btrfs-progs: convert: improve error hanling of init_btrfs
[btrfs-progs-unstable/devel.git] / btrfs-convert.c
blobd2ff5177915be135a97623deeb8a86de1743d0ad
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include "kerncompat.h"
21 #include <sys/ioctl.h>
22 #include <sys/mount.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <uuid/uuid.h>
30 #include <linux/limits.h>
31 #include <getopt.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "volumes.h"
36 #include "transaction.h"
37 #include "crc32c.h"
38 #include "utils.h"
39 #include "task-utils.h"
41 #if BTRFSCONVERT_EXT2
42 #include <ext2fs/ext2_fs.h>
43 #include <ext2fs/ext2fs.h>
44 #include <ext2fs/ext2_ext_attr.h>
46 #define INO_OFFSET (BTRFS_FIRST_FREE_OBJECTID - EXT2_ROOT_INO)
49 * Compatibility code for e2fsprogs 1.41 which doesn't support RO compat flag
50 * BIGALLOC.
51 * Unlike normal RO compat flag, BIGALLOC affects how e2fsprogs check used
52 * space, and btrfs-convert heavily relies on it.
54 #ifdef HAVE_OLD_E2FSPROGS
55 #define EXT2FS_CLUSTER_RATIO(fs) (1)
56 #define EXT2_CLUSTERS_PER_GROUP(s) (EXT2_BLOCKS_PER_GROUP(s))
57 #define EXT2FS_B2C(fs, blk) (blk)
58 #endif
60 #endif
62 #define CONV_IMAGE_SUBVOL_OBJECTID BTRFS_FIRST_FREE_OBJECTID
64 struct task_ctx {
65 uint32_t max_copy_inodes;
66 uint32_t cur_copy_inodes;
67 struct task_info *info;
70 static void *print_copied_inodes(void *p)
72 struct task_ctx *priv = p;
73 const char work_indicator[] = { '.', 'o', 'O', 'o' };
74 uint32_t count = 0;
76 task_period_start(priv->info, 1000 /* 1s */);
77 while (1) {
78 count++;
79 printf("copy inodes [%c] [%10d/%10d]\r",
80 work_indicator[count % 4], priv->cur_copy_inodes,
81 priv->max_copy_inodes);
82 fflush(stdout);
83 task_period_wait(priv->info);
86 return NULL;
89 static int after_copied_inodes(void *p)
91 printf("\n");
92 fflush(stdout);
94 return 0;
97 struct btrfs_convert_context;
98 struct btrfs_convert_operations {
99 const char *name;
100 int (*open_fs)(struct btrfs_convert_context *cctx, const char *devname);
101 int (*read_used_space)(struct btrfs_convert_context *cctx);
102 int (*copy_inodes)(struct btrfs_convert_context *cctx,
103 struct btrfs_root *root, int datacsum,
104 int packing, int noxattr, struct task_ctx *p);
105 void (*close_fs)(struct btrfs_convert_context *cctx);
108 static void init_convert_context(struct btrfs_convert_context *cctx)
110 cache_tree_init(&cctx->used);
111 cache_tree_init(&cctx->data_chunks);
112 cache_tree_init(&cctx->free);
115 static void clean_convert_context(struct btrfs_convert_context *cctx)
117 free_extent_cache_tree(&cctx->used);
118 free_extent_cache_tree(&cctx->data_chunks);
119 free_extent_cache_tree(&cctx->free);
122 static inline int copy_inodes(struct btrfs_convert_context *cctx,
123 struct btrfs_root *root, int datacsum,
124 int packing, int noxattr, struct task_ctx *p)
126 return cctx->convert_ops->copy_inodes(cctx, root, datacsum, packing,
127 noxattr, p);
130 static inline void convert_close_fs(struct btrfs_convert_context *cctx)
132 cctx->convert_ops->close_fs(cctx);
135 static int intersect_with_sb(u64 bytenr, u64 num_bytes)
137 int i;
138 u64 offset;
140 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
141 offset = btrfs_sb_offset(i);
142 offset &= ~((u64)BTRFS_STRIPE_LEN - 1);
144 if (bytenr < offset + BTRFS_STRIPE_LEN &&
145 bytenr + num_bytes > offset)
146 return 1;
148 return 0;
151 static int convert_insert_dirent(struct btrfs_trans_handle *trans,
152 struct btrfs_root *root,
153 const char *name, size_t name_len,
154 u64 dir, u64 objectid,
155 u8 file_type, u64 index_cnt,
156 struct btrfs_inode_item *inode)
158 int ret;
159 u64 inode_size;
160 struct btrfs_key location = {
161 .objectid = objectid,
162 .offset = 0,
163 .type = BTRFS_INODE_ITEM_KEY,
166 ret = btrfs_insert_dir_item(trans, root, name, name_len,
167 dir, &location, file_type, index_cnt);
168 if (ret)
169 return ret;
170 ret = btrfs_insert_inode_ref(trans, root, name, name_len,
171 objectid, dir, index_cnt);
172 if (ret)
173 return ret;
174 inode_size = btrfs_stack_inode_size(inode) + name_len * 2;
175 btrfs_set_stack_inode_size(inode, inode_size);
177 return 0;
180 static int read_disk_extent(struct btrfs_root *root, u64 bytenr,
181 u32 num_bytes, char *buffer)
183 int ret;
184 struct btrfs_fs_devices *fs_devs = root->fs_info->fs_devices;
186 ret = pread(fs_devs->latest_bdev, buffer, num_bytes, bytenr);
187 if (ret != num_bytes)
188 goto fail;
189 ret = 0;
190 fail:
191 if (ret > 0)
192 ret = -1;
193 return ret;
196 static int csum_disk_extent(struct btrfs_trans_handle *trans,
197 struct btrfs_root *root,
198 u64 disk_bytenr, u64 num_bytes)
200 u32 blocksize = root->sectorsize;
201 u64 offset;
202 char *buffer;
203 int ret = 0;
205 buffer = malloc(blocksize);
206 if (!buffer)
207 return -ENOMEM;
208 for (offset = 0; offset < num_bytes; offset += blocksize) {
209 ret = read_disk_extent(root, disk_bytenr + offset,
210 blocksize, buffer);
211 if (ret)
212 break;
213 ret = btrfs_csum_file_block(trans,
214 root->fs_info->csum_root,
215 disk_bytenr + num_bytes,
216 disk_bytenr + offset,
217 buffer, blocksize);
218 if (ret)
219 break;
221 free(buffer);
222 return ret;
225 struct blk_iterate_data {
226 struct btrfs_trans_handle *trans;
227 struct btrfs_root *root;
228 struct btrfs_root *convert_root;
229 struct btrfs_inode_item *inode;
230 u64 convert_ino;
231 u64 objectid;
232 u64 first_block;
233 u64 disk_block;
234 u64 num_blocks;
235 u64 boundary;
236 int checksum;
237 int errcode;
240 static void init_blk_iterate_data(struct blk_iterate_data *data,
241 struct btrfs_trans_handle *trans,
242 struct btrfs_root *root,
243 struct btrfs_inode_item *inode,
244 u64 objectid, int checksum)
246 struct btrfs_key key;
248 data->trans = trans;
249 data->root = root;
250 data->inode = inode;
251 data->objectid = objectid;
252 data->first_block = 0;
253 data->disk_block = 0;
254 data->num_blocks = 0;
255 data->boundary = (u64)-1;
256 data->checksum = checksum;
257 data->errcode = 0;
259 key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
260 key.type = BTRFS_ROOT_ITEM_KEY;
261 key.offset = (u64)-1;
262 data->convert_root = btrfs_read_fs_root(root->fs_info, &key);
263 /* Impossible as we just opened it before */
264 BUG_ON(!data->convert_root || IS_ERR(data->convert_root));
265 data->convert_ino = BTRFS_FIRST_FREE_OBJECTID + 1;
269 * Record a file extent in original filesystem into btrfs one.
270 * The special point is, old disk_block can point to a reserved range.
271 * So here, we don't use disk_block directly but search convert_root
272 * to get the real disk_bytenr.
274 static int record_file_blocks(struct blk_iterate_data *data,
275 u64 file_block, u64 disk_block, u64 num_blocks)
277 int ret = 0;
278 struct btrfs_root *root = data->root;
279 struct btrfs_root *convert_root = data->convert_root;
280 struct btrfs_path *path;
281 u64 file_pos = file_block * root->sectorsize;
282 u64 old_disk_bytenr = disk_block * root->sectorsize;
283 u64 num_bytes = num_blocks * root->sectorsize;
284 u64 cur_off = old_disk_bytenr;
286 /* Hole, pass it to record_file_extent directly */
287 if (old_disk_bytenr == 0)
288 return btrfs_record_file_extent(data->trans, root,
289 data->objectid, data->inode, file_pos, 0,
290 num_bytes);
292 path = btrfs_alloc_path();
293 if (!path)
294 return -ENOMEM;
297 * Search real disk bytenr from convert root
299 while (cur_off < old_disk_bytenr + num_bytes) {
300 struct btrfs_key key;
301 struct btrfs_file_extent_item *fi;
302 struct extent_buffer *node;
303 int slot;
304 u64 extent_disk_bytenr;
305 u64 extent_num_bytes;
306 u64 real_disk_bytenr;
307 u64 cur_len;
309 key.objectid = data->convert_ino;
310 key.type = BTRFS_EXTENT_DATA_KEY;
311 key.offset = cur_off;
313 ret = btrfs_search_slot(NULL, convert_root, &key, path, 0, 0);
314 if (ret < 0)
315 break;
316 if (ret > 0) {
317 ret = btrfs_previous_item(convert_root, path,
318 data->convert_ino,
319 BTRFS_EXTENT_DATA_KEY);
320 if (ret < 0)
321 break;
322 if (ret > 0) {
323 ret = -ENOENT;
324 break;
327 node = path->nodes[0];
328 slot = path->slots[0];
329 btrfs_item_key_to_cpu(node, &key, slot);
330 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY ||
331 key.objectid != data->convert_ino ||
332 key.offset > cur_off);
333 fi = btrfs_item_ptr(node, slot, struct btrfs_file_extent_item);
334 extent_disk_bytenr = btrfs_file_extent_disk_bytenr(node, fi);
335 extent_num_bytes = btrfs_file_extent_disk_num_bytes(node, fi);
336 BUG_ON(cur_off - key.offset >= extent_num_bytes);
337 btrfs_release_path(path);
339 if (extent_disk_bytenr)
340 real_disk_bytenr = cur_off - key.offset +
341 extent_disk_bytenr;
342 else
343 real_disk_bytenr = 0;
344 cur_len = min(key.offset + extent_num_bytes,
345 old_disk_bytenr + num_bytes) - cur_off;
346 ret = btrfs_record_file_extent(data->trans, data->root,
347 data->objectid, data->inode, file_pos,
348 real_disk_bytenr, cur_len);
349 if (ret < 0)
350 break;
351 cur_off += cur_len;
352 file_pos += cur_len;
355 * No need to care about csum
356 * As every byte of old fs image is calculated for csum, no
357 * need to waste CPU cycles now.
