 return 0;
1682 * push some data in the path leaf to the left, trying to free up at
1683 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1685 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1686 *root, struct btrfs_path *path, int data_size,
1687 int empty)
1689 struct btrfs_disk_key disk_key;
1690 struct extent_buffer *right = path->nodes[0];
1691 struct extent_buffer *left;
1692 int slot;
1693 int i;
1694 int free_space;
1695 int push_space = 0;
1696 int push_items = 0;
1697 struct btrfs_item *item;
1698 u32 old_left_nritems;
1699 u32 right_nritems;
1700 u32 nr;
1701 int ret = 0;
1702 int wret;
1703 u32 this_item_size;
1704 u32 old_left_item_size;
1706 slot = path->slots[1];
1707 if (slot == 0)
1708 return 1;
1709 if (!path->nodes[1])
1710 return 1;
1712 right_nritems = btrfs_header_nritems(right);
1713 if (right_nritems == 0) {
1714 return 1;
1717 left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1],
1718 slot - 1), root->leafsize);
1719 free_space = btrfs_leaf_free_space(root, left);
1720 if (free_space < data_size + sizeof(struct btrfs_item)) {
1721 free_extent_buffer(left);
1722 return 1;
1725 /* cow and double check */
1726 ret = btrfs_cow_block(trans, root, left,
1727 path->nodes[1], slot - 1, &left);
1728 if (ret) {
1729 /* we hit -ENOSPC, but it isn't fatal here */
1730 free_extent_buffer(left);
1731 return 1;
1734 free_space = btrfs_leaf_free_space(root, left);
1735 if (free_space < data_size + sizeof(struct btrfs_item)) {
1736 free_extent_buffer(left);
1737 return 1;
1740 if (empty)
1741 nr = right_nritems;
1742 else
1743 nr = right_nritems - 1;
1745 for (i = 0; i < nr; i++) {
1746 item = btrfs_item_nr(right, i);
1748 if (path->slots[0] == i)
1749 push_space += data_size + sizeof(*item);
1751 this_item_size = btrfs_item_size(right, item);
1752 if (this_item_size + sizeof(*item) + push_space > free_space)
1753 break;
1755 push_items++;
1756 push_space += this_item_size + sizeof(*item);
1759 if (push_items == 0) {
1760 free_extent_buffer(left);
1761 return 1;
1763 if (!empty && push_items == btrfs_header_nritems(right))
1764 WARN_ON(1);
1766 /* push data from right to left */
1767 copy_extent_buffer(left, right,
1768 btrfs_item_nr_offset(btrfs_header_nritems(left)),
1769 btrfs_item_nr_offset(0),
1770 push_items * sizeof(struct btrfs_item));
1772 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1773 btrfs_item_offset_nr(right, push_items -1);
1775 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
1776 leaf_data_end(root, left) - push_space,
1777 btrfs_leaf_data(right) +
1778 btrfs_item_offset_nr(right, push_items - 1),
1779 push_space);
1780 old_left_nritems = btrfs_header_nritems(left);
1781 BUG_ON(old_left_nritems < 0);
1783 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
1784 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1785 u32 ioff;
1787 item = btrfs_item_nr(left, i);
1788 ioff = btrfs_item_offset(left, item);
1789 btrfs_set_item_offset(left, item,
1790 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
1792 btrfs_set_header_nritems(left, old_left_nritems + push_items);
1794 /* fixup right node */
1795 if (push_items > right_nritems) {
1796 printk("push items %d nr %u\n", push_items, right_nritems);
1797 WARN_ON(1);
1800 if (push_items < right_nritems) {
1801 push_space = btrfs_item_offset_nr(right, push_items - 1) -
1802 leaf_data_end(root, right);
1803 memmove_extent_buffer(right, btrfs_leaf_data(right) +
1804 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1805 btrfs_leaf_data(right) +
1806 leaf_data_end(root, right), push_space);
1808 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
1809 btrfs_item_nr_offset(push_items),
1810 (btrfs_header_nritems(right) - push_items) *
1811 sizeof(struct btrfs_item));
1813 right_nritems -= push_items;
1814 btrfs_set_header_nritems(right, right_nritems);
1815 push_space = BTRFS_LEAF_DATA_SIZE(root);
1816 for (i = 0; i < right_nritems; i++) {
1817 item = btrfs_item_nr(right, i);
1818 push_space = push_space - btrfs_item_size(right, item);
1819 btrfs_set_item_offset(right, item, push_space);
1822 btrfs_mark_buffer_dirty(left);
1823 if (right_nritems)
1824 btrfs_mark_buffer_dirty(right);
1826 btrfs_item_key(right, &disk_key, 0);
1827 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1828 if (wret)
1829 ret = wret;
1831 /* then fixup the leaf pointer in the path */
1832 if (path->slots[0] < push_items) {
1833 path->slots[0] += old_left_nritems;
1834 free_extent_buffer(path->nodes[0]);
1835 path->nodes[0] = left;
1836 path->slots[1] -= 1;
1837 } else {
1838 free_extent_buffer(left);
1839 path->slots[0] -= push_items;
1841 BUG_ON(path->slots[0] < 0);
1842 return ret;
1846 * split the path's leaf in two, making sure there is at least data_size
1847 * available for the resulting leaf level of the path.
