2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include "transaction.h"
21 #include "print-tree.h"
26 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
27 *root
, struct btrfs_path
*path
, int level
);
28 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_key
*ins_key
,
30 struct btrfs_path
*path
, int data_size
, int extend
);
31 static int push_node_left(struct btrfs_trans_handle
*trans
,
32 struct btrfs_root
*root
, struct extent_buffer
*dst
,
33 struct extent_buffer
*src
, int empty
);
34 static int balance_node_right(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
,
36 struct extent_buffer
*dst_buf
,
37 struct extent_buffer
*src_buf
);
39 inline void btrfs_init_path(struct btrfs_path
*p
)
41 memset(p
, 0, sizeof(*p
));
44 struct btrfs_path
*btrfs_alloc_path(void)
46 struct btrfs_path
*path
;
47 path
= kzalloc(sizeof(struct btrfs_path
), GFP_NOFS
);
51 void btrfs_free_path(struct btrfs_path
*p
)
55 btrfs_release_path(p
);
59 void btrfs_release_path(struct btrfs_path
*p
)
62 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
65 free_extent_buffer(p
->nodes
[i
]);
67 memset(p
, 0, sizeof(*p
));
70 void add_root_to_dirty_list(struct btrfs_root
*root
)
72 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
73 list_add(&root
->dirty_list
,
74 &root
->fs_info
->dirty_cowonly_roots
);
78 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
79 struct btrfs_root
*root
,
80 struct extent_buffer
*buf
,
81 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
83 struct extent_buffer
*cow
;
86 struct btrfs_root
*new_root
;
87 struct btrfs_disk_key disk_key
;
89 new_root
= kmalloc(sizeof(*new_root
), GFP_NOFS
);
93 memcpy(new_root
, root
, sizeof(*new_root
));
94 new_root
->root_key
.objectid
= new_root_objectid
;
96 WARN_ON(root
->ref_cows
&& trans
->transid
!=
97 root
->fs_info
->running_transaction
->transid
);
98 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
100 level
= btrfs_header_level(buf
);
102 btrfs_item_key(buf
, &disk_key
, 0);
104 btrfs_node_key(buf
, &disk_key
, 0);
105 cow
= btrfs_alloc_free_block(trans
, new_root
, buf
->len
,
106 new_root_objectid
, &disk_key
,
107 level
, buf
->start
, 0);
113 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
114 btrfs_set_header_bytenr(cow
, cow
->start
);
115 btrfs_set_header_generation(cow
, trans
->transid
);
116 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
117 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
118 BTRFS_HEADER_FLAG_RELOC
);
119 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
120 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
122 btrfs_set_header_owner(cow
, new_root_objectid
);
124 write_extent_buffer(cow
, root
->fs_info
->fsid
,
125 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
127 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
128 ret
= btrfs_inc_ref(trans
, new_root
, cow
, 0);
134 btrfs_mark_buffer_dirty(cow
);
140 * check if the tree block can be shared by multiple trees
142 static int btrfs_block_can_be_shared(struct btrfs_root
*root
,
143 struct extent_buffer
*buf
)
146 * Tree blocks not in reference counted trees and tree roots
147 * are never shared. If a block was allocated after the last
148 * snapshot and the block was not allocated by tree relocation,
149 * we know the block is not shared.
151 if (root
->ref_cows
&&
152 buf
!= root
->node
&& buf
!= root
->commit_root
&&
153 (btrfs_header_generation(buf
) <=
154 btrfs_root_last_snapshot(&root
->root_item
) ||
155 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
157 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
158 if (root
->ref_cows
&&
159 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
165 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
166 struct btrfs_root
*root
,
167 struct extent_buffer
*buf
,
168 struct extent_buffer
*cow
)
177 * Backrefs update rules:
179 * Always use full backrefs for extent pointers in tree block
180 * allocated by tree relocation.
182 * If a shared tree block is no longer referenced by its owner
183 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
184 * use full backrefs for extent pointers in tree block.
186 * If a tree block is been relocating
187 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
188 * use full backrefs for extent pointers in tree block.
189 * The reason for this is some operations (such as drop tree)
190 * are only allowed for blocks use full backrefs.
193 if (btrfs_block_can_be_shared(root
, buf
)) {
194 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
195 btrfs_header_level(buf
), 1,
201 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
202 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
203 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
208 owner
= btrfs_header_owner(buf
);
209 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) &&
210 owner
== BTRFS_TREE_RELOC_OBJECTID
);
213 if ((owner
== root
->root_key
.objectid
||
214 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
215 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
216 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
219 if (root
->root_key
.objectid
==
220 BTRFS_TREE_RELOC_OBJECTID
) {
221 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
223 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
226 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
229 if (root
->root_key
.objectid
==
230 BTRFS_TREE_RELOC_OBJECTID
)
231 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
233 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
236 if (new_flags
!= 0) {
237 ret
= btrfs_set_block_flags(trans
, root
, buf
->start
,
238 btrfs_header_level(buf
),
243 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
244 if (root
->root_key
.objectid
==
245 BTRFS_TREE_RELOC_OBJECTID
)
246 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
248 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
250 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
253 clean_tree_block(trans
, root
, buf
);
258 int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
259 struct btrfs_root
*root
,
260 struct extent_buffer
*buf
,
261 struct extent_buffer
*parent
, int parent_slot
,
262 struct extent_buffer
**cow_ret
,
263 u64 search_start
, u64 empty_size
)
265 struct extent_buffer
*cow
;
266 struct btrfs_disk_key disk_key
;
269 WARN_ON(root
->ref_cows
&& trans
->transid
!=
270 root
->fs_info
->running_transaction
->transid
);
271 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
273 level
= btrfs_header_level(buf
);
276 btrfs_item_key(buf
, &disk_key
, 0);
278 btrfs_node_key(buf
, &disk_key
, 0);
280 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
,
281 root
->root_key
.objectid
, &disk_key
,
282 level
, search_start
, empty_size
);
286 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
287 btrfs_set_header_bytenr(cow
, cow
->start
);
288 btrfs_set_header_generation(cow
, trans
->transid
);
289 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
290 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
291 BTRFS_HEADER_FLAG_RELOC
);
292 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
293 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
295 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
297 write_extent_buffer(cow
, root
->fs_info
->fsid
,
298 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
300 WARN_ON(!(buf
->flags
& EXTENT_BAD_TRANSID
) &&
301 btrfs_header_generation(buf
) > trans
->transid
);
303 update_ref_for_cow(trans
, root
, buf
, cow
);
305 if (buf
== root
->node
) {
307 extent_buffer_get(cow
);
309 btrfs_free_extent(trans
, root
, buf
->start
, buf
->len
,
310 0, root
->root_key
.objectid
, level
, 0);
311 free_extent_buffer(buf
);
312 add_root_to_dirty_list(root
);
314 btrfs_set_node_blockptr(parent
, parent_slot
,
316 WARN_ON(trans
->transid
== 0);
317 btrfs_set_node_ptr_generation(parent
, parent_slot
,
319 btrfs_mark_buffer_dirty(parent
);
320 WARN_ON(btrfs_header_generation(parent
) != trans
->transid
);
322 btrfs_free_extent(trans
, root
, buf
->start
, buf
->len
,
323 0, root
->root_key
.objectid
, level
, 1);
325 if (!list_empty(&buf
->recow
)) {
326 list_del_init(&buf
->recow
);
327 free_extent_buffer(buf
);
329 free_extent_buffer(buf
);
330 btrfs_mark_buffer_dirty(cow
);
335 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
336 struct btrfs_root
*root
,
337 struct extent_buffer
*buf
)
339 if (btrfs_header_generation(buf
) == trans
->transid
&&
340 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
341 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
342 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
347 int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
348 struct btrfs_root
*root
, struct extent_buffer
*buf
,
349 struct extent_buffer
*parent
, int parent_slot
,
350 struct extent_buffer
**cow_ret
)
355 if (trans->transaction != root->fs_info->running_transaction) {
356 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
357 root->fs_info->running_transaction->transid);
361 if (trans
->transid
!= root
->fs_info
->generation
) {
362 printk(KERN_CRIT
"trans %llu running %llu\n",
363 (unsigned long long)trans
->transid
,
364 (unsigned long long)root
->fs_info
->generation
);
367 if (!should_cow_block(trans
, root
, buf
)) {
372 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
373 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
374 parent_slot
, cow_ret
, search_start
, 0);
378 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
380 if (k1
->objectid
> k2
->objectid
)
382 if (k1
->objectid
< k2
->objectid
)
384 if (k1
->type
> k2
->type
)
386 if (k1
->type
< k2
->type
)
388 if (k1
->offset
> k2
->offset
)
390 if (k1
->offset
< k2
->offset
)
396 * compare two keys in a memcmp fashion
398 static int btrfs_comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
402 btrfs_disk_key_to_cpu(&k1
, disk
);
403 return btrfs_comp_cpu_keys(&k1
, k2
);
407 * The leaf data grows from end-to-front in the node.