360 btrfs_free_path(path);
361 return ret;
364 static int block_iterate_proc(u64 disk_block, u64 file_block,
365 struct blk_iterate_data *idata)
367 int ret = 0;
368 int sb_region;
369 int do_barrier;
370 struct btrfs_root *root = idata->root;
371 struct btrfs_block_group_cache *cache;
372 u64 bytenr = disk_block * root->sectorsize;
374 sb_region = intersect_with_sb(bytenr, root->sectorsize);
375 do_barrier = sb_region || disk_block >= idata->boundary;
376 if ((idata->num_blocks > 0 && do_barrier) ||
377 (file_block > idata->first_block + idata->num_blocks) ||
378 (disk_block != idata->disk_block + idata->num_blocks)) {
379 if (idata->num_blocks > 0) {
380 ret = record_file_blocks(idata, idata->first_block,
381 idata->disk_block,
382 idata->num_blocks);
383 if (ret)
384 goto fail;
385 idata->first_block += idata->num_blocks;
386 idata->num_blocks = 0;
388 if (file_block > idata->first_block) {
389 ret = record_file_blocks(idata, idata->first_block,
390 0, file_block - idata->first_block);
391 if (ret)
392 goto fail;
395 if (sb_region) {
396 bytenr += BTRFS_STRIPE_LEN - 1;
397 bytenr &= ~((u64)BTRFS_STRIPE_LEN - 1);
398 } else {
399 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
400 BUG_ON(!cache);
401 bytenr = cache->key.objectid + cache->key.offset;
404 idata->first_block = file_block;
405 idata->disk_block = disk_block;
406 idata->boundary = bytenr / root->sectorsize;
408 idata->num_blocks++;
409 fail:
410 return ret;
413 static int create_image_file_range(struct btrfs_trans_handle *trans,
414 struct btrfs_root *root,
415 struct cache_tree *used,
416 struct btrfs_inode_item *inode,
417 u64 ino, u64 bytenr, u64 *ret_len,
418 int datacsum)
420 struct cache_extent *cache;
421 struct btrfs_block_group_cache *bg_cache;
422 u64 len = *ret_len;
423 u64 disk_bytenr;
424 int i;
425 int ret;
427 BUG_ON(bytenr != round_down(bytenr, root->sectorsize));
428 BUG_ON(len != round_down(len, root->sectorsize));
429 len = min_t(u64, len, BTRFS_MAX_EXTENT_SIZE);
432 * Skip sb ranges first
433 * [0, 1M), [sb_offset(1), +64K), [sb_offset(2), +64K].
435 * Or we will insert a hole into current image file, and later
436 * migrate block will fail as there is already a file extent.
438 if (bytenr < 1024 * 1024) {
439 *ret_len = 1024 * 1024 - bytenr;
440 return 0;
442 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
443 u64 cur = btrfs_sb_offset(i);
445 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
446 *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
447 return 0;
450 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
451 u64 cur = btrfs_sb_offset(i);
454 * |--reserved--|
455 * |----range-------|
456 * May still need to go through file extent inserts
458 if (bytenr < cur && bytenr + len >= cur) {
459 len = min_t(u64, len, cur - bytenr);
460 break;
463 * |--reserved--|
464 * |---range---|
465 * Drop out, no need to insert anything
467 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
468 *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
469 return 0;
473 cache = search_cache_extent(used, bytenr);
474 if (cache) {
475 if (cache->start <= bytenr) {
477 * |///////Used///////|
478 * |<--insert--->|
479 * bytenr
481 len = min_t(u64, len, cache->start + cache->size -
482 bytenr);
483 disk_bytenr = bytenr;
484 } else {
486 * |//Used//|
487 * |<-insert-->|
488 * bytenr
490 len = min(len, cache->start - bytenr);
491 disk_bytenr = 0;
492 datacsum = 0;
494 } else {
496 * |//Used//| |EOF
497 * |<-insert-->|
498 * bytenr
500 disk_bytenr = 0;
501 datacsum = 0;
504 if (disk_bytenr) {
505 /* Check if the range is in a data block group */
506 bg_cache = btrfs_lookup_block_group(root->fs_info, bytenr);
507 if (!bg_cache)
508 return -ENOENT;
509 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA))
510 return -EINVAL;
512 /* The extent should never cross block group boundary */
513 len = min_t(u64, len, bg_cache->key.objectid +
514 bg_cache->key.offset - bytenr);
517 BUG_ON(len != round_down(len, root->sectorsize));
518 ret = btrfs_record_file_extent(trans, root, ino, inode, bytenr,
519 disk_bytenr, len);
520 if (ret < 0)
521 return ret;
523 if (datacsum)
524 ret = csum_disk_extent(trans, root, bytenr, len);
525 *ret_len = len;
526 return ret;
530 * Relocate old fs data in one reserved ranges
532 * Since all old fs data in reserved range is not covered by any chunk nor
533 * data extent, we don't need to handle any reference but add new
534 * extent/reference, which makes codes more clear
536 static int migrate_one_reserved_range(struct btrfs_trans_handle *trans,
537 struct btrfs_root *root,
538 struct cache_tree *used,
539 struct btrfs_inode_item *inode, int fd,
540 u64 ino, u64 start, u64 len, int datacsum)
542 u64 cur_off = start;
543 u64 cur_len = len;
544 u64 hole_start = start;
545 u64 hole_len;
546 struct cache_extent *cache;
547 struct btrfs_key key;
548 struct extent_buffer *eb;
549 int ret = 0;
551 while (cur_off < start + len) {
552 cache = lookup_cache_extent(used, cur_off, cur_len);
553 if (!cache)
554 break;
555 cur_off = max(cache->start, cur_off);
556 cur_len = min(cache->start + cache->size, start + len) -
557 cur_off;
558 BUG_ON(cur_len < root->sectorsize);
560 /* reserve extent for the data */
561 ret = btrfs_reserve_extent(trans, root, cur_len, 0, 0, (u64)-1,
562 &key, 1);
563 if (ret < 0)
564 break;
566 eb = malloc(sizeof(*eb) + cur_len);
567 if (!eb) {
568 ret = -ENOMEM;
569 break;
572 ret = pread(fd, eb->data, cur_len, cur_off);
573 if (ret < cur_len) {
574 ret = (ret < 0 ? ret : -EIO);
575 free(eb);
576 break;
578 eb->start = key.objectid;
579 eb->len = key.offset;
581 /* Write the data */
582 ret = write_and_map_eb(trans, root, eb);
583 free(eb);
584 if (ret < 0)
585 break;
587 /* Now handle extent item and file extent things */
588 ret = btrfs_record_file_extent(trans, root, ino, inode, cur_off,
589 key.objectid, key.offset);
590 if (ret < 0)
591 break;
592 /* Finally, insert csum items */
593 if (datacsum)
594 ret = csum_disk_extent(trans, root, key.objectid,
595 key.offset);
597 /* Don't forget to insert hole */
598 hole_len = cur_off - hole_start;
599 if (hole_len) {
600 ret = btrfs_record_file_extent(trans, root, ino, inode,
601 hole_start, 0, hole_len);
602 if (ret < 0)
603 break;
606 cur_off += key.offset;
607 hole_start = cur_off;
608 cur_len = start + len - cur_off;
610 /* Last hole */
611 if (start + len - hole_start > 0)
612 ret = btrfs_record_file_extent(trans, root, ino, inode,
613 hole_start, 0, start + len - hole_start);
614 return ret;
618 * Relocate the used ext2 data in reserved ranges
619 * [0,1M)
620 * [btrfs_sb_offset(1), +BTRFS_STRIPE_LEN)
621 * [btrfs_sb_offset(2), +BTRFS_STRIPE_LEN)
623 static int migrate_reserved_ranges(struct btrfs_trans_handle *trans,
624 struct btrfs_root *root,
625 struct cache_tree *used,
626 struct btrfs_inode_item *inode, int fd,
627 u64 ino, u64 total_bytes, int datacsum)
629 u64 cur_off;
630 u64 cur_len;
631 int ret = 0;
633 /* 0 ~ 1M */
634 cur_off = 0;
635 cur_len = 1024 * 1024;
636 ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
637 cur_off, cur_len, datacsum);
638 if (ret < 0)
639 return ret;
641 /* second sb(fisrt sb is included in 0~1M) */
642 cur_off = btrfs_sb_offset(1);
643 cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
644 if (cur_off > total_bytes)
645 return ret;
646 ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
647 cur_off, cur_len, datacsum);
648 if (ret < 0)
649 return ret;
651 /* Last sb */
652 cur_off = btrfs_sb_offset(2);
653 cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
654 if (cur_off > total_bytes)
655 return ret;
656 ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
657 cur_off, cur_len, datacsum);
658 return ret;
662 * Helper for expand and merge extent_cache for wipe_one_reserved_range() to
663 * handle wiping a range that exists in cache.
665 static int _expand_extent_cache(struct cache_tree *tree,
666 struct cache_extent *entry,
667 u64 min_stripe_size, int backward)
669 struct cache_extent *ce;
670 int diff;
672 if (entry->size >= min_stripe_size)
673 return 0;
674 diff = min_stripe_size - entry->size;
676 if (backward) {
677 ce = prev_cache_extent(entry);
678 if (!ce)
679 goto expand_back;
680 if (ce->start + ce->size >= entry->start - diff) {
681 /* Directly merge with previous extent */
682 ce->size = entry->start + entry->size - ce->start;
683 remove_cache_extent(tree, entry);
684 free(entry);
685 return 0;
687 expand_back:
688 /* No overlap, normal extent */
689 if (entry->start < diff) {
690 error("cannot find space for data chunk layout");
691 return -ENOSPC;
693 entry->start -= diff;
694 entry->size += diff;
695 return 0;
697 ce = next_cache_extent(entry);
698 if (!ce)
699 goto expand_after;
700 if (entry->start + entry->size + diff >= ce->start) {
701 /* Directly merge with next extent */
702 entry->size = ce->start + ce->size - entry->start;
703 remove_cache_extent(tree, ce);
704 free(ce);
705 return 0;
707 expand_after:
708 entry->size += diff;
709 return 0;
713 * Remove one reserve range from given cache tree
714 * if min_stripe_size is non-zero, it will ensure for split case,
715 * all its split cache extent is no smaller than @min_strip_size / 2.