1849 * returns 0 if all went well and < 0 on failure.
1851 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1852 *root, struct btrfs_key *ins_key,
1853 struct btrfs_path *path, int data_size, int extend)
1855 u64 root_gen;
1856 struct extent_buffer *l;
1857 u32 nritems;
1858 int mid;
1859 int slot;
1860 struct extent_buffer *right;
1861 int space_needed = data_size + sizeof(struct btrfs_item);
1862 int data_copy_size;
1863 int rt_data_off;
1864 int i;
1865 int ret = 0;
1866 int wret;
1867 int double_split;
1868 int num_doubles = 0;
1869 struct btrfs_disk_key disk_key;
1871 if (extend)
1872 space_needed = data_size;
1874 if (root->ref_cows)
1875 root_gen = trans->transid;
1876 else
1877 root_gen = 0;
1879 /* first try to make some room by pushing left and right */
1880 if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
1881 wret = push_leaf_right(trans, root, path, data_size, 0);
1882 if (wret < 0) {
1883 return wret;
1885 if (wret) {
1886 wret = push_leaf_left(trans, root, path, data_size, 0);
1887 if (wret < 0)
1888 return wret;
1890 l = path->nodes[0];
1892 /* did the pushes work? */
1893 if (btrfs_leaf_free_space(root, l) >= space_needed)
1894 return 0;
1897 if (!path->nodes[1]) {
1898 ret = insert_new_root(trans, root, path, 1);
1899 if (ret)
1900 return ret;
1902 again:
1903 double_split = 0;
1904 l = path->nodes[0];
1905 slot = path->slots[0];
1906 nritems = btrfs_header_nritems(l);
1907 mid = (nritems + 1)/ 2;
1909 btrfs_item_key(l, &disk_key, 0);
1911 right = __btrfs_alloc_free_block(trans, root, root->leafsize,
1912 root->root_key.objectid,
1913 root_gen, disk_key.objectid, 0,
1914 l->start, 0);
1915 if (IS_ERR(right))
1916 return PTR_ERR(right);
1918 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
1919 btrfs_set_header_bytenr(right, right->start);
1920 btrfs_set_header_generation(right, trans->transid);
1921 btrfs_set_header_owner(right, root->root_key.objectid);
1922 btrfs_set_header_level(right, 0);
1923 write_extent_buffer(right, root->fs_info->fsid,
1924 (unsigned long)btrfs_header_fsid(right),
1925 BTRFS_FSID_SIZE);
1926 if (mid <= slot) {
1927 if (nritems == 1 ||
1928 leaf_space_used(l, mid, nritems - mid) + space_needed >
1929 BTRFS_LEAF_DATA_SIZE(root)) {
1930 if (slot >= nritems) {
1931 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1932 btrfs_set_header_nritems(right, 0);
1933 wret = insert_ptr(trans, root, path,
1934 &disk_key, right->start,
1935 path->slots[1] + 1, 1);
1936 if (wret)
1937 ret = wret;
1938 free_extent_buffer(path->nodes[0]);
1939 path->nodes[0] = right;
1940 path->slots[0] = 0;
1941 path->slots[1] += 1;
1942 return ret;
1944 mid = slot;
1945 if (mid != nritems &&
1946 leaf_space_used(l, mid, nritems - mid) +
1947 space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
1948 double_split = 1;
1951 } else {
1952 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1953 BTRFS_LEAF_DATA_SIZE(root)) {
1954 if (!extend && slot == 0) {
1955 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1956 btrfs_set_header_nritems(right, 0);
1957 wret = insert_ptr(trans, root, path,
1958 &disk_key,
1959 right->start,
1960 path->slots[1], 1);
1961 if (wret)