408 * this returns the address of the start of the last item,
409 * which is the stop of the leaf data stack
411 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
412 struct extent_buffer
*leaf
)
414 u32 nr
= btrfs_header_nritems(leaf
);
416 return BTRFS_LEAF_DATA_SIZE(root
);
417 return btrfs_item_offset_nr(leaf
, nr
- 1);
420 enum btrfs_tree_block_status
421 btrfs_check_node(struct btrfs_root
*root
, struct btrfs_disk_key
*parent_key
,
422 struct extent_buffer
*buf
)
425 struct btrfs_key cpukey
;
426 struct btrfs_disk_key key
;
427 u32 nritems
= btrfs_header_nritems(buf
);
428 enum btrfs_tree_block_status ret
= BTRFS_TREE_BLOCK_INVALID_NRITEMS
;
430 if (nritems
== 0 || nritems
> BTRFS_NODEPTRS_PER_BLOCK(root
))
433 ret
= BTRFS_TREE_BLOCK_INVALID_PARENT_KEY
;
434 if (parent_key
&& parent_key
->type
) {
435 btrfs_node_key(buf
, &key
, 0);
436 if (memcmp(parent_key
, &key
, sizeof(key
)))
439 ret
= BTRFS_TREE_BLOCK_BAD_KEY_ORDER
;
440 for (i
= 0; nritems
> 1 && i
< nritems
- 2; i
++) {
441 btrfs_node_key(buf
, &key
, i
);
442 btrfs_node_key_to_cpu(buf
, &cpukey
, i
+ 1);
443 if (btrfs_comp_keys(&key
, &cpukey
) >= 0)
446 return BTRFS_TREE_BLOCK_CLEAN
;
448 if (btrfs_header_owner(buf
) == BTRFS_EXTENT_TREE_OBJECTID
) {
450 btrfs_disk_key_to_cpu(&cpukey
, parent_key
);
452 btrfs_node_key_to_cpu(buf
, &cpukey
, 0);
453 btrfs_add_corrupt_extent_record(root
->fs_info
, &cpukey
,
454 buf
->start
, buf
->len
,
455 btrfs_header_level(buf
));
460 enum btrfs_tree_block_status
461 btrfs_check_leaf(struct btrfs_root
*root
, struct btrfs_disk_key
*parent_key
,
462 struct extent_buffer
*buf
)
465 struct btrfs_key cpukey
;
466 struct btrfs_disk_key key
;
467 u32 nritems
= btrfs_header_nritems(buf
);
468 enum btrfs_tree_block_status ret
= BTRFS_TREE_BLOCK_INVALID_NRITEMS
;
470 if (nritems
* sizeof(struct btrfs_item
) > buf
->len
) {
471 fprintf(stderr
, "invalid number of items %llu\n",
472 (unsigned long long)buf
->start
);
476 if (btrfs_header_level(buf
) != 0) {
477 ret
= BTRFS_TREE_BLOCK_INVALID_LEVEL
;
478 fprintf(stderr
, "leaf is not a leaf %llu\n",
479 (unsigned long long)btrfs_header_bytenr(buf
));
482 if (btrfs_leaf_free_space(root
, buf
) < 0) {
483 ret
= BTRFS_TREE_BLOCK_INVALID_FREE_SPACE
;
484 fprintf(stderr
, "leaf free space incorrect %llu %d\n",
485 (unsigned long long)btrfs_header_bytenr(buf
),
486 btrfs_leaf_free_space(root
, buf
));
491 return BTRFS_TREE_BLOCK_CLEAN
;
493 btrfs_item_key(buf
, &key
, 0);
494 if (parent_key
&& parent_key
->type
&&
495 memcmp(parent_key
, &key
, sizeof(key
))) {
496 ret
= BTRFS_TREE_BLOCK_INVALID_PARENT_KEY
;
497 fprintf(stderr
, "leaf parent key incorrect %llu\n",
498 (unsigned long long)btrfs_header_bytenr(buf
));
501 for (i
= 0; nritems
> 1 && i
< nritems
- 1; i
++) {
502 btrfs_item_key(buf
, &key
, i
);
503 btrfs_item_key_to_cpu(buf
, &cpukey
, i
+ 1);
504 if (btrfs_comp_keys(&key
, &cpukey
) >= 0) {
505 ret
= BTRFS_TREE_BLOCK_BAD_KEY_ORDER
;
506 fprintf(stderr
, "bad key ordering %d %d\n", i
, i
+1);
509 if (btrfs_item_offset_nr(buf
, i
) !=
510 btrfs_item_end_nr(buf
, i
+ 1)) {
511 ret
= BTRFS_TREE_BLOCK_INVALID_OFFSETS
;
512 fprintf(stderr
, "incorrect offsets %u %u\n",
513 btrfs_item_offset_nr(buf
, i
),
514 btrfs_item_end_nr(buf
, i
+ 1));
517 if (i
== 0 && btrfs_item_end_nr(buf
, i
) !=
518 BTRFS_LEAF_DATA_SIZE(root
)) {
519 ret
= BTRFS_TREE_BLOCK_INVALID_OFFSETS
;
520 fprintf(stderr
, "bad item end %u wanted %u\n",
521 btrfs_item_end_nr(buf
, i
),
522 (unsigned)BTRFS_LEAF_DATA_SIZE(root
));
527 for (i
= 0; i
< nritems
; i
++) {
528 if (btrfs_item_end_nr(buf
, i
) > BTRFS_LEAF_DATA_SIZE(root
)) {
529 btrfs_item_key(buf
, &key
, 0);
530 btrfs_print_key(&key
);
532 ret
= BTRFS_TREE_BLOCK_INVALID_OFFSETS
;
533 fprintf(stderr
, "slot end outside of leaf %llu > %llu\n",
534 (unsigned long long)btrfs_item_end_nr(buf
, i
),
535 (unsigned long long)BTRFS_LEAF_DATA_SIZE(root
));
540 return BTRFS_TREE_BLOCK_CLEAN
;
542 if (btrfs_header_owner(buf
) == BTRFS_EXTENT_TREE_OBJECTID
) {
544 btrfs_disk_key_to_cpu(&cpukey
, parent_key
);
546 btrfs_item_key_to_cpu(buf
, &cpukey
, 0);
548 btrfs_add_corrupt_extent_record(root
->fs_info
, &cpukey
,
549 buf
->start
, buf
->len
, 0);
554 static int noinline
check_block(struct btrfs_root
*root
,
555 struct btrfs_path
*path
, int level
)
557 struct btrfs_disk_key key
;
558 struct btrfs_disk_key
*key_ptr
= NULL
;
559 struct extent_buffer
*parent
;
560 enum btrfs_tree_block_status ret
;
562 if (path
->skip_check_block
)
564 if (path
->nodes
[level
+ 1]) {
565 parent
= path
->nodes
[level
+ 1];
566 btrfs_node_key(parent
, &key
, path
->slots
[level
+ 1]);
570 ret
= btrfs_check_leaf(root
, key_ptr
, path
->nodes
[0]);
572 ret
= btrfs_check_node(root
, key_ptr
, path
->nodes
[level
]);
573 if (ret
== BTRFS_TREE_BLOCK_CLEAN
)
579 * search for key in the extent_buffer. The items start at offset p,
580 * and they are item_size apart. There are 'max' items in p.
582 * the slot in the array is returned via slot, and it points to
583 * the place where you would insert key if it is not found in
586 * slot may point to max if the key is bigger than all of the keys
588 static int generic_bin_search(struct extent_buffer
*eb
, unsigned long p
,
589 int item_size
, struct btrfs_key
*key
,
596 unsigned long offset
;
597 struct btrfs_disk_key
*tmp
;
600 mid
= (low
+ high
) / 2;
601 offset
= p
+ mid
* item_size
;
603 tmp
= (struct btrfs_disk_key
*)(eb
->data
+ offset
);
604 ret
= btrfs_comp_keys(tmp
, key
);
620 * simple bin_search frontend that does the right thing for
623 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
624 int level
, int *slot
)
627 return generic_bin_search(eb
,
628 offsetof(struct btrfs_leaf
, items
),
629 sizeof(struct btrfs_item
),
630 key
, btrfs_header_nritems(eb
),
633 return generic_bin_search(eb
,
634 offsetof(struct btrfs_node
, ptrs
),
635 sizeof(struct btrfs_key_ptr
),
636 key
, btrfs_header_nritems(eb
),
640 struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
641 struct extent_buffer
*parent
, int slot
)
643 int level
= btrfs_header_level(parent
);
646 if (slot
>= btrfs_header_nritems(parent
))
652 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
654 btrfs_node_ptr_generation(parent
, slot
));
657 static int balance_level(struct btrfs_trans_handle
*trans
,
658 struct btrfs_root
*root
,
659 struct btrfs_path
*path
, int level
)
661 struct extent_buffer
*right
= NULL
;
662 struct extent_buffer
*mid
;
663 struct extent_buffer
*left
= NULL
;
664 struct extent_buffer
*parent
= NULL
;
668 int orig_slot
= path
->slots
[level
];
674 mid
= path
->nodes
[level
];
675 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
677 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
679 if (level
< BTRFS_MAX_LEVEL
- 1) {
680 parent
= path
->nodes
[level
+ 1];
681 pslot
= path
->slots
[level
+ 1];
685 * deal with the case where there is only one pointer in the root
686 * by promoting the node below to a root
689 struct extent_buffer
*child
;
691 if (btrfs_header_nritems(mid
) != 1)
694 /* promote the child to a root */
695 child
= read_node_slot(root
, mid
, 0);
696 BUG_ON(!extent_buffer_uptodate(child
));
697 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
701 add_root_to_dirty_list(root
);
702 path
->nodes
[level
] = NULL
;
703 clean_tree_block(trans
, root
, mid
);
704 /* once for the path */
705 free_extent_buffer(mid
);
707 ret
= btrfs_free_extent(trans
, root
, mid
->start
, mid
->len
,
708 0, root
->root_key
.objectid
,
710 /* once for the root ptr */
711 free_extent_buffer(mid
);
714 if (btrfs_header_nritems(mid
) >
715 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
718 left
= read_node_slot(root
, parent
, pslot
- 1);
719 if (extent_buffer_uptodate(left
)) {
720 wret
= btrfs_cow_block(trans
, root
, left
,
721 parent
, pslot
- 1, &left
);
727 right
= read_node_slot(root
, parent
, pslot
+ 1);
728 if (extent_buffer_uptodate(right
)) {
729 wret
= btrfs_cow_block(trans
, root
, right
,
730 parent
, pslot
+ 1, &right
);
737 /* first, try to make some room in the middle buffer */
739 orig_slot
+= btrfs_header_nritems(left
);
740 wret
= push_node_left(trans
, root
, left
, mid
, 1);
746 * then try to empty the right most buffer into the middle
749 wret
= push_node_left(trans
, root
, mid
, right
, 1);
750 if (wret
< 0 && wret
!= -ENOSPC
)
752 if (btrfs_header_nritems(right
) == 0) {
753 u64 bytenr
= right
->start
;
754 u32 blocksize
= right
->len
;
756 clean_tree_block(trans
, root
, right
);
757 free_extent_buffer(right
);
759 wret
= btrfs_del_ptr(root
, path
, level
+ 1, pslot
+ 1);
762 wret
= btrfs_free_extent(trans
, root
, bytenr
,
764 root
->root_key
.objectid
,
769 struct btrfs_disk_key right_key
;
770 btrfs_node_key(right
, &right_key
, 0);
771 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
772 btrfs_mark_buffer_dirty(parent
);
775 if (btrfs_header_nritems(mid
) == 1) {
777 * we're not allowed to leave a node with one item in the
778 * tree during a delete. A deletion from lower in the tree
779 * could try to delete the only pointer in this node.