717 static int wipe_one_reserved_range(struct cache_tree *tree,
718 u64 start, u64 len, u64 min_stripe_size,
719 int ensure_size)
721 struct cache_extent *cache;
722 int ret;
724 BUG_ON(ensure_size && min_stripe_size == 0);
726 * The logical here is simplified to handle special cases only
727 * So we don't need to consider merge case for ensure_size
729 BUG_ON(min_stripe_size && (min_stripe_size < len * 2 ||
730 min_stripe_size / 2 < BTRFS_STRIPE_LEN));
732 /* Also, wipe range should already be aligned */
733 BUG_ON(start != round_down(start, BTRFS_STRIPE_LEN) ||
734 start + len != round_up(start + len, BTRFS_STRIPE_LEN));
736 min_stripe_size /= 2;
738 cache = lookup_cache_extent(tree, start, len);
739 if (!cache)
740 return 0;
742 if (start <= cache->start) {
744 * |--------cache---------|
745 * |-wipe-|
747 BUG_ON(start + len <= cache->start);
750 * The wipe size is smaller than min_stripe_size / 2,
751 * so the result length should still meet min_stripe_size
752 * And no need to do alignment
754 cache->size -= (start + len - cache->start);
755 if (cache->size == 0) {
756 remove_cache_extent(tree, cache);
757 free(cache);
758 return 0;
761 BUG_ON(ensure_size && cache->size < min_stripe_size);
763 cache->start = start + len;
764 return 0;
765 } else if (start > cache->start && start + len < cache->start +
766 cache->size) {
768 * |-------cache-----|
769 * |-wipe-|
771 u64 old_start = cache->start;
772 u64 old_len = cache->size;
773 u64 insert_start = start + len;
774 u64 insert_len;
776 cache->size = start - cache->start;
777 /* Expand the leading half part if needed */
778 if (ensure_size && cache->size < min_stripe_size) {
779 ret = _expand_extent_cache(tree, cache,
780 min_stripe_size, 1);
781 if (ret < 0)
782 return ret;
785 /* And insert the new one */
786 insert_len = old_start + old_len - start - len;
787 ret = add_merge_cache_extent(tree, insert_start, insert_len);
788 if (ret < 0)
789 return ret;
791 /* Expand the last half part if needed */
792 if (ensure_size && insert_len < min_stripe_size) {
793 cache = lookup_cache_extent(tree, insert_start,
794 insert_len);
795 if (!cache || cache->start != insert_start ||
796 cache->size != insert_len)
797 return -ENOENT;
798 ret = _expand_extent_cache(tree, cache,
799 min_stripe_size, 0);
802 return ret;
805 * |----cache-----|
806 * |--wipe-|
807 * Wipe len should be small enough and no need to expand the
808 * remaining extent
810 cache->size = start - cache->start;
811 BUG_ON(ensure_size && cache->size < min_stripe_size);
812 return 0;
816 * Remove reserved ranges from given cache_tree
818 * It will remove the following ranges
819 * 1) 0~1M
820 * 2) 2nd superblock, +64K (make sure chunks are 64K aligned)
821 * 3) 3rd superblock, +64K
823 * @min_stripe must be given for safety check
824 * and if @ensure_size is given, it will ensure affected cache_extent will be
825 * larger than min_stripe_size
827 static int wipe_reserved_ranges(struct cache_tree *tree, u64 min_stripe_size,
828 int ensure_size)
830 int ret;
832 ret = wipe_one_reserved_range(tree, 0, 1024 * 1024, min_stripe_size,
833 ensure_size);
834 if (ret < 0)
835 return ret;
836 ret = wipe_one_reserved_range(tree, btrfs_sb_offset(1),
837 BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
838 if (ret < 0)
839 return ret;
840 ret = wipe_one_reserved_range(tree, btrfs_sb_offset(2),
841 BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
842 return ret;
845 static int calculate_available_space(struct btrfs_convert_context *cctx)
847 struct cache_tree *used = &cctx->used;
848 struct cache_tree *data_chunks = &cctx->data_chunks;
849 struct cache_tree *free = &cctx->free;
850 struct cache_extent *cache;
851 u64 cur_off = 0;
853 * Twice the minimal chunk size, to allow later wipe_reserved_ranges()
854 * works without need to consider overlap
856 u64 min_stripe_size = 2 * 16 * 1024 * 1024;
857 int ret;
859 /* Calculate data_chunks */
860 for (cache = first_cache_extent(used); cache;
861 cache = next_cache_extent(cache)) {
862 u64 cur_len;
864 if (cache->start + cache->size < cur_off)
865 continue;
866 if (cache->start > cur_off + min_stripe_size)
867 cur_off = cache->start;
868 cur_len = max(cache->start + cache->size - cur_off,
869 min_stripe_size);
870 ret = add_merge_cache_extent(data_chunks, cur_off, cur_len);
871 if (ret < 0)
872 goto out;
873 cur_off += cur_len;
876 * remove reserved ranges, so we won't ever bother relocating an old
877 * filesystem extent to other place.
879 ret = wipe_reserved_ranges(data_chunks, min_stripe_size, 1);
880 if (ret < 0)
881 goto out;
883 cur_off = 0;
885 * Calculate free space
886 * Always round up the start bytenr, to avoid metadata extent corss
887 * stripe boundary, as later mkfs_convert() won't have all the extent
888 * allocation check
890 for (cache = first_cache_extent(data_chunks); cache;
891 cache = next_cache_extent(cache)) {
892 if (cache->start < cur_off)
893 continue;
894 if (cache->start > cur_off) {
895 u64 insert_start;
896 u64 len;
898 len = cache->start - round_up(cur_off,
899 BTRFS_STRIPE_LEN);
900 insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
902 ret = add_merge_cache_extent(free, insert_start, len);
903 if (ret < 0)
904 goto out;
906 cur_off = cache->start + cache->size;
908 /* Don't forget the last range */
909 if (cctx->total_bytes > cur_off) {
910 u64 len = cctx->total_bytes - cur_off;
911 u64 insert_start;
913 insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
915 ret = add_merge_cache_extent(free, insert_start, len);
916 if (ret < 0)
917 goto out;
920 /* Remove reserved bytes */
921 ret = wipe_reserved_ranges(free, min_stripe_size, 0);
922 out:
923 return ret;
927 * Read used space, and since we have the used space,
928 * calcuate data_chunks and free for later mkfs
930 static int convert_read_used_space(struct btrfs_convert_context *cctx)
932 int ret;
934 ret = cctx->convert_ops->read_used_space(cctx);
935 if (ret)
936 return ret;
938 ret = calculate_available_space(cctx);
939 return ret;
943 * Create the fs image file of old filesystem.
945 * This is completely fs independent as we have cctx->used, only
946 * need to create file extents pointing to all the positions.
948 static int create_image(struct btrfs_root *root,
949 struct btrfs_mkfs_config *cfg,
950 struct btrfs_convert_context *cctx, int fd,
951 u64 size, char *name, int datacsum)
953 struct btrfs_inode_item buf;
954 struct btrfs_trans_handle *trans;
955 struct btrfs_path *path = NULL;
956 struct btrfs_key key;
957 struct cache_extent *cache;
958 struct cache_tree used_tmp;
959 u64 cur;
960 u64 ino;
961 u64 flags = BTRFS_INODE_READONLY;
962 int ret;
964 if (!datacsum)
965 flags |= BTRFS_INODE_NODATASUM;
967 trans = btrfs_start_transaction(root, 1);
968 if (!trans)
969 return -ENOMEM;
971 cache_tree_init(&used_tmp);
973 ret = btrfs_find_free_objectid(trans, root, BTRFS_FIRST_FREE_OBJECTID,
974 &ino);
975 if (ret < 0)
976 goto out;
977 ret = btrfs_new_inode(trans, root, ino, 0400 | S_IFREG);
978 if (ret < 0)
979 goto out;
980 ret = btrfs_change_inode_flags(trans, root, ino, flags);
981 if (ret < 0)
982 goto out;
983 ret = btrfs_add_link(trans, root, ino, BTRFS_FIRST_FREE_OBJECTID, name,
984 strlen(name), BTRFS_FT_REG_FILE, NULL, 1);
985 if (ret < 0)
986 goto out;
988 path = btrfs_alloc_path();
989 if (!path) {
990 ret = -ENOMEM;
991 goto out;
993 key.objectid = ino;
994 key.type = BTRFS_INODE_ITEM_KEY;
995 key.offset = 0;
997 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
998 if (ret) {
999 ret = (ret > 0 ? -ENOENT : ret);
1000 goto out;
1002 read_extent_buffer(path->nodes[0], &buf,
1003 btrfs_item_ptr_offset(path->nodes[0], path->slots[0]),
1004 sizeof(buf));
1005 btrfs_release_path(path);
1008 * Create a new used space cache, which doesn't contain the reserved
1009 * range
1011 for (cache = first_cache_extent(&cctx->used); cache;
1012 cache = next_cache_extent(cache)) {
1013 ret = add_cache_extent(&used_tmp, cache->start, cache->size);
1014 if (ret < 0)
1015 goto out;
1017 ret = wipe_reserved_ranges(&used_tmp, 0, 0);
1018 if (ret < 0)
1019 goto out;
1022 * Start from 1M, as 0~1M is reserved, and create_image_file_range()
1023 * can't handle bytenr 0(will consider it as a hole)
1025 cur = 1024 * 1024;
1026 while (cur < size) {
1027 u64 len = size - cur;
1029 ret = create_image_file_range(trans, root, &used_tmp,
1030 &buf, ino, cur, &len, datacsum);
1031 if (ret < 0)
1032 goto out;
1033 cur += len;
1035 /* Handle the reserved ranges */
1036 ret = migrate_reserved_ranges(trans, root, &cctx->used, &buf, fd, ino,
1037 cfg->num_bytes, datacsum);
1040 key.objectid = ino;
1041 key.type = BTRFS_INODE_ITEM_KEY;
1042 key.offset = 0;
1043 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1044 if (ret) {
1045 ret = (ret > 0 ? -ENOENT : ret);
1046 goto out;
1048 btrfs_set_stack_inode_size(&buf, cfg->num_bytes);
1049 write_extent_buffer(path->nodes[0], &buf,
1050 btrfs_item_ptr_offset(path->nodes[0], path->slots[0]),
1051 sizeof(buf));
1052 out:
1053 free_extent_cache_tree(&used_tmp);
1054 btrfs_free_path(path);
1055 btrfs_commit_transaction(trans, root);
1056 return ret;
1059 static struct btrfs_root* link_subvol(struct btrfs_root *root,
1060 const char *base, u64 root_objectid)
1062 struct btrfs_trans_handle *trans;
1063 struct btrfs_fs_info *fs_info = root->fs_info;
1064 struct btrfs_root *tree_root = fs_info->tree_root;
1065 struct btrfs_root *new_root = NULL;
1066 struct btrfs_path *path;
1067 struct btrfs_inode_item *inode_item;
1068 struct extent_buffer *leaf;
1069 struct btrfs_key key;
1070 u64 dirid = btrfs_root_dirid(&root->root_item);
1071 u64 index = 2;
1072 char buf[BTRFS_NAME_LEN + 1]; /* for snprintf null */
1073 int len;
1074 int i;
1075 int ret;
1077 len = strlen(base);
1078 if (len == 0 || len > BTRFS_NAME_LEN)
1079 return NULL;
1081 path = btrfs_alloc_path();
1082 if (!path)
1083 return NULL;
1085 key.objectid = dirid;
1086 key.type = BTRFS_DIR_INDEX_KEY;
1087 key.offset = (u64)-1;
1089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1090 if (ret <= 0) {
1091 error("search for DIR_INDEX dirid %llu failed: %d",
1092 (unsigned long long)dirid, ret);
1093 goto fail;
1096 if (path->slots[0] > 0) {
1097 path->slots[0]--;