1962 ret = wret;
1963 free_extent_buffer(path->nodes[0]);
1964 path->nodes[0] = right;
1965 path->slots[0] = 0;
1966 if (path->slots[1] == 0) {
1967 wret = fixup_low_keys(trans, root,
1968 path, &disk_key, 1);
1969 if (wret)
1970 ret = wret;
1972 return ret;
1973 } else if (extend && slot == 0) {
1974 mid = 1;
1975 } else {
1976 mid = slot;
1977 if (mid != nritems &&
1978 leaf_space_used(l, mid, nritems - mid) +
1979 space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
1980 double_split = 1;
1985 nritems = nritems - mid;
1986 btrfs_set_header_nritems(right, nritems);
1987 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
1989 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
1990 btrfs_item_nr_offset(mid),
1991 nritems * sizeof(struct btrfs_item));
1993 copy_extent_buffer(right, l,
1994 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1995 data_copy_size, btrfs_leaf_data(l) +
1996 leaf_data_end(root, l), data_copy_size);
1998 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1999 btrfs_item_end_nr(l, mid);
2001 for (i = 0; i < nritems; i++) {
2002 struct btrfs_item *item = btrfs_item_nr(right, i);
2003 u32 ioff = btrfs_item_offset(right, item);
2004 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2007 btrfs_set_header_nritems(l, mid);
2008 ret = 0;
2009 btrfs_item_key(right, &disk_key, 0);
2010 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2011 path->slots[1] + 1, 1);
2012 if (wret)
2013 ret = wret;
2015 btrfs_mark_buffer_dirty(right);
2016 btrfs_mark_buffer_dirty(l);
2017 BUG_ON(path->slots[0] != slot);
2019 if (mid <= slot) {
2020 free_extent_buffer(path->nodes[0]);
2021 path->nodes[0] = right;
2022 path->slots[0] -= mid;
2023 path->slots[1] += 1;
2024 } else
2025 free_extent_buffer(right);
2027 BUG_ON(path->slots[0] < 0);
2029 if (double_split) {
2030 BUG_ON(num_doubles != 0);
2031 num_doubles++;
2032 goto again;
2034 return ret;
2037 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2038 struct btrfs_root *root,
2039 struct btrfs_path *path,
2040 u32 new_size, int from_end)
2042 int ret = 0;
2043 int slot;
2044 int slot_orig;
2045 struct extent_buffer *leaf;
2046 struct btrfs_item *item;
2047 u32 nritems;
2048 unsigned int data_end;
2049 unsigned int old_data_start;
2050 unsigned int old_size;
2051 unsigned int size_diff;
2052 int i;
2054 slot_orig = path->slots[0];
2055 leaf = path->nodes[0];
2056 slot = path->slots[0];
2058 old_size = btrfs_item_size_nr(leaf, slot);
2059 if (old_size == new_size)
2060 return 0;
2062 nritems = btrfs_header_nritems(leaf);
2063 data_end = leaf_data_end(root, leaf);
2065 old_data_start = btrfs_item_offset_nr(leaf, slot);
2067 size_diff = old_size - new_size;
2069 BUG_ON(slot < 0);
2070 BUG_ON(slot >= nritems);
2073 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2075 /* first correct the data pointers */
2076 for (i = slot; i < nritems; i++) {
2077 u32 ioff;
2078 item = btrfs_item_nr(leaf, i);
2079 ioff = btrfs_item_offset(leaf, item);
2080 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2083 /* shift the data */
2084 if (from_end) {
2085 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2086 data_end + size_diff, btrfs_leaf_data(leaf) +