780 * So, pull some keys from the left.
781 * There has to be a left pointer at this point because
782 * otherwise we would have pulled some pointers from the
786 wret
= balance_node_right(trans
, root
, mid
, left
);
792 wret
= push_node_left(trans
, root
, left
, mid
, 1);
798 if (btrfs_header_nritems(mid
) == 0) {
799 /* we've managed to empty the middle node, drop it */
800 u64 bytenr
= mid
->start
;
801 u32 blocksize
= mid
->len
;
802 clean_tree_block(trans
, root
, mid
);
803 free_extent_buffer(mid
);
805 wret
= btrfs_del_ptr(root
, path
, level
+ 1, pslot
);
808 wret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
,
809 0, root
->root_key
.objectid
,
814 /* update the parent key to reflect our changes */
815 struct btrfs_disk_key mid_key
;
816 btrfs_node_key(mid
, &mid_key
, 0);
817 btrfs_set_node_key(parent
, &mid_key
, pslot
);
818 btrfs_mark_buffer_dirty(parent
);
821 /* update the path */
823 if (btrfs_header_nritems(left
) > orig_slot
) {
824 extent_buffer_get(left
);
825 path
->nodes
[level
] = left
;
826 path
->slots
[level
+ 1] -= 1;
827 path
->slots
[level
] = orig_slot
;
829 free_extent_buffer(mid
);
831 orig_slot
-= btrfs_header_nritems(left
);
832 path
->slots
[level
] = orig_slot
;
835 /* double check we haven't messed things up */
836 check_block(root
, path
, level
);
838 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
842 free_extent_buffer(right
);
844 free_extent_buffer(left
);
848 /* returns zero if the push worked, non-zero otherwise */
849 static int noinline
push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
850 struct btrfs_root
*root
,
851 struct btrfs_path
*path
, int level
)
853 struct extent_buffer
*right
= NULL
;
854 struct extent_buffer
*mid
;
855 struct extent_buffer
*left
= NULL
;
856 struct extent_buffer
*parent
= NULL
;
860 int orig_slot
= path
->slots
[level
];
865 mid
= path
->nodes
[level
];
866 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
868 if (level
< BTRFS_MAX_LEVEL
- 1) {
869 parent
= path
->nodes
[level
+ 1];
870 pslot
= path
->slots
[level
+ 1];
876 left
= read_node_slot(root
, parent
, pslot
- 1);
878 /* first, try to make some room in the middle buffer */
879 if (extent_buffer_uptodate(left
)) {
881 left_nr
= btrfs_header_nritems(left
);
882 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
885 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
890 wret
= push_node_left(trans
, root
,
897 struct btrfs_disk_key disk_key
;
898 orig_slot
+= left_nr
;
899 btrfs_node_key(mid
, &disk_key
, 0);
900 btrfs_set_node_key(parent
, &disk_key
, pslot
);
901 btrfs_mark_buffer_dirty(parent
);
902 if (btrfs_header_nritems(left
) > orig_slot
) {
903 path
->nodes
[level
] = left
;
904 path
->slots
[level
+ 1] -= 1;
905 path
->slots
[level
] = orig_slot
;
906 free_extent_buffer(mid
);
909 btrfs_header_nritems(left
);
910 path
->slots
[level
] = orig_slot
;
911 free_extent_buffer(left
);
915 free_extent_buffer(left
);
917 right
= read_node_slot(root
, parent
, pslot
+ 1);
920 * then try to empty the right most buffer into the middle
922 if (extent_buffer_uptodate(right
)) {
924 right_nr
= btrfs_header_nritems(right
);
925 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
928 ret
= btrfs_cow_block(trans
, root
, right
,
934 wret
= balance_node_right(trans
, root
,
941 struct btrfs_disk_key disk_key
;
943 btrfs_node_key(right
, &disk_key
, 0);
944 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
945 btrfs_mark_buffer_dirty(parent
);
947 if (btrfs_header_nritems(mid
) <= orig_slot
) {
948 path
->nodes
[level
] = right
;
949 path
->slots
[level
+ 1] += 1;
950 path
->slots
[level
] = orig_slot
-
951 btrfs_header_nritems(mid
);
952 free_extent_buffer(mid
);
954 free_extent_buffer(right
);
958 free_extent_buffer(right
);
964 * readahead one full node of leaves
966 void reada_for_search(struct btrfs_root
*root
, struct btrfs_path
*path
,
967 int level
, int slot
, u64 objectid
)
969 struct extent_buffer
*node
;
970 struct btrfs_disk_key disk_key
;
976 int direction
= path
->reada
;
977 struct extent_buffer
*eb
;
985 if (!path
->nodes
[level
])
988 node
= path
->nodes
[level
];
989 search
= btrfs_node_blockptr(node
, slot
);
990 blocksize
= root
->nodesize
;
991 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
993 free_extent_buffer(eb
);
997 highest_read
= search
;
998 lowest_read
= search
;
1000 nritems
= btrfs_header_nritems(node
);
1003 if (direction
< 0) {
1007 } else if (direction
> 0) {
1012 if (path
->reada
< 0 && objectid
) {
1013 btrfs_node_key(node
, &disk_key
, nr
);
1014 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1017 search
= btrfs_node_blockptr(node
, nr
);
1018 if ((search
>= lowest_read
&& search
<= highest_read
) ||
1019 (search
< lowest_read
&& lowest_read
- search
<= 32768) ||
1020 (search
> highest_read
&& search
- highest_read
<= 32768)) {
1021 readahead_tree_block(root
, search
, blocksize
,
1022 btrfs_node_ptr_generation(node
, nr
));
1026 if (path
->reada
< 2 && (nread
> SZ_256K
|| nscan
> 32))
1028 if(nread
> SZ_1M
|| nscan
> 128)
1031 if (search
< lowest_read
)
1032 lowest_read
= search
;
1033 if (search
> highest_read
)
1034 highest_read
= search
;
1038 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*found_path
,
1039 u64 iobjectid
, u64 ioff
, u8 key_type
,
1040 struct btrfs_key
*found_key
)
1043 struct btrfs_key key
;
1044 struct extent_buffer
*eb
;
1045 struct btrfs_path
*path
;
1047 key
.type
= key_type
;
1048 key
.objectid
= iobjectid
;
1051 if (found_path
== NULL
) {
1052 path
= btrfs_alloc_path();
1058 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1059 if ((ret
< 0) || (found_key
== NULL
))
1062 eb
= path
->nodes
[0];
1063 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
1064 ret
= btrfs_next_leaf(fs_root
, path
);
1067 eb
= path
->nodes
[0];
1070 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
1071 if (found_key
->type
!= key
.type
||
1072 found_key
->objectid
!= key
.objectid
) {
1078 if (path
!= found_path
)
1079 btrfs_free_path(path
);
1084 * look for key in the tree. path is filled in with nodes along the way
1085 * if key is found, we return zero and you can find the item in the leaf
1086 * level of the path (level 0)
1088 * If the key isn't found, the path points to the slot where it should
1089 * be inserted, and 1 is returned. If there are other errors during the
1090 * search a negative error number is returned.