1098 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1099 if (key.objectid == dirid && key.type == BTRFS_DIR_INDEX_KEY)
1100 index = key.offset + 1;
1102 btrfs_release_path(path);
1104 trans = btrfs_start_transaction(root, 1);
1105 if (!trans) {
1106 error("unable to start transaction");
1107 goto fail;
1110 key.objectid = dirid;
1111 key.offset = 0;
1112 key.type = BTRFS_INODE_ITEM_KEY;
1114 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1115 if (ret) {
1116 error("search for INODE_ITEM %llu failed: %d",
1117 (unsigned long long)dirid, ret);
1118 goto fail;
1120 leaf = path->nodes[0];
1121 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1122 struct btrfs_inode_item);
1124 key.objectid = root_objectid;
1125 key.offset = (u64)-1;
1126 key.type = BTRFS_ROOT_ITEM_KEY;
1128 memcpy(buf, base, len);
1129 for (i = 0; i < 1024; i++) {
1130 ret = btrfs_insert_dir_item(trans, root, buf, len,
1131 dirid, &key, BTRFS_FT_DIR, index);
1132 if (ret != -EEXIST)
1133 break;
1134 len = snprintf(buf, ARRAY_SIZE(buf), "%s%d", base, i);
1135 if (len < 1 || len > BTRFS_NAME_LEN) {
1136 ret = -EINVAL;
1137 break;
1140 if (ret)
1141 goto fail;
1143 btrfs_set_inode_size(leaf, inode_item, len * 2 +
1144 btrfs_inode_size(leaf, inode_item));
1145 btrfs_mark_buffer_dirty(leaf);
1146 btrfs_release_path(path);
1148 /* add the backref first */
1149 ret = btrfs_add_root_ref(trans, tree_root, root_objectid,
1150 BTRFS_ROOT_BACKREF_KEY,
1151 root->root_key.objectid,
1152 dirid, index, buf, len);
1153 if (ret) {
1154 error("unable to add root backref for %llu: %d",
1155 root->root_key.objectid, ret);
1156 goto fail;
1159 /* now add the forward ref */
1160 ret = btrfs_add_root_ref(trans, tree_root, root->root_key.objectid,
1161 BTRFS_ROOT_REF_KEY, root_objectid,
1162 dirid, index, buf, len);
1163 if (ret) {
1164 error("unable to add root ref for %llu: %d",
1165 root->root_key.objectid, ret);
1166 goto fail;
1169 ret = btrfs_commit_transaction(trans, root);
1170 if (ret) {
1171 error("transaction commit failed: %d", ret);
1172 goto fail;
1175 new_root = btrfs_read_fs_root(fs_info, &key);
1176 if (IS_ERR(new_root)) {
1177 error("unable to fs read root: %lu", PTR_ERR(new_root));
1178 new_root = NULL;
1180 fail:
1181 btrfs_free_path(path);
1182 return new_root;
1185 static int create_subvol(struct btrfs_trans_handle *trans,
1186 struct btrfs_root *root, u64 root_objectid)
1188 struct extent_buffer *tmp;
1189 struct btrfs_root *new_root;
1190 struct btrfs_key key;
1191 struct btrfs_root_item root_item;
1192 int ret;
1194 ret = btrfs_copy_root(trans, root, root->node, &tmp,
1195 root_objectid);
1196 if (ret)
1197 return ret;
1199 memcpy(&root_item, &root->root_item, sizeof(root_item));
1200 btrfs_set_root_bytenr(&root_item, tmp->start);
1201 btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
1202 btrfs_set_root_generation(&root_item, trans->transid);
1203 free_extent_buffer(tmp);
1205 key.objectid = root_objectid;
1206 key.type = BTRFS_ROOT_ITEM_KEY;
1207 key.offset = trans->transid;
1208 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1209 &key, &root_item);
1211 key.offset = (u64)-1;
1212 new_root = btrfs_read_fs_root(root->fs_info, &key);
1213 if (!new_root || IS_ERR(new_root)) {
1214 error("unable to fs read root: %lu", PTR_ERR(new_root));
1215 return PTR_ERR(new_root);
1218 ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID);
1220 return ret;
1224 * New make_btrfs() has handle system and meta chunks quite well.
1225 * So only need to add remaining data chunks.
1227 static int make_convert_data_block_groups(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info,
1229 struct btrfs_mkfs_config *cfg,
1230 struct btrfs_convert_context *cctx)
1232 struct btrfs_root *extent_root = fs_info->extent_root;
1233 struct cache_tree *data_chunks = &cctx->data_chunks;
1234 struct cache_extent *cache;
1235 u64 max_chunk_size;
1236 int ret = 0;
1239 * Don't create data chunk over 10% of the convert device
1240 * And for single chunk, don't create chunk larger than 1G.
1242 max_chunk_size = cfg->num_bytes / 10;
1243 max_chunk_size = min((u64)(1024 * 1024 * 1024), max_chunk_size);
1244 max_chunk_size = round_down(max_chunk_size, extent_root->sectorsize);
1246 for (cache = first_cache_extent(data_chunks); cache;
1247 cache = next_cache_extent(cache)) {
1248 u64 cur = cache->start;
1250 while (cur < cache->start + cache->size) {
1251 u64 len;
1252 u64 cur_backup = cur;
1254 len = min(max_chunk_size,
1255 cache->start + cache->size - cur);
1256 ret = btrfs_alloc_data_chunk(trans, extent_root,
1257 &cur_backup, len,
1258 BTRFS_BLOCK_GROUP_DATA, 1);
1259 if (ret < 0)
1260 break;
1261 ret = btrfs_make_block_group(trans, extent_root, 0,
1262 BTRFS_BLOCK_GROUP_DATA,
1263 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1264 cur, len);
1265 if (ret < 0)
1266 break;
1267 cur += len;
1270 return ret;
1274 * Init the temp btrfs to a operational status.
1276 * It will fix the extent usage accounting(XXX: Do we really need?) and
1277 * insert needed data chunks, to ensure all old fs data extents are covered
1278 * by DATA chunks, preventing wrong chunks are allocated.
1280 * And also create convert image subvolume and relocation tree.
1281 * (XXX: Not need again?)
1282 * But the convert image subvolume is *NOT* linked to fs tree yet.
1284 static int init_btrfs(struct btrfs_mkfs_config *cfg, struct btrfs_root *root,
1285 struct btrfs_convert_context *cctx, int datacsum,
1286 int packing, int noxattr)
1288 struct btrfs_key location;
1289 struct btrfs_trans_handle *trans;
1290 struct btrfs_fs_info *fs_info = root->fs_info;
1291 int ret;
1294 * Don't alloc any metadata/system chunk, as we don't want
1295 * any meta/sys chunk allcated before all data chunks are inserted.
1296 * Or we screw up the chunk layout just like the old implement.
1298 fs_info->avoid_sys_chunk_alloc = 1;
1299 fs_info->avoid_meta_chunk_alloc = 1;
1300 trans = btrfs_start_transaction(root, 1);
1301 if (!trans) {
1302 error("unable to start transaction");
1303 ret = -EINVAL;
1304 goto err;
1306 ret = btrfs_fix_block_accounting(trans, root);
1307 if (ret)
1308 goto err;
1309 ret = make_convert_data_block_groups(trans, fs_info, cfg, cctx);
1310 if (ret)
1311 goto err;
1312 ret = btrfs_make_root_dir(trans, fs_info->tree_root,
1313 BTRFS_ROOT_TREE_DIR_OBJECTID);
1314 if (ret)
1315 goto err;
1316 memcpy(&location, &root->root_key, sizeof(location));
1317 location.offset = (u64)-1;
1318 ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7,
1319 btrfs_super_root_dir(fs_info->super_copy),
1320 &location, BTRFS_FT_DIR, 0);
1321 if (ret)
1322 goto err;
1323 ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7,
1324 location.objectid,
1325 btrfs_super_root_dir(fs_info->super_copy), 0);
1326 if (ret)
1327 goto err;
1328 btrfs_set_root_dirid(&fs_info->fs_root->root_item,
1329 BTRFS_FIRST_FREE_OBJECTID);
1331 /* subvol for fs image file */
1332 ret = create_subvol(trans, root, CONV_IMAGE_SUBVOL_OBJECTID);
1333 if (ret < 0) {
1334 error("failed to create subvolume image root: %d", ret);
1335 goto err;
1337 /* subvol for data relocation tree */
1338 ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID);
1339 if (ret < 0) {
1340 error("failed to create DATA_RELOC root: %d", ret);
1341 goto err;
1344 ret = btrfs_commit_transaction(trans, root);
1345 fs_info->avoid_sys_chunk_alloc = 0;
1346 fs_info->avoid_meta_chunk_alloc = 0;
1347 err:
1348 return ret;
1352 * Migrate super block to its default position and zero 0 ~ 16k
1354 static int migrate_super_block(int fd, u64 old_bytenr, u32 sectorsize)
1356 int ret;
1357 struct extent_buffer *buf;
1358 struct btrfs_super_block *super;
1359 u32 len;
1360 u32 bytenr;
1362 BUG_ON(sectorsize < sizeof(*super));
1363 buf = malloc(sizeof(*buf) + sectorsize);
1364 if (!buf)
1365 return -ENOMEM;
1367 buf->len = sectorsize;
1368 ret = pread(fd, buf->data, sectorsize, old_bytenr);
1369 if (ret != sectorsize)
1370 goto fail;
1372 super = (struct btrfs_super_block *)buf->data;
1373 BUG_ON(btrfs_super_bytenr(super) != old_bytenr);
1374 btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET);
1376 csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
1377 ret = pwrite(fd, buf->data, sectorsize, BTRFS_SUPER_INFO_OFFSET);
1378 if (ret != sectorsize)
1379 goto fail;
1381 ret = fsync(fd);
1382 if (ret)
1383 goto fail;
1385 memset(buf->data, 0, sectorsize);
1386 for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) {
1387 len = BTRFS_SUPER_INFO_OFFSET - bytenr;
1388 if (len > sectorsize)
1389 len = sectorsize;
1390 ret = pwrite(fd, buf->data, len, bytenr);
1391 if (ret != len) {
1392 fprintf(stderr, "unable to zero fill device\n");
1393 break;
1395 bytenr += len;
1397 ret = 0;
1398 fsync(fd);
1399 fail:
1400 free(buf);
1401 if (ret > 0)
1402 ret = -1;
1403 return ret;
1406 static int prepare_system_chunk_sb(struct btrfs_super_block *super)
1408 struct btrfs_chunk *chunk;
1409 struct btrfs_disk_key *key;
1410 u32 sectorsize = btrfs_super_sectorsize(super);
1412 key = (struct btrfs_disk_key *)(super->sys_chunk_array);
1413 chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
1414 sizeof(struct btrfs_disk_key));
1416 btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1417 btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
1418 btrfs_set_disk_key_offset(key, 0);
1420 btrfs_set_stack_chunk_length(chunk, btrfs_super_total_bytes(super));
1421 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
1422 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
1423 btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
1424 btrfs_set_stack_chunk_io_align(chunk, sectorsize);
1425 btrfs_set_stack_chunk_io_width(chunk, sectorsize);
1426 btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
1427 btrfs_set_stack_chunk_num_stripes(chunk, 1);
1428 btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1429 chunk->stripe.devid = super->dev_item.devid;
1430 btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
1431 memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
1432 btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
1433 return 0;
1436 #if BTRFSCONVERT_EXT2
1439 * Open Ext2fs in readonly mode, read block allocation bitmap and
1440 * inode bitmap into memory.