2087 data_end, old_data_start + new_size - data_end);
2088 } else {
2089 struct btrfs_disk_key disk_key;
2090 u64 offset;
2092 btrfs_item_key(leaf, &disk_key, slot);
2094 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2095 unsigned long ptr;
2096 struct btrfs_file_extent_item *fi;
2098 fi = btrfs_item_ptr(leaf, slot,
2099 struct btrfs_file_extent_item);
2100 fi = (struct btrfs_file_extent_item *)(
2101 (unsigned long)fi - size_diff);
2103 if (btrfs_file_extent_type(leaf, fi) ==
2104 BTRFS_FILE_EXTENT_INLINE) {
2105 ptr = btrfs_item_ptr_offset(leaf, slot);
2106 memmove_extent_buffer(leaf, ptr,
2107 (unsigned long)fi,
2108 offsetof(struct btrfs_file_extent_item,
2109 disk_bytenr));
2113 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2114 data_end + size_diff, btrfs_leaf_data(leaf) +
2115 data_end, old_data_start - data_end);
2117 offset = btrfs_disk_key_offset(&disk_key);
2118 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2119 btrfs_set_item_key(leaf, &disk_key, slot);
2120 if (slot == 0)
2121 fixup_low_keys(trans, root, path, &disk_key, 1);
2124 item = btrfs_item_nr(leaf, slot);
2125 btrfs_set_item_size(leaf, item, new_size);
2126 btrfs_mark_buffer_dirty(leaf);
2128 ret = 0;
2129 if (btrfs_leaf_free_space(root, leaf) < 0) {
2130 btrfs_print_leaf(root, leaf);
2131 BUG();
2133 return ret;
2136 int btrfs_extend_item(struct btrfs_trans_handle *trans,
2137 struct btrfs_root *root, struct btrfs_path *path,
2138 u32 data_size)
2140 int ret = 0;
2141 int slot;
2142 int slot_orig;
2143 struct extent_buffer *leaf;
2144 struct btrfs_item *item;
2145 u32 nritems;
2146 unsigned int data_end;
2147 unsigned int old_data;
2148 unsigned int old_size;
2149 int i;
2151 slot_orig = path->slots[0];
2152 leaf = path->nodes[0];
2154 nritems = btrfs_header_nritems(leaf);
2155 data_end = leaf_data_end(root, leaf);
2157 if (btrfs_leaf_free_space(root, leaf) < data_size) {
2158 btrfs_print_leaf(root, leaf);
2159 BUG();
2161 slot = path->slots[0];
2162 old_data = btrfs_item_end_nr(leaf, slot);
2164 BUG_ON(slot < 0);
2165 if (slot >= nritems) {
2166 btrfs_print_leaf(root, leaf);
2167 printk("slot %d too large, nritems %d\n", slot, nritems);
2168 BUG_ON(1);
2172 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2174 /* first correct the data pointers */
2175 for (i = slot; i < nritems; i++) {
2176 u32 ioff;
2177 item = btrfs_item_nr(leaf, i);
2178 ioff = btrfs_item_offset(leaf, item);
2179 btrfs_set_item_offset(leaf, item, ioff - data_size);
2182 /* shift the data */
2183 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2184 data_end - data_size, btrfs_leaf_data(leaf) +
2185 data_end, old_data - data_end);
2187 data_end = old_data;
2188 old_size = btrfs_item_size_nr(leaf, slot);
2189 item = btrfs_item_nr(leaf, slot);
2190 btrfs_set_item_size(leaf, item, old_size + data_size);
2191 btrfs_mark_buffer_dirty(leaf);
2193 ret = 0;
2194 if (btrfs_leaf_free_space(root, leaf) < 0) {
2195 btrfs_print_leaf(root, leaf);
2196 BUG();
2198 return ret;
2202 * Given a key and some data, insert an item into the tree.
2203 * This does all the path init required, making room in the tree if needed.