1092 * if ins_len > 0, nodes and leaves will be split as we walk down the
1093 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1096 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
1097 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
1100 struct extent_buffer
*b
;
1104 int should_reada
= p
->reada
;
1105 u8 lowest_level
= 0;
1107 lowest_level
= p
->lowest_level
;
1108 WARN_ON(lowest_level
&& ins_len
> 0);
1109 WARN_ON(p
->nodes
[0] != NULL
);
1111 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1115 extent_buffer_get(b
);
1117 level
= btrfs_header_level(b
);
1120 wret
= btrfs_cow_block(trans
, root
, b
,
1121 p
->nodes
[level
+ 1],
1122 p
->slots
[level
+ 1],
1125 free_extent_buffer(b
);
1129 BUG_ON(!cow
&& ins_len
);
1130 if (level
!= btrfs_header_level(b
))
1132 level
= btrfs_header_level(b
);
1133 p
->nodes
[level
] = b
;
1134 ret
= check_block(root
, p
, level
);
1137 ret
= bin_search(b
, key
, level
, &slot
);
1139 if (ret
&& slot
> 0)
1141 p
->slots
[level
] = slot
;
1142 if ((p
->search_for_split
|| ins_len
> 0) &&
1143 btrfs_header_nritems(b
) >=
1144 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
1145 int sret
= split_node(trans
, root
, p
, level
);
1149 b
= p
->nodes
[level
];
1150 slot
= p
->slots
[level
];
1151 } else if (ins_len
< 0) {
1152 int sret
= balance_level(trans
, root
, p
,
1156 b
= p
->nodes
[level
];
1158 btrfs_release_path(p
);
1161 slot
= p
->slots
[level
];
1162 BUG_ON(btrfs_header_nritems(b
) == 1);
1164 /* this is only true while dropping a snapshot */
1165 if (level
== lowest_level
)
1169 reada_for_search(root
, p
, level
, slot
,
1172 b
= read_node_slot(root
, b
, slot
);
1173 if (!extent_buffer_uptodate(b
))
1176 p
->slots
[level
] = slot
;
1178 ins_len
> btrfs_leaf_free_space(root
, b
)) {
1179 int sret
= split_leaf(trans
, root
, key
,
1180 p
, ins_len
, ret
== 0);
1192 * adjust the pointers going up the tree, starting at level
1193 * making sure the right key of each node is points to 'key'.
1194 * This is used after shifting pointers to the left, so it stops
1195 * fixing up pointers when a given leaf/node is not in slot 0 of the
1198 void btrfs_fixup_low_keys(struct btrfs_root
*root
, struct btrfs_path
*path
,
1199 struct btrfs_disk_key
*key
, int level
)
1202 struct extent_buffer
*t
;
1204 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1205 int tslot
= path
->slots
[i
];
1206 if (!path
->nodes
[i
])
1209 btrfs_set_node_key(t
, key
, tslot
);
1210 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
1219 * This function isn't completely safe. It's the caller's responsibility
1220 * that the new key won't break the order
1222 int btrfs_set_item_key_safe(struct btrfs_root
*root
, struct btrfs_path
*path
,
1223 struct btrfs_key
*new_key
)
1225 struct btrfs_disk_key disk_key
;
1226 struct extent_buffer
*eb
;
1229 eb
= path
->nodes
[0];
1230 slot
= path
->slots
[0];
1232 btrfs_item_key(eb
, &disk_key
, slot
- 1);
1233 if (btrfs_comp_keys(&disk_key
, new_key
) >= 0)
1236 if (slot
< btrfs_header_nritems(eb
) - 1) {
1237 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
1238 if (btrfs_comp_keys(&disk_key
, new_key
) <= 0)
1242 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1243 btrfs_set_item_key(eb
, &disk_key
, slot
);
1244 btrfs_mark_buffer_dirty(eb
);
1246 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
1251 * update an item key without the safety checks. This is meant to be called by
1254 void btrfs_set_item_key_unsafe(struct btrfs_root
*root
,
1255 struct btrfs_path
*path
,
1256 struct btrfs_key
*new_key
)
1258 struct btrfs_disk_key disk_key
;
1259 struct extent_buffer
*eb
;
1262 eb
= path
->nodes
[0];
1263 slot
= path
->slots
[0];
1265 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1266 btrfs_set_item_key(eb
, &disk_key
, slot
);
1267 btrfs_mark_buffer_dirty(eb
);
1269 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
1273 * try to push data from one node into the next node left in the
1276 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1277 * error, and > 0 if there was no room in the left hand block.
1279 static int push_node_left(struct btrfs_trans_handle
*trans
,
1280 struct btrfs_root
*root
, struct extent_buffer
*dst
,
1281 struct extent_buffer
*src
, int empty
)
1288 src_nritems
= btrfs_header_nritems(src
);
1289 dst_nritems
= btrfs_header_nritems(dst
);
1290 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
1291 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1292 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1294 if (!empty
&& src_nritems
<= 8)
1297 if (push_items
<= 0) {
1302 push_items
= min(src_nritems
, push_items
);
1303 if (push_items
< src_nritems
) {
1304 /* leave at least 8 pointers in the node if
1305 * we aren't going to empty it
1307 if (src_nritems
- push_items
< 8) {
1308 if (push_items
<= 8)
1314 push_items
= min(src_nritems
- 8, push_items
);
1316 copy_extent_buffer(dst
, src
,
1317 btrfs_node_key_ptr_offset(dst_nritems
),
1318 btrfs_node_key_ptr_offset(0),
1319 push_items
* sizeof(struct btrfs_key_ptr
));
1321 if (push_items
< src_nritems
) {
1322 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
1323 btrfs_node_key_ptr_offset(push_items
),
1324 (src_nritems
- push_items
) *
1325 sizeof(struct btrfs_key_ptr
));
1327 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1328 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1329 btrfs_mark_buffer_dirty(src
);
1330 btrfs_mark_buffer_dirty(dst
);
1336 * try to push data from one node into the next node right in the
1339 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1340 * error, and > 0 if there was no room in the right hand block.
1342 * this will only push up to 1/2 the contents of the left node over
1344 static int balance_node_right(struct btrfs_trans_handle
*trans
,
1345 struct btrfs_root
*root
,
1346 struct extent_buffer
*dst
,
1347 struct extent_buffer
*src
)
1355 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1356 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1358 src_nritems
= btrfs_header_nritems(src
);
1359 dst_nritems
= btrfs_header_nritems(dst
);
1360 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
1361 if (push_items
<= 0) {
1365 if (src_nritems
< 4) {
1369 max_push
= src_nritems
/ 2 + 1;
1370 /* don't try to empty the node */
1371 if (max_push
>= src_nritems
) {
1375 if (max_push
< push_items
)
1376 push_items
= max_push
;
1378 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
1379 btrfs_node_key_ptr_offset(0),
1381 sizeof(struct btrfs_key_ptr
));
1383 copy_extent_buffer(dst
, src
,
1384 btrfs_node_key_ptr_offset(0),
1385 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
1386 push_items
* sizeof(struct btrfs_key_ptr
));
1388 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1389 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1391 btrfs_mark_buffer_dirty(src
);
1392 btrfs_mark_buffer_dirty(dst
);
1398 * helper function to insert a new root level in the tree.
1399 * A new node is allocated, and a single item is inserted to
1400 * point to the existing root
1402 * returns zero on success or < 0 on failure.
1404 static int noinline
insert_new_root(struct btrfs_trans_handle
*trans
,
1405 struct btrfs_root
*root
,
1406 struct btrfs_path
*path
, int level
)
1409 struct extent_buffer
*lower
;
1410 struct extent_buffer
*c
;
1411 struct extent_buffer
*old
;
1412 struct btrfs_disk_key lower_key
;
1414 BUG_ON(path
->nodes
[level
]);
1415 BUG_ON(path
->nodes
[level
-1] != root
->node
);
1417 lower
= path
->nodes
[level
-1];
1419 btrfs_item_key(lower
, &lower_key
, 0);
1421 btrfs_node_key(lower
, &lower_key
, 0);
1423 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
,
1424 root
->root_key
.objectid
, &lower_key
,
1425 level
, root
->node
->start
, 0);
1430 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
1431 btrfs_set_header_nritems(c
, 1);
1432 btrfs_set_header_level(c
, level
);
1433 btrfs_set_header_bytenr(c
, c
->start
);
1434 btrfs_set_header_generation(c
, trans
->transid
);
1435 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
1436 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
1438 write_extent_buffer(c
, root
->fs_info
->fsid
,
1439 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1441 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
1442 btrfs_header_chunk_tree_uuid(c
),
1445 btrfs_set_node_key(c
, &lower_key
, 0);
1446 btrfs_set_node_blockptr(c
, 0, lower
->start
);
1447 lower_gen
= btrfs_header_generation(lower
);
1448 WARN_ON(lower_gen
!= trans
->transid
);
1450 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
1452 btrfs_mark_buffer_dirty(c
);
1457 /* the super has an extra ref to root->node */
1458 free_extent_buffer(old
);
1460 add_root_to_dirty_list(root
);
1461 extent_buffer_get(c
);
1462 path
->nodes
[level
] = c
;
1463 path
->slots
[level
] = 0;
1468 * worker function to insert a single pointer in a node.