1442 static int ext2_open_fs(struct btrfs_convert_context *cctx, const char *name)
1444 errcode_t ret;
1445 ext2_filsys ext2_fs;
1446 ext2_ino_t ino;
1447 u32 ro_feature;
1449 ret = ext2fs_open(name, 0, 0, 0, unix_io_manager, &ext2_fs);
1450 if (ret) {
1451 fprintf(stderr, "ext2fs_open: %s\n", error_message(ret));
1452 return -1;
1455 * We need to know exactly the used space, some RO compat flags like
1456 * BIGALLOC will affect how used space is present.
1457 * So we need manuall check any unsupported RO compat flags
1459 ro_feature = ext2_fs->super->s_feature_ro_compat;
1460 if (ro_feature & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
1461 error(
1462 "unsupported RO features detected: %x, abort convert to avoid possible corruption",
1463 ro_feature & ~EXT2_LIB_FEATURE_COMPAT_SUPP);
1464 goto fail;
1466 ret = ext2fs_read_inode_bitmap(ext2_fs);
1467 if (ret) {
1468 fprintf(stderr, "ext2fs_read_inode_bitmap: %s\n",
1469 error_message(ret));
1470 goto fail;
1472 ret = ext2fs_read_block_bitmap(ext2_fs);
1473 if (ret) {
1474 fprintf(stderr, "ext2fs_read_block_bitmap: %s\n",
1475 error_message(ret));
1476 goto fail;
1479 * search each block group for a free inode. this set up
1480 * uninit block/inode bitmaps appropriately.
1482 ino = 1;
1483 while (ino <= ext2_fs->super->s_inodes_count) {
1484 ext2_ino_t foo;
1485 ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo);
1486 ino += EXT2_INODES_PER_GROUP(ext2_fs->super);
1489 if (!(ext2_fs->super->s_feature_incompat &
1490 EXT2_FEATURE_INCOMPAT_FILETYPE)) {
1491 fprintf(stderr, "filetype feature is missing\n");
1492 goto fail;
1495 cctx->fs_data = ext2_fs;
1496 cctx->blocksize = ext2_fs->blocksize;
1497 cctx->block_count = ext2_fs->super->s_blocks_count;
1498 cctx->total_bytes = ext2_fs->blocksize * ext2_fs->super->s_blocks_count;
1499 cctx->volume_name = strndup(ext2_fs->super->s_volume_name, 16);
1500 cctx->first_data_block = ext2_fs->super->s_first_data_block;
1501 cctx->inodes_count = ext2_fs->super->s_inodes_count;
1502 cctx->free_inodes_count = ext2_fs->super->s_free_inodes_count;
1503 return 0;
1504 fail:
1505 ext2fs_close(ext2_fs);
1506 return -1;
1509 static int __ext2_add_one_block(ext2_filsys fs, char *bitmap,
1510 unsigned long group_nr, struct cache_tree *used)
1512 unsigned long offset;
1513 unsigned i;
1514 int ret = 0;
1516 offset = fs->super->s_first_data_block;
1517 offset /= EXT2FS_CLUSTER_RATIO(fs);
1518 offset += group_nr * EXT2_CLUSTERS_PER_GROUP(fs->super);
1519 for (i = 0; i < EXT2_CLUSTERS_PER_GROUP(fs->super); i++) {
1520 if (ext2fs_test_bit(i, bitmap)) {
1521 u64 start;
1523 start = (i + offset) * EXT2FS_CLUSTER_RATIO(fs);
1524 start *= fs->blocksize;
1525 ret = add_merge_cache_extent(used, start,
1526 fs->blocksize);
1527 if (ret < 0)
1528 break;
1531 return ret;
1535 * Read all used ext2 space into cctx->used cache tree
1537 static int ext2_read_used_space(struct btrfs_convert_context *cctx)
1539 ext2_filsys fs = (ext2_filsys)cctx->fs_data;
1540 blk64_t blk_itr = EXT2FS_B2C(fs, fs->super->s_first_data_block);
1541 struct cache_tree *used_tree = &cctx->used;
1542 char *block_bitmap = NULL;
1543 unsigned long i;
1544 int block_nbytes;
1545 int ret = 0;
1547 block_nbytes = EXT2_CLUSTERS_PER_GROUP(fs->super) / 8;
1548 /* Shouldn't happen */
1549 BUG_ON(!fs->block_map);
1551 block_bitmap = malloc(block_nbytes);
1552 if (!block_bitmap)
1553 return -ENOMEM;
1555 for (i = 0; i < fs->group_desc_count; i++) {
1556 ret = ext2fs_get_block_bitmap_range(fs->block_map, blk_itr,
1557 block_nbytes * 8, block_bitmap);
1558 if (ret) {
1559 error("fail to get bitmap from ext2, %s",
1560 strerror(-ret));
1561 break;
1563 ret = __ext2_add_one_block(fs, block_bitmap, i, used_tree);
1564 if (ret < 0) {
1565 error("fail to build used space tree, %s",
1566 strerror(-ret));
1567 break;
1569 blk_itr += EXT2_CLUSTERS_PER_GROUP(fs->super);
1572 free(block_bitmap);
1573 return ret;
1576 static void ext2_close_fs(struct btrfs_convert_context *cctx)
1578 if (cctx->volume_name) {
1579 free(cctx->volume_name);
1580 cctx->volume_name = NULL;
1582 ext2fs_close(cctx->fs_data);
1585 struct dir_iterate_data {
1586 struct btrfs_trans_handle *trans;
1587 struct btrfs_root *root;
1588 struct btrfs_inode_item *inode;
1589 u64 objectid;
1590 u64 index_cnt;
1591 u64 parent;
1592 int errcode;
1595 static u8 ext2_filetype_conversion_table[EXT2_FT_MAX] = {
1596 [EXT2_FT_UNKNOWN] = BTRFS_FT_UNKNOWN,
1597 [EXT2_FT_REG_FILE] = BTRFS_FT_REG_FILE,
1598 [EXT2_FT_DIR] = BTRFS_FT_DIR,
1599 [EXT2_FT_CHRDEV] = BTRFS_FT_CHRDEV,
1600 [EXT2_FT_BLKDEV] = BTRFS_FT_BLKDEV,
1601 [EXT2_FT_FIFO] = BTRFS_FT_FIFO,
1602 [EXT2_FT_SOCK] = BTRFS_FT_SOCK,
1603 [EXT2_FT_SYMLINK] = BTRFS_FT_SYMLINK,
1606 static int ext2_dir_iterate_proc(ext2_ino_t dir, int entry,
1607 struct ext2_dir_entry *dirent,
1608 int offset, int blocksize,
1609 char *buf,void *priv_data)
1611 int ret;
1612 int file_type;
1613 u64 objectid;
1614 char dotdot[] = "..";
1615 struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data;
1616 int name_len;
1618 name_len = dirent->name_len & 0xFF;
1620 objectid = dirent->inode + INO_OFFSET;
1621 if (!strncmp(dirent->name, dotdot, name_len)) {
1622 if (name_len == 2) {
1623 BUG_ON(idata->parent != 0);
1624 idata->parent = objectid;
1626 return 0;
1628 if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO)
1629 return 0;
1631 file_type = dirent->name_len >> 8;
1632 BUG_ON(file_type > EXT2_FT_SYMLINK);
1634 ret = convert_insert_dirent(idata->trans, idata->root, dirent->name,
1635 name_len, idata->objectid, objectid,
1636 ext2_filetype_conversion_table[file_type],
1637 idata->index_cnt, idata->inode);
1638 if (ret < 0) {
1639 idata->errcode = ret;
1640 return BLOCK_ABORT;
1643 idata->index_cnt++;
1644 return 0;
1647 static int ext2_create_dir_entries(struct btrfs_trans_handle *trans,
1648 struct btrfs_root *root, u64 objectid,
1649 struct btrfs_inode_item *btrfs_inode,
1650 ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
1652 int ret;
1653 errcode_t err;
1654 struct dir_iterate_data data = {
1655 .trans = trans,
1656 .root = root,
1657 .inode = btrfs_inode,
1658 .objectid = objectid,
1659 .index_cnt = 2,
1660 .parent = 0,
1661 .errcode = 0,
1664 err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL,
1665 ext2_dir_iterate_proc, &data);
1666 if (err)
1667 goto error;
1668 ret = data.errcode;
1669 if (ret == 0 && data.parent == objectid) {
1670 ret = btrfs_insert_inode_ref(trans, root, "..", 2,
1671 objectid, objectid, 0);
1673 return ret;
1674 error:
1675 fprintf(stderr, "ext2fs_dir_iterate2: %s\n", error_message(err));
1676 return -1;
1679 static int ext2_block_iterate_proc(ext2_filsys fs, blk_t *blocknr,
1680 e2_blkcnt_t blockcnt, blk_t ref_block,
1681 int ref_offset, void *priv_data)
1683 int ret;
1684 struct blk_iterate_data *idata;
1685 idata = (struct blk_iterate_data *)priv_data;
1686 ret = block_iterate_proc(*blocknr, blockcnt, idata);
1687 if (ret) {
1688 idata->errcode = ret;
1689 return BLOCK_ABORT;
1691 return 0;
1695 * traverse file's data blocks, record these data blocks as file extents.