2205 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2206 struct btrfs_root *root,
2207 struct btrfs_path *path,
2208 struct btrfs_key *cpu_key, u32 *data_size,
2209 int nr)
2211 struct extent_buffer *leaf;
2212 struct btrfs_item *item;
2213 int ret = 0;
2214 int slot;
2215 int slot_orig;
2216 int i;
2217 u32 nritems;
2218 u32 total_size = 0;
2219 u32 total_data = 0;
2220 unsigned int data_end;
2221 struct btrfs_disk_key disk_key;
2223 for (i = 0; i < nr; i++) {
2224 total_data += data_size[i];
2227 /* create a root if there isn't one */
2228 if (!root->node)
2229 BUG();
2231 total_size = total_data + (nr - 1) * sizeof(struct btrfs_item);
2232 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
2233 if (ret == 0) {
2234 return -EEXIST;
2236 if (ret < 0)
2237 goto out;
2239 slot_orig = path->slots[0];
2240 leaf = path->nodes[0];
2242 nritems = btrfs_header_nritems(leaf);
2243 data_end = leaf_data_end(root, leaf);
2245 if (btrfs_leaf_free_space(root, leaf) <
2246 sizeof(struct btrfs_item) + total_size) {
2247 btrfs_print_leaf(root, leaf);
2248 printk("not enough freespace need %u have %d\n",
2249 total_size, btrfs_leaf_free_space(root, leaf));
2250 BUG();
2253 slot = path->slots[0];
2254 BUG_ON(slot < 0);
2256 if (slot != nritems) {
2257 int i;
2258 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
2260 if (old_data < data_end) {
2261 btrfs_print_leaf(root, leaf);
2262 printk("slot %d old_data %d data_end %d\n",
2263 slot, old_data, data_end);
2264 BUG_ON(1);
2267 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2269 /* first correct the data pointers */
2270 for (i = slot; i < nritems; i++) {
2271 u32 ioff;
2273 item = btrfs_item_nr(leaf, i);
2274 ioff = btrfs_item_offset(leaf, item);
2275 btrfs_set_item_offset(leaf, item, ioff - total_data);
2278 /* shift the items */
2279 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
2280 btrfs_item_nr_offset(slot),
2281 (nritems - slot) * sizeof(struct btrfs_item));
2283 /* shift the data */
2284 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2285 data_end - total_data, btrfs_leaf_data(leaf) +
2286 data_end, old_data - data_end);
2287 data_end = old_data;
2290 /* setup the item for the new data */
2291 for (i = 0; i < nr; i++) {
2292 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
2293 btrfs_set_item_key(leaf, &disk_key, slot + i);
2294 item = btrfs_item_nr(leaf, slot + i);
2295 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
2296 data_end -= data_size[i];
2297 btrfs_set_item_size(leaf, item, data_size[i]);
2299 btrfs_set_header_nritems(leaf, nritems + nr);
2300 btrfs_mark_buffer_dirty(leaf);
2302 ret = 0;
2303 if (slot == 0) {
2304 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
2305 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
2308 if (btrfs_leaf_free_space(root, leaf) < 0) {
2309 btrfs_print_leaf(root, leaf);
2310 BUG();
2313 out:
2314 return ret;
2318 * Given a key and some data, insert an item into the tree.
2319 * This does all the path init required, making room in the tree if needed.
2321 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2322 *root, struct btrfs_key *cpu_key, void *data, u32
2323 data_size)
2325 int ret = 0;
2326 struct btrfs_path *path;
2327 struct extent_buffer *leaf;
2328 unsigned long ptr;
2330 path = btrfs_alloc_path();
2331 BUG_ON(!path);
2332 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
2333 if (!ret) {
2334 leaf = path->nodes[0];
2335 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2336 write_extent_buffer(leaf, data, ptr, data_size);
2337 btrfs_mark_buffer_dirty(leaf);
2339 btrfs_free_path(path);
2340 return ret;
2344 * delete the pointer from a given node.
2346 * If the delete empties a node, the node is removed from the tree,
2347 * continuing all the way the root if required. The root is converted into
2348 * a leaf if all the nodes are emptied.