1469 * the node should have enough room for the pointer already
1471 * slot and level indicate where you want the key to go, and
1472 * blocknr is the block the key points to.
1474 * returns zero on success and < 0 on any error
1476 static int insert_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
1477 *root
, struct btrfs_path
*path
, struct btrfs_disk_key
1478 *key
, u64 bytenr
, int slot
, int level
)
1480 struct extent_buffer
*lower
;
1483 BUG_ON(!path
->nodes
[level
]);
1484 lower
= path
->nodes
[level
];
1485 nritems
= btrfs_header_nritems(lower
);
1488 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
))
1490 if (slot
!= nritems
) {
1491 memmove_extent_buffer(lower
,
1492 btrfs_node_key_ptr_offset(slot
+ 1),
1493 btrfs_node_key_ptr_offset(slot
),
1494 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
1496 btrfs_set_node_key(lower
, key
, slot
);
1497 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
1498 WARN_ON(trans
->transid
== 0);
1499 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
1500 btrfs_set_header_nritems(lower
, nritems
+ 1);
1501 btrfs_mark_buffer_dirty(lower
);
1506 * split the node at the specified level in path in two.
1507 * The path is corrected to point to the appropriate node after the split
1509 * Before splitting this tries to make some room in the node by pushing
1510 * left and right, if either one works, it returns right away.
1512 * returns 0 on success and < 0 on failure
1514 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
1515 *root
, struct btrfs_path
*path
, int level
)
1517 struct extent_buffer
*c
;
1518 struct extent_buffer
*split
;
1519 struct btrfs_disk_key disk_key
;
1525 c
= path
->nodes
[level
];
1526 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
1527 if (c
== root
->node
) {
1528 /* trying to split the root, lets make a new one */
1529 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
1533 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
1534 c
= path
->nodes
[level
];
1535 if (!ret
&& btrfs_header_nritems(c
) <
1536 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
1542 c_nritems
= btrfs_header_nritems(c
);
1543 mid
= (c_nritems
+ 1) / 2;
1544 btrfs_node_key(c
, &disk_key
, mid
);
1546 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
,
1547 root
->root_key
.objectid
,
1548 &disk_key
, level
, c
->start
, 0);
1550 return PTR_ERR(split
);
1552 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
1553 btrfs_set_header_level(split
, btrfs_header_level(c
));
1554 btrfs_set_header_bytenr(split
, split
->start
);
1555 btrfs_set_header_generation(split
, trans
->transid
);
1556 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
1557 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
1558 write_extent_buffer(split
, root
->fs_info
->fsid
,
1559 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1560 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
1561 btrfs_header_chunk_tree_uuid(split
),
1565 copy_extent_buffer(split
, c
,
1566 btrfs_node_key_ptr_offset(0),
1567 btrfs_node_key_ptr_offset(mid
),
1568 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
1569 btrfs_set_header_nritems(split
, c_nritems
- mid
);
1570 btrfs_set_header_nritems(c
, mid
);
1573 btrfs_mark_buffer_dirty(c
);
1574 btrfs_mark_buffer_dirty(split
);
1576 wret
= insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
1577 path
->slots
[level
+ 1] + 1,
1582 if (path
->slots
[level
] >= mid
) {
1583 path
->slots
[level
] -= mid
;
1584 free_extent_buffer(c
);
1585 path
->nodes
[level
] = split
;
1586 path
->slots
[level
+ 1] += 1;
1588 free_extent_buffer(split
);
1594 * how many bytes are required to store the items in a leaf. start
1595 * and nr indicate which items in the leaf to check. This totals up the
1596 * space used both by the item structs and the item data
1598 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
1601 int nritems
= btrfs_header_nritems(l
);
1602 int end
= min(nritems
, start
+ nr
) - 1;
1606 data_len
= btrfs_item_end_nr(l
, start
);
1607 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
1608 data_len
+= sizeof(struct btrfs_item
) * nr
;
1609 WARN_ON(data_len
< 0);
1614 * The space between the end of the leaf items and
1615 * the start of the leaf data. IOW, how much room
1616 * the leaf has left for both items and data
1618 int btrfs_leaf_free_space(struct btrfs_root
*root
, struct extent_buffer
*leaf
)
1620 u32 nodesize
= (root
? BTRFS_LEAF_DATA_SIZE(root
) : leaf
->len
);
1621 int nritems
= btrfs_header_nritems(leaf
);
1623 ret
= nodesize
- leaf_space_used(leaf
, 0, nritems
);
1625 printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
1626 ret
, nodesize
, leaf_space_used(leaf
, 0, nritems
),
1633 * push some data in the path leaf to the right, trying to free up at
1634 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1636 * returns 1 if the push failed because the other node didn't have enough
1637 * room, 0 if everything worked out and < 0 if there were major errors.
1639 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
1640 *root
, struct btrfs_path
*path
, int data_size
,
1643 struct extent_buffer
*left
= path
->nodes
[0];
1644 struct extent_buffer
*right
;
1645 struct extent_buffer
*upper
;
1646 struct btrfs_disk_key disk_key
;
1652 struct btrfs_item
*item
;
1660 slot
= path
->slots
[1];
1661 if (!path
->nodes
[1]) {
1664 upper
= path
->nodes
[1];
1665 if (slot
>= btrfs_header_nritems(upper
) - 1)
1668 right
= read_node_slot(root
, upper
, slot
+ 1);
1669 if (!extent_buffer_uptodate(right
)) {
1671 return PTR_ERR(right
);
1674 free_space
= btrfs_leaf_free_space(root
, right
);
1675 if (free_space
< data_size
) {
1676 free_extent_buffer(right
);
1680 /* cow and double check */
1681 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
1684 free_extent_buffer(right
);
1687 free_space
= btrfs_leaf_free_space(root
, right
);
1688 if (free_space
< data_size
) {
1689 free_extent_buffer(right
);
1693 left_nritems
= btrfs_header_nritems(left
);
1694 if (left_nritems
== 0) {
1695 free_extent_buffer(right
);
1704 i
= left_nritems
- 1;
1706 item
= btrfs_item_nr(i
);
1708 if (path
->slots
[0] == i
)
1709 push_space
+= data_size
+ sizeof(*item
);
1711 this_item_size
= btrfs_item_size(left
, item
);
1712 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
1715 push_space
+= this_item_size
+ sizeof(*item
);
1721 if (push_items
== 0) {
1722 free_extent_buffer(right
);
1726 if (!empty
&& push_items
== left_nritems
)
1729 /* push left to right */
1730 right_nritems
= btrfs_header_nritems(right
);
1732 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
1733 push_space
-= leaf_data_end(root
, left
);
1735 /* make room in the right data area */
1736 data_end
= leaf_data_end(root
, right
);
1737 memmove_extent_buffer(right
,
1738 btrfs_leaf_data(right
) + data_end
- push_space
,
1739 btrfs_leaf_data(right
) + data_end
,
1740 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
1742 /* copy from the left data area */
1743 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
1744 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
1745 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
1748 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
1749 btrfs_item_nr_offset(0),
1750 right_nritems
* sizeof(struct btrfs_item
));
1752 /* copy the items from left to right */
1753 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
1754 btrfs_item_nr_offset(left_nritems
- push_items
),
1755 push_items
* sizeof(struct btrfs_item
));
1757 /* update the item pointers */
1758 right_nritems
+= push_items
;
1759 btrfs_set_header_nritems(right
, right_nritems
);
1760 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
1761 for (i
= 0; i
< right_nritems
; i
++) {
1762 item
= btrfs_item_nr(i
);
1763 push_space
-= btrfs_item_size(right
, item
);
1764 btrfs_set_item_offset(right
, item
, push_space
);
1767 left_nritems
-= push_items
;
1768 btrfs_set_header_nritems(left
, left_nritems
);
1771 btrfs_mark_buffer_dirty(left
);
1772 btrfs_mark_buffer_dirty(right
);
1774 btrfs_item_key(right
, &disk_key
, 0);
1775 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
1776 btrfs_mark_buffer_dirty(upper
);
1778 /* then fixup the leaf pointer in the path */
1779 if (path
->slots
[0] >= left_nritems
) {
1780 path
->slots
[0] -= left_nritems
;
1781 free_extent_buffer(path
->nodes
[0]);
1782 path
->nodes
[0] = right
;
1783 path
->slots
[1] += 1;
1785 free_extent_buffer(right
);
1790 * push some data in the path leaf to the left, trying to free up at
1791 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1793 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
1794 *root
, struct btrfs_path
*path
, int data_size
,
1797 struct btrfs_disk_key disk_key
;
1798 struct extent_buffer
*right
= path
->nodes
[0];
1799 struct extent_buffer
*left
;
1805 struct btrfs_item
*item
;
1806 u32 old_left_nritems
;
1811 u32 old_left_item_size
;
1813 slot
= path
->slots
[1];
1816 if (!path
->nodes
[1])
1819 right_nritems
= btrfs_header_nritems(right
);