1697 static int ext2_create_file_extents(struct btrfs_trans_handle *trans,
1698 struct btrfs_root *root, u64 objectid,
1699 struct btrfs_inode_item *btrfs_inode,
1700 ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1701 int datacsum, int packing)
1703 int ret;
1704 char *buffer = NULL;
1705 errcode_t err;
1706 u32 last_block;
1707 u32 sectorsize = root->sectorsize;
1708 u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1709 struct blk_iterate_data data;
1711 init_blk_iterate_data(&data, trans, root, btrfs_inode, objectid,
1712 datacsum);
1714 err = ext2fs_block_iterate2(ext2_fs, ext2_ino, BLOCK_FLAG_DATA_ONLY,
1715 NULL, ext2_block_iterate_proc, &data);
1716 if (err)
1717 goto error;
1718 ret = data.errcode;
1719 if (ret)
1720 goto fail;
1721 if (packing && data.first_block == 0 && data.num_blocks > 0 &&
1722 inode_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
1723 u64 num_bytes = data.num_blocks * sectorsize;
1724 u64 disk_bytenr = data.disk_block * sectorsize;
1725 u64 nbytes;
1727 buffer = malloc(num_bytes);
1728 if (!buffer)
1729 return -ENOMEM;
1730 ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer);
1731 if (ret)
1732 goto fail;
1733 if (num_bytes > inode_size)
1734 num_bytes = inode_size;
1735 ret = btrfs_insert_inline_extent(trans, root, objectid,
1736 0, buffer, num_bytes);
1737 if (ret)
1738 goto fail;
1739 nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes;
1740 btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes);
1741 } else if (data.num_blocks > 0) {
1742 ret = record_file_blocks(&data, data.first_block,
1743 data.disk_block, data.num_blocks);
1744 if (ret)
1745 goto fail;
1747 data.first_block += data.num_blocks;
1748 last_block = (inode_size + sectorsize - 1) / sectorsize;
1749 if (last_block > data.first_block) {
1750 ret = record_file_blocks(&data, data.first_block, 0,
1751 last_block - data.first_block);
1753 fail:
1754 free(buffer);
1755 return ret;
1756 error:
1757 fprintf(stderr, "ext2fs_block_iterate2: %s\n", error_message(err));
1758 return -1;
1761 static int ext2_create_symbol_link(struct btrfs_trans_handle *trans,
1762 struct btrfs_root *root, u64 objectid,
1763 struct btrfs_inode_item *btrfs_inode,
1764 ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1765 struct ext2_inode *ext2_inode)
1767 int ret;
1768 char *pathname;
1769 u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1770 if (ext2fs_inode_data_blocks(ext2_fs, ext2_inode)) {
1771 btrfs_set_stack_inode_size(btrfs_inode, inode_size + 1);
1772 ret = ext2_create_file_extents(trans, root, objectid,
1773 btrfs_inode, ext2_fs, ext2_ino, 1, 1);
1774 btrfs_set_stack_inode_size(btrfs_inode, inode_size);
1775 return ret;
1778 pathname = (char *)&(ext2_inode->i_block[0]);
1779 BUG_ON(pathname[inode_size] != 0);
1780 ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
1781 pathname, inode_size + 1);
1782 btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size + 1);
1783 return ret;
1787 * Following xattr/acl related codes are based on codes in
1788 * fs/ext3/xattr.c and fs/ext3/acl.c
1790 #define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr))
1791 #define EXT2_XATTR_BFIRST(ptr) \
1792 ((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1))
1793 #define EXT2_XATTR_IHDR(inode) \
1794 ((struct ext2_ext_attr_header *) ((void *)(inode) + \
1795 EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize))
1796 #define EXT2_XATTR_IFIRST(inode) \
1797 ((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \
1798 sizeof(EXT2_XATTR_IHDR(inode)->h_magic)))
1800 static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry,
1801 const void *end)
1803 struct ext2_ext_attr_entry *next;
1805 while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
1806 next = EXT2_EXT_ATTR_NEXT(entry);
1807 if ((void *)next >= end)
1808 return -EIO;
1809 entry = next;
1811 return 0;
1814 static int ext2_xattr_check_block(const char *buf, size_t size)
1816 int error;
1817 struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf);
1819 if (header->h_magic != EXT2_EXT_ATTR_MAGIC ||
1820 header->h_blocks != 1)
1821 return -EIO;
1822 error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size);
1823 return error;
1826 static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry,
1827 size_t size)
1829 size_t value_size = entry->e_value_size;
1831 if (entry->e_value_block != 0 || value_size > size ||
1832 entry->e_value_offs + value_size > size)
1833 return -EIO;
1834 return 0;
1837 #define EXT2_ACL_VERSION 0x0001
1839 /* 23.2.5 acl_tag_t values */
1841 #define ACL_UNDEFINED_TAG (0x00)
1842 #define ACL_USER_OBJ (0x01)
1843 #define ACL_USER (0x02)
1844 #define ACL_GROUP_OBJ (0x04)
1845 #define ACL_GROUP (0x08)
1846 #define ACL_MASK (0x10)
1847 #define ACL_OTHER (0x20)
1849 /* 23.2.7 ACL qualifier constants */
1851 #define ACL_UNDEFINED_ID ((id_t)-1)
1853 typedef struct {
1854 __le16 e_tag;
1855 __le16 e_perm;
1856 __le32 e_id;
1857 } ext2_acl_entry;
1859 typedef struct {
1860 __le16 e_tag;
1861 __le16 e_perm;
1862 } ext2_acl_entry_short;
1864 typedef struct {
1865 __le32 a_version;
1866 } ext2_acl_header;
1868 static inline int ext2_acl_count(size_t size)
1870 ssize_t s;
1871 size -= sizeof(ext2_acl_header);
1872 s = size - 4 * sizeof(ext2_acl_entry_short);
1873 if (s < 0) {
1874 if (size % sizeof(ext2_acl_entry_short))
1875 return -1;
1876 return size / sizeof(ext2_acl_entry_short);
1877 } else {
1878 if (s % sizeof(ext2_acl_entry))
1879 return -1;
1880 return s / sizeof(ext2_acl_entry) + 4;
1884 #define ACL_EA_VERSION 0x0002
1886 typedef struct {
1887 __le16 e_tag;
1888 __le16 e_perm;
1889 __le32 e_id;
1890 } acl_ea_entry;
1892 typedef struct {
1893 __le32 a_version;
1894 acl_ea_entry a_entries[0];
1895 } acl_ea_header;
1897 static inline size_t acl_ea_size(int count)
1899 return sizeof(acl_ea_header) + count * sizeof(acl_ea_entry);
1902 static int ext2_acl_to_xattr(void *dst, const void *src,
1903 size_t dst_size, size_t src_size)
1905 int i, count;
1906 const void *end = src + src_size;
1907 acl_ea_header *ext_acl = (acl_ea_header *)dst;
1908 acl_ea_entry *dst_entry = ext_acl->a_entries;
1909 ext2_acl_entry *src_entry;
1911 if (src_size < sizeof(ext2_acl_header))
1912 goto fail;
1913 if (((ext2_acl_header *)src)->a_version !=
1914 cpu_to_le32(EXT2_ACL_VERSION))
1915 goto fail;
1916 src += sizeof(ext2_acl_header);
1917 count = ext2_acl_count(src_size);
1918 if (count <= 0)
1919 goto fail;
1921 BUG_ON(dst_size < acl_ea_size(count));
1922 ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION);
1923 for (i = 0; i < count; i++, dst_entry++) {
1924 src_entry = (ext2_acl_entry *)src;
1925 if (src + sizeof(ext2_acl_entry_short) > end)
1926 goto fail;
1927 dst_entry->e_tag = src_entry->e_tag;
1928 dst_entry->e_perm = src_entry->e_perm;
1929 switch (le16_to_cpu(src_entry->e_tag)) {
1930 case ACL_USER_OBJ:
1931 case ACL_GROUP_OBJ:
1932 case ACL_MASK:
1933 case ACL_OTHER:
1934 src += sizeof(ext2_acl_entry_short);
1935 dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID);
1936 break;
1937 case ACL_USER:
1938 case ACL_GROUP:
1939 src += sizeof(ext2_acl_entry);
1940 if (src > end)
1941 goto fail;
1942 dst_entry->e_id = src_entry->e_id;
1943 break;
1944 default:
1945 goto fail;
1948 if (src != end)
1949 goto fail;
1950 return 0;
1951 fail:
1952 return -EINVAL;
1955 static char *xattr_prefix_table[] = {
1956 [1] = "user.",
1957 [2] = "system.posix_acl_access",
1958 [3] = "system.posix_acl_default",
1959 [4] = "trusted.",
1960 [6] = "security.",
1963 static int ext2_copy_single_xattr(struct btrfs_trans_handle *trans,
1964 struct btrfs_root *root, u64 objectid,
1965 struct ext2_ext_attr_entry *entry,
1966 const void *data, u32 datalen)
1968 int ret = 0;
1969 int name_len;
1970 int name_index;
1971 void *databuf = NULL;
1972 char namebuf[XATTR_NAME_MAX + 1];
1974 name_index = entry->e_name_index;
1975 if (name_index >= ARRAY_SIZE(xattr_prefix_table) ||
1976 xattr_prefix_table[name_index] == NULL)
1977 return -EOPNOTSUPP;
1978 name_len = strlen(xattr_prefix_table[name_index]) +
1979 entry->e_name_len;
1980 if (name_len >= sizeof(namebuf))
1981 return -ERANGE;
1983 if (name_index == 2 || name_index == 3) {
1984 size_t bufsize = acl_ea_size(ext2_acl_count(datalen));
1985 databuf = malloc(bufsize);
1986 if (!databuf)
1987 return -ENOMEM;
1988 ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen);
1989 if (ret)
1990 goto out;
1991 data = databuf;
1992 datalen = bufsize;
1994 strncpy(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX);
1995 strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len);
1996 if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root) -
1997 sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) {
1998 fprintf(stderr, "skip large xattr on inode %Lu name %.*s\n",
1999 objectid - INO_OFFSET, name_len, namebuf);
2000 goto out;
2002 ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len,
2003 data, datalen, objectid);
2004 out:
2005 free(databuf);
2006 return ret;
2009 static int ext2_copy_extended_attrs(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root, u64 objectid,
2011 struct btrfs_inode_item *btrfs_inode,
2012 ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
2014 int ret = 0;
2015 int inline_ea = 0;
2016 errcode_t err;
2017 u32 datalen;
2018 u32 block_size = ext2_fs->blocksize;
2019 u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super);
2020 struct ext2_inode_large *ext2_inode;
2021 struct ext2_ext_attr_entry *entry;
2022 void *data;
2023 char *buffer = NULL;
2024 char inode_buf[EXT2_GOOD_OLD_INODE_SIZE];
2026 if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) {
2027 ext2_inode = (struct ext2_inode_large *)inode_buf;
2028 } else {
2029 ext2_inode = (struct ext2_inode_large *)malloc(inode_size);
2030 if (!ext2_inode)
2031 return -ENOMEM;
2033 err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode,
2034 inode_size);
2035 if (err) {
2036 fprintf(stderr, "ext2fs_read_inode_full: %s\n",
2037 error_message(err));
2038 ret = -1;
2039 goto out;
2042 if (ext2_ino > ext2_fs->super->s_first_ino &&
2043 inode_size > EXT2_GOOD_OLD_INODE_SIZE) {
2044 if (EXT2_GOOD_OLD_INODE_SIZE +
2045 ext2_inode->i_extra_isize > inode_size) {
2046 ret = -EIO;
2047 goto out;
2049 if (ext2_inode->i_extra_isize != 0 &&
2050 EXT2_XATTR_IHDR(ext2_inode)->h_magic ==
2051 EXT2_EXT_ATTR_MAGIC) {
2052 inline_ea = 1;
2055 if (inline_ea) {
2056 int total;
2057 void *end = (void *)ext2_inode + inode_size;
2058 entry = EXT2_XATTR_IFIRST(ext2_inode);
2059 total = end - (void *)entry;
2060 ret = ext2_xattr_check_names(entry, end);
2061 if (ret)
2062 goto out;
2063 while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2064 ret = ext2_xattr_check_entry(entry, total);
2065 if (ret)
2066 goto out;
2067 data = (void *)EXT2_XATTR_IFIRST(ext2_inode) +
2068 entry->e_value_offs;
2069 datalen = entry->e_value_size;
2070 ret = ext2_copy_single_xattr(trans, root, objectid,
2071 entry, data, datalen);
2072 if (ret)
2073 goto out;
2074 entry = EXT2_EXT_ATTR_NEXT(entry);
2078 if (ext2_inode->i_file_acl == 0)
2079 goto out;
2081 buffer = malloc(block_size);
2082 if (!buffer) {
2083 ret = -ENOMEM;
2084 goto out;
2086 err = ext2fs_read_ext_attr(ext2_fs, ext2_inode->i_file_acl, buffer);
2087 if (err) {
2088 fprintf(stderr, "ext2fs_read_ext_attr: %s\n",
2089 error_message(err));
2090 ret = -1;