2350 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2351 struct btrfs_path *path, int level, int slot)
2353 struct extent_buffer *parent = path->nodes[level];
2354 u32 nritems;
2355 int ret = 0;
2356 int wret;
2358 nritems = btrfs_header_nritems(parent);
2359 if (slot != nritems -1) {
2360 memmove_extent_buffer(parent,
2361 btrfs_node_key_ptr_offset(slot),
2362 btrfs_node_key_ptr_offset(slot + 1),
2363 sizeof(struct btrfs_key_ptr) *
2364 (nritems - slot - 1));
2366 nritems--;
2367 btrfs_set_header_nritems(parent, nritems);
2368 if (nritems == 0 && parent == root->node) {
2369 BUG_ON(btrfs_header_level(root->node) != 1);
2370 /* just turn the root into a leaf and break */
2371 btrfs_set_header_level(root->node, 0);
2372 } else if (slot == 0) {
2373 struct btrfs_disk_key disk_key;
2375 btrfs_node_key(parent, &disk_key, 0);
2376 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
2377 if (wret)
2378 ret = wret;
2380 btrfs_mark_buffer_dirty(parent);
2381 return ret;
2385 * delete the item at the leaf level in path. If that empties
2386 * the leaf, remove it from the tree
2388 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2389 struct btrfs_path *path, int slot, int nr)
2391 struct extent_buffer *leaf;
2392 struct btrfs_item *item;
2393 int last_off;
2394 int dsize = 0;
2395 int ret = 0;
2396 int wret;
2397 int i;
2398 u32 nritems;
2400 leaf = path->nodes[0];
2401 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
2403 for (i = 0; i < nr; i++)
2404 dsize += btrfs_item_size_nr(leaf, slot + i);
2406 nritems = btrfs_header_nritems(leaf);
2408 if (slot + nr != nritems) {
2409 int i;
2410 int data_end = leaf_data_end(root, leaf);
2412 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2413 data_end + dsize,
2414 btrfs_leaf_data(leaf) + data_end,
2415 last_off - data_end);
2417 for (i = slot + nr; i < nritems; i++) {
2418 u32 ioff;
2420 item = btrfs_item_nr(leaf, i);
2421 ioff = btrfs_item_offset(leaf, item);
2422 btrfs_set_item_offset(leaf, item, ioff + dsize);
2425 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
2426 btrfs_item_nr_offset(slot + nr),
2427 sizeof(struct btrfs_item) *
2428 (nritems - slot - nr));
2430 btrfs_set_header_nritems(leaf, nritems - nr);
2431 nritems -= nr;
2433 /* delete the leaf if we've emptied it */
2434 if (nritems == 0) {
2435 if (leaf == root->node) {
2436 btrfs_set_header_level(leaf, 0);
2437 } else {
2438 u64 root_gen = btrfs_header_generation(path->nodes[1]);
2439 clean_tree_block(trans, root, leaf);
2440 wait_on_tree_block_writeback(root, leaf);
2441 wret = del_ptr(trans, root, path, 1, path->slots[1]);
2442 if (wret)
2443 ret = wret;
2444 wret = btrfs_free_extent(trans, root,
2445 leaf->start, leaf->len,
2446 btrfs_header_owner(path->nodes[1]),
2447 root_gen, 0, 0, 1);
2448 if (wret)
2449 ret = wret;
2451 } else {
2452 int used = leaf_space_used(leaf, 0, nritems);
2453 if (slot == 0) {
2454 struct btrfs_disk_key disk_key;
2456 btrfs_item_key(leaf, &disk_key, 0);
2457 wret = fixup_low_keys(trans, root, path,
2458 &disk_key, 1);
2459 if (wret)
2460 ret = wret;
2463 /* delete the leaf if it is mostly empty */
2464 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
2465 /* push_leaf_left fixes the path.