1820 if (right_nritems
== 0) {
1824 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
1825 free_space
= btrfs_leaf_free_space(root
, left
);
1826 if (free_space
< data_size
) {
1827 free_extent_buffer(left
);
1831 /* cow and double check */
1832 ret
= btrfs_cow_block(trans
, root
, left
,
1833 path
->nodes
[1], slot
- 1, &left
);
1835 /* we hit -ENOSPC, but it isn't fatal here */
1836 free_extent_buffer(left
);
1840 free_space
= btrfs_leaf_free_space(root
, left
);
1841 if (free_space
< data_size
) {
1842 free_extent_buffer(left
);
1849 nr
= right_nritems
- 1;
1851 for (i
= 0; i
< nr
; i
++) {
1852 item
= btrfs_item_nr(i
);
1854 if (path
->slots
[0] == i
)
1855 push_space
+= data_size
+ sizeof(*item
);
1857 this_item_size
= btrfs_item_size(right
, item
);
1858 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
1862 push_space
+= this_item_size
+ sizeof(*item
);
1865 if (push_items
== 0) {
1866 free_extent_buffer(left
);
1869 if (!empty
&& push_items
== btrfs_header_nritems(right
))
1872 /* push data from right to left */
1873 copy_extent_buffer(left
, right
,
1874 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
1875 btrfs_item_nr_offset(0),
1876 push_items
* sizeof(struct btrfs_item
));
1878 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
1879 btrfs_item_offset_nr(right
, push_items
-1);
1881 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
1882 leaf_data_end(root
, left
) - push_space
,
1883 btrfs_leaf_data(right
) +
1884 btrfs_item_offset_nr(right
, push_items
- 1),
1886 old_left_nritems
= btrfs_header_nritems(left
);
1887 BUG_ON(old_left_nritems
== 0);
1889 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
1890 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
1893 item
= btrfs_item_nr(i
);
1894 ioff
= btrfs_item_offset(left
, item
);
1895 btrfs_set_item_offset(left
, item
,
1896 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
));
1898 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
1900 /* fixup right node */
1901 if (push_items
> right_nritems
) {
1902 printk("push items %d nr %u\n", push_items
, right_nritems
);
1906 if (push_items
< right_nritems
) {
1907 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
1908 leaf_data_end(root
, right
);
1909 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
1910 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
1911 btrfs_leaf_data(right
) +
1912 leaf_data_end(root
, right
), push_space
);
1914 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
1915 btrfs_item_nr_offset(push_items
),
1916 (btrfs_header_nritems(right
) - push_items
) *
1917 sizeof(struct btrfs_item
));
1919 right_nritems
-= push_items
;
1920 btrfs_set_header_nritems(right
, right_nritems
);
1921 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
1922 for (i
= 0; i
< right_nritems
; i
++) {
1923 item
= btrfs_item_nr(i
);
1924 push_space
= push_space
- btrfs_item_size(right
, item
);
1925 btrfs_set_item_offset(right
, item
, push_space
);
1928 btrfs_mark_buffer_dirty(left
);
1930 btrfs_mark_buffer_dirty(right
);
1932 btrfs_item_key(right
, &disk_key
, 0);
1933 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
1935 /* then fixup the leaf pointer in the path */
1936 if (path
->slots
[0] < push_items
) {
1937 path
->slots
[0] += old_left_nritems
;
1938 free_extent_buffer(path
->nodes
[0]);
1939 path
->nodes
[0] = left
;
1940 path
->slots
[1] -= 1;
1942 free_extent_buffer(left
);
1943 path
->slots
[0] -= push_items
;
1945 BUG_ON(path
->slots
[0] < 0);
1950 * split the path's leaf in two, making sure there is at least data_size
1951 * available for the resulting leaf level of the path.
1953 * returns 0 if all went well and < 0 on failure.
1955 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
1956 struct btrfs_root
*root
,
1957 struct btrfs_path
*path
,
1958 struct extent_buffer
*l
,
1959 struct extent_buffer
*right
,
1960 int slot
, int mid
, int nritems
)
1967 struct btrfs_disk_key disk_key
;
1969 nritems
= nritems
- mid
;
1970 btrfs_set_header_nritems(right
, nritems
);
1971 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
1973 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
1974 btrfs_item_nr_offset(mid
),
1975 nritems
* sizeof(struct btrfs_item
));
1977 copy_extent_buffer(right
, l
,
1978 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
1979 data_copy_size
, btrfs_leaf_data(l
) +
1980 leaf_data_end(root
, l
), data_copy_size
);
1982 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
1983 btrfs_item_end_nr(l
, mid
);
1985 for (i
= 0; i
< nritems
; i
++) {
1986 struct btrfs_item
*item
= btrfs_item_nr(i
);
1987 u32 ioff
= btrfs_item_offset(right
, item
);
1988 btrfs_set_item_offset(right
, item
, ioff
+ rt_data_off
);
1991 btrfs_set_header_nritems(l
, mid
);
1993 btrfs_item_key(right
, &disk_key
, 0);
1994 wret
= insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
1995 path
->slots
[1] + 1, 1);
1999 btrfs_mark_buffer_dirty(right
);
2000 btrfs_mark_buffer_dirty(l
);
2001 BUG_ON(path
->slots
[0] != slot
);
2004 free_extent_buffer(path
->nodes
[0]);
2005 path
->nodes
[0] = right
;
2006 path
->slots
[0] -= mid
;
2007 path
->slots
[1] += 1;
2009 free_extent_buffer(right
);
2012 BUG_ON(path
->slots
[0] < 0);
2018 * split the path's leaf in two, making sure there is at least data_size
2019 * available for the resulting leaf level of the path.
2021 * returns 0 if all went well and < 0 on failure.
2023 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
2024 struct btrfs_root
*root
,
2025 struct btrfs_key
*ins_key
,
2026 struct btrfs_path
*path
, int data_size
,
2029 struct btrfs_disk_key disk_key
;
2030 struct extent_buffer
*l
;
2034 struct extent_buffer
*right
;
2038 int num_doubles
= 0;
2041 slot
= path
->slots
[0];
2042 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
2043 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
2046 /* first try to make some room by pushing left and right */
2047 if (data_size
&& ins_key
->type
!= BTRFS_DIR_ITEM_KEY
) {
2048 wret
= push_leaf_right(trans
, root
, path
, data_size
, 0);
2052 wret
= push_leaf_left(trans
, root
, path
, data_size
, 0);
2058 /* did the pushes work? */
2059 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
2063 if (!path
->nodes
[1]) {
2064 ret
= insert_new_root(trans
, root
, path
, 1);
2071 slot
= path
->slots
[0];
2072 nritems
= btrfs_header_nritems(l
);
2073 mid
= (nritems
+ 1) / 2;
2077 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
2078 BTRFS_LEAF_DATA_SIZE(root
)) {
2079 if (slot
>= nritems
) {
2083 if (mid
!= nritems
&&
2084 leaf_space_used(l
, mid
, nritems
- mid
) +
2085 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2091 if (leaf_space_used(l
, 0, mid
) + data_size
>
2092 BTRFS_LEAF_DATA_SIZE(root
)) {
2093 if (!extend
&& data_size
&& slot
== 0) {
2095 } else if ((extend
|| !data_size
) && slot
== 0) {
2099 if (mid
!= nritems
&&
2100 leaf_space_used(l
, mid
, nritems
- mid
) +
2101 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2109 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
2111 btrfs_item_key(l
, &disk_key
, mid
);
2113 right
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
,
2114 root
->root_key
.objectid
,
2115 &disk_key
, 0, l
->start
, 0);
2116 if (IS_ERR(right
)) {
2118 return PTR_ERR(right
);
2121 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
2122 btrfs_set_header_bytenr(right
, right
->start
);
2123 btrfs_set_header_generation(right
, trans
->transid
);
2124 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
2125 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
2126 btrfs_set_header_level(right
, 0);
2127 write_extent_buffer(right
, root
->fs_info
->fsid
,
2128 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
2130 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
2131 btrfs_header_chunk_tree_uuid(right
),
2136 btrfs_set_header_nritems(right
, 0);
2137 wret
= insert_ptr(trans
, root
, path
,
2138 &disk_key
, right
->start
,
2139 path
->slots
[1] + 1, 1);
2143 free_extent_buffer(path
->nodes
[0]);
2144 path
->nodes
[0] = right
;
2146 path
->slots
[1] += 1;
2148 btrfs_set_header_nritems(right
, 0);
2149 wret
= insert_ptr(trans
, root
, path
,
2155 free_extent_buffer(path
->nodes
[0]);
2156 path
->nodes
[0] = right
;
2158 if (path
->slots
[1] == 0) {
2159 btrfs_fixup_low_keys(root
, path
,
2163 btrfs_mark_buffer_dirty(right
);
2167 ret
= copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
2171 BUG_ON(num_doubles
!= 0);
2180 * This function splits a single item into two items,
2181 * giving 'new_key' to the new item and splitting the
2182 * old one at split_offset (from the start of the item).
2184 * The path may be released by this operation. After
2185 * the split, the path is pointing to the old item. The
2186 * new item is going to be in the same node as the old one.
2188 * Note, the item being split must be smaller enough to live alone on
2189 * a tree block with room for one extra struct btrfs_item
2191 * This allows us to split the item in place, keeping a lock on the
2192 * leaf the entire time.