2091 goto out;
2093 ret = ext2_xattr_check_block(buffer, block_size);
2094 if (ret)
2095 goto out;
2097 entry = EXT2_XATTR_BFIRST(buffer);
2098 while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2099 ret = ext2_xattr_check_entry(entry, block_size);
2100 if (ret)
2101 goto out;
2102 data = buffer + entry->e_value_offs;
2103 datalen = entry->e_value_size;
2104 ret = ext2_copy_single_xattr(trans, root, objectid,
2105 entry, data, datalen);
2106 if (ret)
2107 goto out;
2108 entry = EXT2_EXT_ATTR_NEXT(entry);
2110 out:
2111 free(buffer);
2112 if ((void *)ext2_inode != inode_buf)
2113 free(ext2_inode);
2114 return ret;
2116 #define MINORBITS 20
2117 #define MKDEV(ma, mi) (((ma) << MINORBITS) | (mi))
2119 static inline dev_t old_decode_dev(u16 val)
2121 return MKDEV((val >> 8) & 255, val & 255);
2124 static inline dev_t new_decode_dev(u32 dev)
2126 unsigned major = (dev & 0xfff00) >> 8;
2127 unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00);
2128 return MKDEV(major, minor);
2131 static void ext2_copy_inode_item(struct btrfs_inode_item *dst,
2132 struct ext2_inode *src, u32 blocksize)
2134 btrfs_set_stack_inode_generation(dst, 1);
2135 btrfs_set_stack_inode_sequence(dst, 0);
2136 btrfs_set_stack_inode_transid(dst, 1);
2137 btrfs_set_stack_inode_size(dst, src->i_size);
2138 btrfs_set_stack_inode_nbytes(dst, 0);
2139 btrfs_set_stack_inode_block_group(dst, 0);
2140 btrfs_set_stack_inode_nlink(dst, src->i_links_count);
2141 btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16));
2142 btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16));
2143 btrfs_set_stack_inode_mode(dst, src->i_mode);
2144 btrfs_set_stack_inode_rdev(dst, 0);
2145 btrfs_set_stack_inode_flags(dst, 0);
2146 btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime);
2147 btrfs_set_stack_timespec_nsec(&dst->atime, 0);
2148 btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime);
2149 btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
2150 btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime);
2151 btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
2152 btrfs_set_stack_timespec_sec(&dst->otime, 0);
2153 btrfs_set_stack_timespec_nsec(&dst->otime, 0);
2155 if (S_ISDIR(src->i_mode)) {
2156 btrfs_set_stack_inode_size(dst, 0);
2157 btrfs_set_stack_inode_nlink(dst, 1);
2159 if (S_ISREG(src->i_mode)) {
2160 btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 |
2161 (u64)src->i_size);
2163 if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) &&
2164 !S_ISLNK(src->i_mode)) {
2165 if (src->i_block[0]) {
2166 btrfs_set_stack_inode_rdev(dst,
2167 old_decode_dev(src->i_block[0]));
2168 } else {
2169 btrfs_set_stack_inode_rdev(dst,
2170 new_decode_dev(src->i_block[1]));
2173 memset(&dst->reserved, 0, sizeof(dst->reserved));
2177 * copy a single inode. do all the required works, such as cloning
2178 * inode item, creating file extents and creating directory entries.
2180 static int ext2_copy_single_inode(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root, u64 objectid,
2182 ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
2183 struct ext2_inode *ext2_inode,
2184 int datacsum, int packing, int noxattr)
2186 int ret;
2187 struct btrfs_inode_item btrfs_inode;
2189 if (ext2_inode->i_links_count == 0)
2190 return 0;
2192 ext2_copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize);
2193 if (!datacsum && S_ISREG(ext2_inode->i_mode)) {
2194 u32 flags = btrfs_stack_inode_flags(&btrfs_inode) |
2195 BTRFS_INODE_NODATASUM;
2196 btrfs_set_stack_inode_flags(&btrfs_inode, flags);
2199 switch (ext2_inode->i_mode & S_IFMT) {
2200 case S_IFREG:
2201 ret = ext2_create_file_extents(trans, root, objectid,
2202 &btrfs_inode, ext2_fs, ext2_ino, datacsum, packing);
2203 break;
2204 case S_IFDIR:
2205 ret = ext2_create_dir_entries(trans, root, objectid,
2206 &btrfs_inode, ext2_fs, ext2_ino);
2207 break;
2208 case S_IFLNK:
2209 ret = ext2_create_symbol_link(trans, root, objectid,
2210 &btrfs_inode, ext2_fs, ext2_ino, ext2_inode);
2211 break;
2212 default:
2213 ret = 0;
2214 break;
2216 if (ret)
2217 return ret;
2219 if (!noxattr) {
2220 ret = ext2_copy_extended_attrs(trans, root, objectid,
2221 &btrfs_inode, ext2_fs, ext2_ino);
2222 if (ret)
2223 return ret;
2225 return btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
2229 * scan ext2's inode bitmap and copy all used inodes.
2231 static int ext2_copy_inodes(struct btrfs_convert_context *cctx,
2232 struct btrfs_root *root,
2233 int datacsum, int packing, int noxattr, struct task_ctx *p)
2235 ext2_filsys ext2_fs = cctx->fs_data;
2236 int ret;
2237 errcode_t err;
2238 ext2_inode_scan ext2_scan;
2239 struct ext2_inode ext2_inode;
2240 ext2_ino_t ext2_ino;
2241 u64 objectid;
2242 struct btrfs_trans_handle *trans;
2244 trans = btrfs_start_transaction(root, 1);
2245 if (!trans)
2246 return -ENOMEM;
2247 err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan);
2248 if (err) {
2249 fprintf(stderr, "ext2fs_open_inode_scan: %s\n", error_message(err));
2250 return -1;
2252 while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino,
2253 &ext2_inode))) {
2254 /* no more inodes */
2255 if (ext2_ino == 0)
2256 break;
2257 /* skip special inode in ext2fs */
2258 if (ext2_ino < EXT2_GOOD_OLD_FIRST_INO &&
2259 ext2_ino != EXT2_ROOT_INO)
2260 continue;
2261 objectid = ext2_ino + INO_OFFSET;
2262 ret = ext2_copy_single_inode(trans, root,
2263 objectid, ext2_fs, ext2_ino,
2264 &ext2_inode, datacsum, packing,
2265 noxattr);
2266 p->cur_copy_inodes++;
2267 if (ret)
2268 return ret;
2269 if (trans->blocks_used >= 4096) {
2270 ret = btrfs_commit_transaction(trans, root);
2271 BUG_ON(ret);
2272 trans = btrfs_start_transaction(root, 1);
2273 BUG_ON(!trans);
2276 if (err) {
2277 fprintf(stderr, "ext2fs_get_next_inode: %s\n", error_message(err));
2278 return -1;
2280 ret = btrfs_commit_transaction(trans, root);
2281 BUG_ON(ret);
2282 ext2fs_close_inode_scan(ext2_scan);
2284 return ret;
2287 static const struct btrfs_convert_operations ext2_convert_ops = {
2288 .name = "ext2",
2289 .open_fs = ext2_open_fs,
2290 .read_used_space = ext2_read_used_space,
2291 .copy_inodes = ext2_copy_inodes,
2292 .close_fs = ext2_close_fs,
2295 #endif
2297 static const struct btrfs_convert_operations *convert_operations[] = {
2298 #if BTRFSCONVERT_EXT2
2299 &ext2_convert_ops,
2300 #endif
2303 static int convert_open_fs(const char *devname,
2304 struct btrfs_convert_context *cctx)
2306 int i;
2308 memset(cctx, 0, sizeof(*cctx));
2310 for (i = 0; i < ARRAY_SIZE(convert_operations); i++) {
2311 int ret = convert_operations[i]->open_fs(cctx, devname);
2313 if (ret == 0) {
2314 cctx->convert_ops = convert_operations[i];
2315 return ret;
2319 fprintf(stderr, "No file system found to convert.\n");
2320 return -1;
2323 static int do_convert(const char *devname, int datacsum, int packing,
2324 int noxattr, u32 nodesize, int copylabel, const char *fslabel,
2325 int progress, u64 features)
2327 int ret;
2328 int fd = -1;
2329 int is_btrfs = 0;
2330 u32 blocksize;
2331 u64 total_bytes;
2332 struct btrfs_root *root;
2333 struct btrfs_root *image_root;
2334 struct btrfs_convert_context cctx;
2335 struct btrfs_key key;
2336 char *subvol_name = NULL;
2337 struct task_ctx ctx;
2338 char features_buf[64];
2339 struct btrfs_mkfs_config mkfs_cfg;
2341 init_convert_context(&cctx);
2342 ret = convert_open_fs(devname, &cctx);
2343 if (ret)
2344 goto fail;
2345 ret = convert_read_used_space(&cctx);
2346 if (ret)
2347 goto fail;
2349 blocksize = cctx.blocksize;
2350 total_bytes = (u64)blocksize * (u64)cctx.block_count;
2351 if (blocksize < 4096) {
2352 fprintf(stderr, "block size is too small\n");
2353 goto fail;
2355 if (btrfs_check_nodesize(nodesize, blocksize, features))
2356 goto fail;
2357 fd = open(devname, O_RDWR);
2358 if (fd < 0) {
2359 fprintf(stderr, "unable to open %s\n", devname);
2360 goto fail;
2362 btrfs_parse_features_to_string(features_buf, features);
2363 if (features == BTRFS_MKFS_DEFAULT_FEATURES)
2364 strcat(features_buf, " (default)");
2366 printf("create btrfs filesystem:\n");
2367 printf("\tblocksize: %u\n", blocksize);
2368 printf("\tnodesize: %u\n", nodesize);
2369 printf("\tfeatures: %s\n", features_buf);
2371 mkfs_cfg.label = cctx.volume_name;
2372 mkfs_cfg.num_bytes = total_bytes;
2373 mkfs_cfg.nodesize = nodesize;
2374 mkfs_cfg.sectorsize = blocksize;
2375 mkfs_cfg.stripesize = blocksize;
2376 mkfs_cfg.features = features;
2377 /* New convert need these space */
2378 mkfs_cfg.fs_uuid = malloc(BTRFS_UUID_UNPARSED_SIZE);
2379 mkfs_cfg.chunk_uuid = malloc(BTRFS_UUID_UNPARSED_SIZE);
2380 *(mkfs_cfg.fs_uuid) = '\0';
2381 *(mkfs_cfg.chunk_uuid) = '\0';
2383 ret = make_btrfs(fd, &mkfs_cfg, &cctx);
2384 if (ret) {
2385 fprintf(stderr, "unable to create initial ctree: %s\n",
2386 strerror(-ret));
2387 goto fail;
2390 root = open_ctree_fd(fd, devname, mkfs_cfg.super_bytenr,
2391 OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2392 if (!root) {
2393 fprintf(stderr, "unable to open ctree\n");
2394 goto fail;
2396 ret = init_btrfs(&mkfs_cfg, root, &cctx, datacsum, packing, noxattr);
2397 if (ret) {
2398 fprintf(stderr, "unable to setup the root tree\n");
2399 goto fail;
2402 printf("creating %s image file.\n", cctx.convert_ops->name);
2403 ret = asprintf(&subvol_name, "%s_saved", cctx.convert_ops->name);
2404 if (ret < 0) {
2405 fprintf(stderr, "error allocating subvolume name: %s_saved\n",
2406 cctx.convert_ops->name);
2407 goto fail;
2409 key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2410 key.offset = (u64)-1;
2411 key.type = BTRFS_ROOT_ITEM_KEY;
2412 image_root = btrfs_read_fs_root(root->fs_info, &key);
2413 if (!image_root) {
2414 fprintf(stderr, "unable to create subvol\n");
2415 goto fail;
2417 ret = create_image(image_root, &mkfs_cfg, &cctx, fd,
2418 mkfs_cfg.num_bytes, "image", datacsum);
2419 if (ret) {
2420 fprintf(stderr, "error during create_image %d\n", ret);
2421 goto fail;
2424 printf("creating btrfs metadata.\n");
2425 ctx.max_copy_inodes = (cctx.inodes_count - cctx.free_inodes_count);
2426 ctx.cur_copy_inodes = 0;
2428 if (progress) {
2429 ctx.info = task_init(print_copied_inodes, after_copied_inodes,
2430 &ctx);
2431 task_start(ctx.info);
2433 ret = copy_inodes(&cctx, root, datacsum, packing, noxattr, &ctx);
2434 if (ret) {
2435 fprintf(stderr, "error during copy_inodes %d\n", ret);
2436 goto fail;
2438 if (progress) {
2439 task_stop(ctx.info);
2440 task_deinit(ctx.info);
2443 image_root = link_subvol(root, subvol_name, CONV_IMAGE_SUBVOL_OBJECTID);
2444 if (!image_root) {
2445 error("unable to link subvolume %s", subvol_name);
2446 goto fail;
2449 free(subvol_name);
2451 memset(root->fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
2452 if (copylabel == 1) {
2453 __strncpy_null(root->fs_info->super_copy->label,
2454 cctx.volume_name, BTRFS_LABEL_SIZE - 1);
2455 fprintf(stderr, "copy label '%s'\n",
2456 root->fs_info->super_copy->label);
2457 } else if (copylabel == -1) {
2458 strcpy(root->fs_info->super_copy->label, fslabel);
2459 fprintf(stderr, "set label to '%s'\n", fslabel);
2462 ret = close_ctree(root);
2463 if (ret) {
2464 fprintf(stderr, "error during close_ctree %d\n", ret);
2465 goto fail;
2467 convert_close_fs(&cctx);
2468 clean_convert_context(&cctx);
2471 * If this step succeed, we get a mountable btrfs. Otherwise
2472 * the source fs is left unchanged.