2466 * make sure the path still points to our leaf
2467 * for possible call to del_ptr below
2469 slot = path->slots[1];
2470 extent_buffer_get(leaf);
2472 wret = push_leaf_left(trans, root, path, 1, 1);
2473 if (wret < 0 && wret != -ENOSPC)
2474 ret = wret;
2476 if (path->nodes[0] == leaf &&
2477 btrfs_header_nritems(leaf)) {
2478 wret = push_leaf_right(trans, root, path, 1, 1);
2479 if (wret < 0 && wret != -ENOSPC)
2480 ret = wret;
2483 if (btrfs_header_nritems(leaf) == 0) {
2484 u64 root_gen;
2485 u64 bytenr = leaf->start;
2486 u32 blocksize = leaf->len;
2488 root_gen = btrfs_header_generation(
2489 path->nodes[1]);
2491 clean_tree_block(trans, root, leaf);
2492 wait_on_tree_block_writeback(root, leaf);
2494 wret = del_ptr(trans, root, path, 1, slot);
2495 if (wret)
2496 ret = wret;
2498 free_extent_buffer(leaf);
2499 wret = btrfs_free_extent(trans, root, bytenr,
2500 blocksize,
2501 btrfs_header_owner(path->nodes[1]),
2502 root_gen, 0, 0, 1);
2503 if (wret)
2504 ret = wret;
2505 } else {
2506 btrfs_mark_buffer_dirty(leaf);
2507 free_extent_buffer(leaf);
2509 } else {
2510 btrfs_mark_buffer_dirty(leaf);
2513 return ret;
2517 * walk up the tree as far as required to find the previous leaf.
2518 * returns 0 if it found something or 1 if there are no lesser leaves.
2519 * returns < 0 on io errors.
2521 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2523 u64 bytenr;
2524 int slot;
2525 int level = 1;
2526 struct extent_buffer *c;
2527 struct extent_buffer *next = NULL;
2529 while(level < BTRFS_MAX_LEVEL) {
2530 if (!path->nodes[level])
2531 return 1;
2533 slot = path->slots[level];
2534 c = path->nodes[level];
2535 if (slot == 0) {
2536 level++;
2537 if (level == BTRFS_MAX_LEVEL)
2538 return 1;
2539 continue;
2541 slot--;
2543 bytenr = btrfs_node_blockptr(c, slot);
2544 if (next)
2545 free_extent_buffer(next);
2547 next = read_tree_block(root, bytenr,
2548 btrfs_level_size(root, level - 1));
2549 break;
2551 path->slots[level] = slot;
2552 while(1) {
2553 level--;
2554 c = path->nodes[level];
2555 free_extent_buffer(c);
2556 slot = btrfs_header_nritems(next);
2557 if (slot != 0)
2558 slot--;
2559 path->nodes[level] = next;
2560 path->slots[level] = slot;
2561 if (!level)
2562 break;
2563 next = read_tree_block(root, btrfs_node_blockptr(next, slot),
2564 btrfs_level_size(root, level - 1));
2566 return 0;
2570 * walk up the tree as far as required to find the next leaf.
2571 * returns 0 if it found something or 1 if there are no greater leaves.
2572 * returns < 0 on io errors.
2574 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2576 int slot;
2577 int level = 1;
2578 u64 bytenr;
2579 struct extent_buffer *c;
2580 struct extent_buffer *next = NULL;
2582 while(level < BTRFS_MAX_LEVEL) {
2583 if (!path->nodes[level])
2584 return 1;
2586 slot = path->slots[level] + 1;
2587 c = path->nodes[level];
2588 if (slot >= btrfs_header_nritems(c)) {
2589 level++;
2590 if (level == BTRFS_MAX_LEVEL)
2591 return 1;
2592 continue;
2595 bytenr = btrfs_node_blockptr(c, slot);
2596 if (next)
2597 free_extent_buffer(next);
2599 if (path->reada)
2600 reada_for_search(root, path, level, slot, 0);
2602 next = read_tree_block(root, bytenr,
2603 btrfs_level_size(root, level -1));
2604 break;
2606 path->slots[level] = slot;
2607 while(1) {
2608 level--;
2609 c = path->nodes[level];
2610 free_extent_buffer(c);
2611 path->nodes[level] = next;
2612 path->slots[level] = 0;
2613 if (!level)
2614 break;
2615 if (path->reada)
2616 reada_for_search(root, path, level, 0, 0);
2617 next = read_tree_block(root, btrfs_node_blockptr(next, 0),
2618 btrfs_level_size(root, level - 1));
2620 return 0;