2194 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
2195 struct btrfs_root
*root
,
2196 struct btrfs_path
*path
,
2197 struct btrfs_key
*new_key
,
2198 unsigned long split_offset
)
2201 struct extent_buffer
*leaf
;
2202 struct btrfs_key orig_key
;
2203 struct btrfs_item
*item
;
2204 struct btrfs_item
*new_item
;
2209 struct btrfs_disk_key disk_key
;
2212 leaf
= path
->nodes
[0];
2213 btrfs_item_key_to_cpu(leaf
, &orig_key
, path
->slots
[0]);
2214 if (btrfs_leaf_free_space(root
, leaf
) >= sizeof(struct btrfs_item
))
2217 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2218 btrfs_release_path(path
);
2220 path
->search_for_split
= 1;
2222 ret
= btrfs_search_slot(trans
, root
, &orig_key
, path
, 0, 1);
2223 path
->search_for_split
= 0;
2225 /* if our item isn't there or got smaller, return now */
2226 if (ret
!= 0 || item_size
!= btrfs_item_size_nr(path
->nodes
[0],
2231 ret
= split_leaf(trans
, root
, &orig_key
, path
, 0, 0);
2234 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
2235 leaf
= path
->nodes
[0];
2238 item
= btrfs_item_nr(path
->slots
[0]);
2239 orig_offset
= btrfs_item_offset(leaf
, item
);
2240 item_size
= btrfs_item_size(leaf
, item
);
2243 buf
= kmalloc(item_size
, GFP_NOFS
);
2245 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
2246 path
->slots
[0]), item_size
);
2247 slot
= path
->slots
[0] + 1;
2248 leaf
= path
->nodes
[0];
2250 nritems
= btrfs_header_nritems(leaf
);
2252 if (slot
!= nritems
) {
2253 /* shift the items */
2254 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
2255 btrfs_item_nr_offset(slot
),
2256 (nritems
- slot
) * sizeof(struct btrfs_item
));
2260 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
2261 btrfs_set_item_key(leaf
, &disk_key
, slot
);
2263 new_item
= btrfs_item_nr(slot
);
2265 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
2266 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
2268 btrfs_set_item_offset(leaf
, item
,
2269 orig_offset
+ item_size
- split_offset
);
2270 btrfs_set_item_size(leaf
, item
, split_offset
);
2272 btrfs_set_header_nritems(leaf
, nritems
+ 1);
2274 /* write the data for the start of the original item */
2275 write_extent_buffer(leaf
, buf
,
2276 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
2279 /* write the data for the new item */
2280 write_extent_buffer(leaf
, buf
+ split_offset
,
2281 btrfs_item_ptr_offset(leaf
, slot
),
2282 item_size
- split_offset
);
2283 btrfs_mark_buffer_dirty(leaf
);
2286 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2287 btrfs_print_leaf(root
, leaf
);
2294 int btrfs_truncate_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
2295 u32 new_size
, int from_end
)
2299 struct extent_buffer
*leaf
;
2300 struct btrfs_item
*item
;
2302 unsigned int data_end
;
2303 unsigned int old_data_start
;
2304 unsigned int old_size
;
2305 unsigned int size_diff
;
2308 leaf
= path
->nodes
[0];
2309 slot
= path
->slots
[0];
2311 old_size
= btrfs_item_size_nr(leaf
, slot
);
2312 if (old_size
== new_size
)
2315 nritems
= btrfs_header_nritems(leaf
);
2316 data_end
= leaf_data_end(root
, leaf
);
2318 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
2320 size_diff
= old_size
- new_size
;
2323 BUG_ON(slot
>= nritems
);
2326 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2328 /* first correct the data pointers */
2329 for (i
= slot
; i
< nritems
; i
++) {
2331 item
= btrfs_item_nr(i
);
2332 ioff
= btrfs_item_offset(leaf
, item
);
2333 btrfs_set_item_offset(leaf
, item
, ioff
+ size_diff
);
2336 /* shift the data */
2338 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2339 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
2340 data_end
, old_data_start
+ new_size
- data_end
);
2342 struct btrfs_disk_key disk_key
;
2345 btrfs_item_key(leaf
, &disk_key
, slot
);
2347 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
2349 struct btrfs_file_extent_item
*fi
;
2351 fi
= btrfs_item_ptr(leaf
, slot
,
2352 struct btrfs_file_extent_item
);
2353 fi
= (struct btrfs_file_extent_item
*)(
2354 (unsigned long)fi
- size_diff
);
2356 if (btrfs_file_extent_type(leaf
, fi
) ==
2357 BTRFS_FILE_EXTENT_INLINE
) {
2358 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
2359 memmove_extent_buffer(leaf
, ptr
,
2361 offsetof(struct btrfs_file_extent_item
,
2366 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2367 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
2368 data_end
, old_data_start
- data_end
);
2370 offset
= btrfs_disk_key_offset(&disk_key
);
2371 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
2372 btrfs_set_item_key(leaf
, &disk_key
, slot
);
2374 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
2377 item
= btrfs_item_nr(slot
);
2378 btrfs_set_item_size(leaf
, item
, new_size
);
2379 btrfs_mark_buffer_dirty(leaf
);
2382 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2383 btrfs_print_leaf(root
, leaf
);
2389 int btrfs_extend_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
2394 struct extent_buffer
*leaf
;
2395 struct btrfs_item
*item
;
2397 unsigned int data_end
;
2398 unsigned int old_data
;
2399 unsigned int old_size
;
2402 leaf
= path
->nodes
[0];
2404 nritems
= btrfs_header_nritems(leaf
);
2405 data_end
= leaf_data_end(root
, leaf
);
2407 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
2408 btrfs_print_leaf(root
, leaf
);
2411 slot
= path
->slots
[0];
2412 old_data
= btrfs_item_end_nr(leaf
, slot
);
2415 if (slot
>= nritems
) {
2416 btrfs_print_leaf(root
, leaf
);
2417 printk("slot %d too large, nritems %d\n", slot
, nritems
);
2422 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2424 /* first correct the data pointers */
2425 for (i
= slot
; i
< nritems
; i
++) {
2427 item
= btrfs_item_nr(i
);
2428 ioff
= btrfs_item_offset(leaf
, item
);
2429 btrfs_set_item_offset(leaf
, item
, ioff
- data_size
);
2432 /* shift the data */
2433 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2434 data_end
- data_size
, btrfs_leaf_data(leaf
) +
2435 data_end
, old_data
- data_end
);
2437 data_end
= old_data
;
2438 old_size
= btrfs_item_size_nr(leaf
, slot
);
2439 item
= btrfs_item_nr(slot
);
2440 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
2441 btrfs_mark_buffer_dirty(leaf
);
2444 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2445 btrfs_print_leaf(root
, leaf
);
2452 * Given a key and some data, insert an item into the tree.
2453 * This does all the path init required, making room in the tree if needed.
2455 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
2456 struct btrfs_root
*root
,
2457 struct btrfs_path
*path
,
2458 struct btrfs_key
*cpu_key
, u32
*data_size
,
2461 struct extent_buffer
*leaf
;
2462 struct btrfs_item
*item
;
2469 unsigned int data_end
;
2470 struct btrfs_disk_key disk_key
;
2472 for (i
= 0; i
< nr
; i
++) {
2473 total_data
+= data_size
[i
];
2476 /* create a root if there isn't one */
2480 total_size
= total_data
+ nr
* sizeof(struct btrfs_item
);
2481 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
2488 leaf
= path
->nodes
[0];
2490 nritems
= btrfs_header_nritems(leaf
);
2491 data_end
= leaf_data_end(root
, leaf
);
2493 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
2494 btrfs_print_leaf(root
, leaf
);
2495 printk("not enough freespace need %u have %d\n",
2496 total_size
, btrfs_leaf_free_space(root
, leaf
));
2500 slot
= path
->slots
[0];
2503 if (slot
!= nritems
) {
2504 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
2506 if (old_data
< data_end
) {
2507 btrfs_print_leaf(root
, leaf
);
2508 printk("slot %d old_data %d data_end %d\n",
2509 slot
, old_data
, data_end
);
2513 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2515 /* first correct the data pointers */
2516 for (i
= slot
; i
< nritems
; i
++) {
2519 item
= btrfs_item_nr(i
);
2520 ioff
= btrfs_item_offset(leaf
, item
);
2521 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
2524 /* shift the items */
2525 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
2526 btrfs_item_nr_offset(slot
),
2527 (nritems
- slot
) * sizeof(struct btrfs_item
));
2529 /* shift the data */
2530 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2531 data_end
- total_data
, btrfs_leaf_data(leaf
) +
2532 data_end
, old_data
- data_end
);
2533 data_end
= old_data
;
2536 /* setup the item for the new data */
2537 for (i
= 0; i
< nr
; i
++) {
2538 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
2539 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
2540 item
= btrfs_item_nr(slot
+ i
);
2541 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
2542 data_end
-= data_size
[i
];
2543 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
2545 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
2546 btrfs_mark_buffer_dirty(leaf
);
2550 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
2551 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
2554 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2555 btrfs_print_leaf(root
, leaf
);
2564 * Given a key and some data, insert an item into the tree.
2565 * This does all the path init required, making room in the tree if needed.
2567 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
2568 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
2572 struct btrfs_path
*path
;
2573 struct extent_buffer
*leaf
;
2576 path
= btrfs_alloc_path();
2580 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
2582 leaf
= path
->nodes
[0];
2583 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2584 write_extent_buffer(leaf
, data
, ptr
, data_size
);
2585 btrfs_mark_buffer_dirty(leaf
);
2587 btrfs_free_path(path
);
2592 * delete the pointer from a given node.
2594 * If the delete empties a node, the node is removed from the tree,
2595 * continuing all the way the root if required. The root is converted into
2596 * a leaf if all the nodes are emptied.
2598 int btrfs_del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
2599 int level
, int slot
)
2601 struct extent_buffer
*parent
= path
->nodes
[level
];
2605 nritems
= btrfs_header_nritems(parent
);
2606 if (slot
!= nritems
-1) {
2607 memmove_extent_buffer(parent
,
2608 btrfs_node_key_ptr_offset(slot
),
2609 btrfs_node_key_ptr_offset(slot
+ 1),
2610 sizeof(struct btrfs_key_ptr
) *
2611 (nritems
- slot
- 1));
2614 btrfs_set_header_nritems(parent
, nritems
);
2615 if (nritems
== 0 && parent
== root
->node
) {
2616 BUG_ON(btrfs_header_level(root
->node
) != 1);
2617 /* just turn the root into a leaf and break */
2618 btrfs_set_header_level(root
->node
, 0);
2619 } else if (slot
== 0) {
2620 struct btrfs_disk_key disk_key
;
2622 btrfs_node_key(parent
, &disk_key
, 0);
2623 btrfs_fixup_low_keys(root
, path
, &disk_key
, level
+ 1);
2625 btrfs_mark_buffer_dirty(parent
);
2630 * a helper function to delete the leaf pointed to by path->slots[1] and
2633 * This deletes the pointer in path->nodes[1] and frees the leaf
2634 * block extent. zero is returned if it all worked out, < 0 otherwise.
2636 * The path must have already been setup for deleting the leaf, including
2637 * all the proper balancing. path->nodes[1] must be locked.
2639 static noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
2640 struct btrfs_root
*root
,
2641 struct btrfs_path
*path
,
2642 struct extent_buffer
*leaf
)
2646 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
2647 ret
= btrfs_del_ptr(root
, path
, 1, path
->slots
[1]);
2651 ret
= btrfs_free_extent(trans
, root
, leaf
->start
, leaf
->len
,
2652 0, root
->root_key
.objectid
, 0, 0);
2657 * delete the item at the leaf level in path. If that empties
2658 * the leaf, remove it from the tree
2660 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2661 struct btrfs_path
*path
, int slot
, int nr
)
2663 struct extent_buffer
*leaf
;
2664 struct btrfs_item
*item
;
2672 leaf
= path
->nodes
[0];
2673 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
2675 for (i
= 0; i
< nr
; i
++)
2676 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
2678 nritems
= btrfs_header_nritems(leaf
);
2680 if (slot
+ nr
!= nritems
) {
2681 int data_end
= leaf_data_end(root
, leaf
);
2683 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2685 btrfs_leaf_data(leaf
) + data_end
,
2686 last_off
- data_end
);
2688 for (i
= slot
+ nr
; i
< nritems
; i
++) {
2691 item
= btrfs_item_nr(i
);
2692 ioff
= btrfs_item_offset(leaf
, item
);
2693 btrfs_set_item_offset(leaf
, item
, ioff
+ dsize
);
2696 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
2697 btrfs_item_nr_offset(slot
+ nr
),
2698 sizeof(struct btrfs_item
) *
2699 (nritems
- slot
- nr
));
2701 btrfs_set_header_nritems(leaf
, nritems
- nr
);
2704 /* delete the leaf if we've emptied it */
2706 if (leaf
== root
->node
) {
2707 btrfs_set_header_level(leaf
, 0);
2709 clean_tree_block(trans
, root
, leaf
);
2710 wret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
2716 int used
= leaf_space_used(leaf
, 0, nritems
);
2718 struct btrfs_disk_key disk_key
;
2720 btrfs_item_key(leaf
, &disk_key
, 0);
2721 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
2724 /* delete the leaf if it is mostly empty */
2725 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 4) {
2726 /* push_leaf_left fixes the path.
2727 * make sure the path still points to our leaf
2728 * for possible call to del_ptr below
2730 slot
= path
->slots
[1];
2731 extent_buffer_get(leaf
);
2733 wret
= push_leaf_left(trans
, root
, path
, 1, 1);
2734 if (wret
< 0 && wret
!= -ENOSPC
)
2737 if (path
->nodes
[0] == leaf
&&
2738 btrfs_header_nritems(leaf
)) {
2739 wret
= push_leaf_right(trans
, root
, path
, 1, 1);
2740 if (wret
< 0 && wret
!= -ENOSPC
)
2744 if (btrfs_header_nritems(leaf
) == 0) {
2745 clean_tree_block(trans
, root
, leaf
);
2746 path
->slots
[1] = slot
;
2747 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
2749 free_extent_buffer(leaf
);
2752 btrfs_mark_buffer_dirty(leaf
);
2753 free_extent_buffer(leaf
);
2756 btrfs_mark_buffer_dirty(leaf
);
2763 * walk up the tree as far as required to find the previous leaf.
2764 * returns 0 if it found something or 1 if there are no lesser leaves.
2765 * returns < 0 on io errors.
2767 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
2771 struct extent_buffer
*c
;
2772 struct extent_buffer
*next
= NULL
;
2774 while(level
< BTRFS_MAX_LEVEL
) {
2775 if (!path
->nodes
[level
])
2778 slot
= path
->slots
[level
];
2779 c
= path
->nodes
[level
];
2782 if (level
== BTRFS_MAX_LEVEL
)
2788 next
= read_node_slot(root
, c
, slot
);
2789 if (!extent_buffer_uptodate(next
)) {
2791 return PTR_ERR(next
);
2796 path
->slots
[level
] = slot
;
2799 c
= path
->nodes
[level
];
2800 free_extent_buffer(c
);
2801 slot
= btrfs_header_nritems(next
);
2804 path
->nodes
[level
] = next
;
2805 path
->slots
[level
] = slot
;
2808 next
= read_node_slot(root
, next
, slot
);
2809 if (!extent_buffer_uptodate(next
)) {
2811 return PTR_ERR(next
);
2819 * walk up the tree as far as required to find the next leaf.
2820 * returns 0 if it found something or 1 if there are no greater leaves.
2821 * returns < 0 on io errors.
2823 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
2827 struct extent_buffer
*c
;
2828 struct extent_buffer
*next
= NULL
;
2830 while(level
< BTRFS_MAX_LEVEL
) {
2831 if (!path
->nodes
[level
])
2834 slot
= path
->slots
[level
] + 1;
2835 c
= path
->nodes
[level
];
2836 if (slot
>= btrfs_header_nritems(c
)) {
2838 if (level
== BTRFS_MAX_LEVEL
)
2844 reada_for_search(root
, path
, level
, slot
, 0);
2846 next
= read_node_slot(root
, c
, slot
);
2847 if (!extent_buffer_uptodate(next
))
2851 path
->slots
[level
] = slot
;
2854 c
= path
->nodes
[level
];
2855 free_extent_buffer(c
);
2856 path
->nodes
[level
] = next
;
2857 path
->slots
[level
] = 0;
2861 reada_for_search(root
, path
, level
, 0, 0);
2862 next
= read_node_slot(root
, next
, 0);
2863 if (!extent_buffer_uptodate(next
))
2869 int btrfs_previous_item(struct btrfs_root
*root
,
2870 struct btrfs_path
*path
, u64 min_objectid
,
2873 struct btrfs_key found_key
;
2874 struct extent_buffer
*leaf
;
2879 if (path
->slots
[0] == 0) {
2880 ret
= btrfs_prev_leaf(root
, path
);
2886 leaf
= path
->nodes
[0];
2887 nritems
= btrfs_header_nritems(leaf
);
2890 if (path
->slots
[0] == nritems
)
2893 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2894 if (found_key
.objectid
< min_objectid
)
2896 if (found_key
.type
== type
)
2898 if (found_key
.objectid
== min_objectid
&&
2899 found_key
.type
< type
)
2906 * search in extent tree to find a previous Metadata/Data extent item with
2909 * returns 0 if something is found, 1 if nothing was found and < 0 on error
2911 int btrfs_previous_extent_item(struct btrfs_root
*root
,
2912 struct btrfs_path
*path
, u64 min_objectid
)
2914 struct btrfs_key found_key
;
2915 struct extent_buffer
*leaf
;
2920 if (path
->slots
[0] == 0) {
2921 ret
= btrfs_prev_leaf(root
, path
);
2927 leaf
= path
->nodes
[0];
2928 nritems
= btrfs_header_nritems(leaf
);
2931 if (path
->slots
[0] == nritems
)
2934 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2935 if (found_key
.objectid
< min_objectid
)
2937 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
2938 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
2940 if (found_key
.objectid
== min_objectid
&&
2941 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)
2948 * Search in extent tree to found next meta/data extent
2949 * Caller needs to check for no-hole or skinny metadata features.
2951 int btrfs_next_extent_item(struct btrfs_root
*root
,
2952 struct btrfs_path
*path
, u64 max_objectid
)
2954 struct btrfs_key found_key
;
2958 ret
= btrfs_next_item(root
, path
);
2961 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2963 if (found_key
.objectid
> max_objectid
)
2965 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
2966 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)