2474 ret = migrate_super_block(fd, mkfs_cfg.super_bytenr, blocksize);
2475 if (ret) {
2476 fprintf(stderr, "unable to migrate super block\n");
2477 goto fail;
2479 is_btrfs = 1;
2481 root = open_ctree_fd(fd, devname, 0,
2482 OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2483 if (!root) {
2484 fprintf(stderr, "unable to open ctree\n");
2485 goto fail;
2487 root->fs_info->finalize_on_close = 1;
2488 close_ctree(root);
2489 close(fd);
2491 printf("conversion complete.\n");
2492 return 0;
2493 fail:
2494 clean_convert_context(&cctx);
2495 if (fd != -1)
2496 close(fd);
2497 if (is_btrfs)
2498 fprintf(stderr,
2499 "WARNING: an error occurred during chunk mapping fixup, filesystem mountable but not finalized\n");
2500 else
2501 fprintf(stderr, "conversion aborted\n");
2502 return -1;
2506 * Check if a non 1:1 mapped chunk can be rolled back.
2507 * For new convert, it's OK while for old convert it's not.
2509 static int may_rollback_chunk(struct btrfs_fs_info *fs_info, u64 bytenr)
2511 struct btrfs_block_group_cache *bg;
2512 struct btrfs_key key;
2513 struct btrfs_path path;
2514 struct btrfs_root *extent_root = fs_info->extent_root;
2515 u64 bg_start;
2516 u64 bg_end;
2517 int ret;
2519 bg = btrfs_lookup_first_block_group(fs_info, bytenr);
2520 if (!bg)
2521 return -ENOENT;
2522 bg_start = bg->key.objectid;
2523 bg_end = bg->key.objectid + bg->key.offset;
2525 key.objectid = bg_end;
2526 key.type = BTRFS_METADATA_ITEM_KEY;
2527 key.offset = 0;
2528 btrfs_init_path(&path);
2530 ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0);
2531 if (ret < 0)
2532 return ret;
2534 while (1) {
2535 struct btrfs_extent_item *ei;
2537 ret = btrfs_previous_extent_item(extent_root, &path, bg_start);
2538 if (ret > 0) {
2539 ret = 0;
2540 break;
2542 if (ret < 0)
2543 break;
2545 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2546 if (key.type == BTRFS_METADATA_ITEM_KEY)
2547 continue;
2548 /* Now it's EXTENT_ITEM_KEY only */
2549 ei = btrfs_item_ptr(path.nodes[0], path.slots[0],
2550 struct btrfs_extent_item);
2552 * Found data extent, means this is old convert must follow 1:1
2553 * mapping.
2555 if (btrfs_extent_flags(path.nodes[0], ei)
2556 & BTRFS_EXTENT_FLAG_DATA) {
2557 ret = -EINVAL;
2558 break;
2561 btrfs_release_path(&path);
2562 return ret;
2565 static int may_rollback(struct btrfs_root *root)
2567 struct btrfs_fs_info *info = root->fs_info;
2568 struct btrfs_multi_bio *multi = NULL;
2569 u64 bytenr;
2570 u64 length;
2571 u64 physical;
2572 u64 total_bytes;
2573 int num_stripes;
2574 int ret;
2576 if (btrfs_super_num_devices(info->super_copy) != 1)
2577 goto fail;
2579 bytenr = BTRFS_SUPER_INFO_OFFSET;
2580 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2582 while (1) {
2583 ret = btrfs_map_block(&info->mapping_tree, WRITE, bytenr,
2584 &length, &multi, 0, NULL);
2585 if (ret) {
2586 if (ret == -ENOENT) {
2587 /* removed block group at the tail */
2588 if (length == (u64)-1)
2589 break;
2591 /* removed block group in the middle */
2592 goto next;
2594 goto fail;
2597 num_stripes = multi->num_stripes;
2598 physical = multi->stripes[0].physical;
2599 kfree(multi);
2601 if (num_stripes != 1) {
2602 error("num stripes for bytenr %llu is not 1", bytenr);
2603 goto fail;
2607 * Extra check for new convert, as metadata chunk from new
2608 * convert is much more free than old convert, it doesn't need
2609 * to do 1:1 mapping.
2611 if (physical != bytenr) {
2613 * Check if it's a metadata chunk and has only metadata
2614 * extent.
2616 ret = may_rollback_chunk(info, bytenr);
2617 if (ret < 0)
2618 goto fail;
2620 next:
2621 bytenr += length;
2622 if (bytenr >= total_bytes)
2623 break;
2625 return 0;
2626 fail:
2627 return -1;
2630 static int do_rollback(const char *devname)
2632 int fd = -1;
2633 int ret;
2634 int i;
2635 struct btrfs_root *root;
2636 struct btrfs_root *image_root;
2637 struct btrfs_root *chunk_root;
2638 struct btrfs_dir_item *dir;
2639 struct btrfs_inode_item *inode;
2640 struct btrfs_file_extent_item *fi;
2641 struct btrfs_trans_handle *trans;
2642 struct extent_buffer *leaf;
2643 struct btrfs_block_group_cache *cache1;
2644 struct btrfs_block_group_cache *cache2;
2645 struct btrfs_key key;
2646 struct btrfs_path path;
2647 struct extent_io_tree io_tree;
2648 char *buf = NULL;
2649 char *name;
2650 u64 bytenr;
2651 u64 num_bytes;
2652 u64 root_dir;
2653 u64 objectid;
2654 u64 offset;
2655 u64 start;
2656 u64 end;
2657 u64 sb_bytenr;
2658 u64 first_free;
2659 u64 total_bytes;
2660 u32 sectorsize;
2662 extent_io_tree_init(&io_tree);
2664 fd = open(devname, O_RDWR);
2665 if (fd < 0) {
2666 fprintf(stderr, "unable to open %s\n", devname);
2667 goto fail;
2669 root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES);
2670 if (!root) {
2671 fprintf(stderr, "unable to open ctree\n");
2672 goto fail;
2674 ret = may_rollback(root);
2675 if (ret < 0) {
2676 fprintf(stderr, "unable to do rollback\n");
2677 goto fail;
2680 sectorsize = root->sectorsize;
2681 buf = malloc(sectorsize);
2682 if (!buf) {
2683 fprintf(stderr, "unable to allocate memory\n");
2684 goto fail;
2687 btrfs_init_path(&path);
2689 key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2690 key.type = BTRFS_ROOT_BACKREF_KEY;
2691 key.offset = BTRFS_FS_TREE_OBJECTID;
2692 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0,
2694 btrfs_release_path(&path);
2695 if (ret > 0) {
2696 fprintf(stderr,
2697 "ERROR: unable to convert ext2 image subvolume, is it deleted?\n");
2698 goto fail;
2699 } else if (ret < 0) {
2700 fprintf(stderr,
2701 "ERROR: unable to open ext2_saved, id=%llu: %s\n",
2702 (unsigned long long)key.objectid, strerror(-ret));
2703 goto fail;
2706 key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2707 key.type = BTRFS_ROOT_ITEM_KEY;
2708 key.offset = (u64)-1;
2709 image_root = btrfs_read_fs_root(root->fs_info, &key);
2710 if (!image_root || IS_ERR(image_root)) {
2711 fprintf(stderr, "unable to open subvol %llu\n",
2712 (unsigned long long)key.objectid);
2713 goto fail;
2716 name = "image";
2717 root_dir = btrfs_root_dirid(&root->root_item);
2718 dir = btrfs_lookup_dir_item(NULL, image_root, &path,
2719 root_dir, name, strlen(name), 0);
2720 if (!dir || IS_ERR(dir)) {
2721 fprintf(stderr, "unable to find file %s\n", name);
2722 goto fail;
2724 leaf = path.nodes[0];
2725 btrfs_dir_item_key_to_cpu(leaf, dir, &key);
2726 btrfs_release_path(&path);
2728 objectid = key.objectid;
2730 ret = btrfs_lookup_inode(NULL, image_root, &path, &key, 0);
2731 if (ret) {
2732 fprintf(stderr, "unable to find inode item\n");
2733 goto fail;
2735 leaf = path.nodes[0];
2736 inode = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item);
2737 total_bytes = btrfs_inode_size(leaf, inode);
2738 btrfs_release_path(&path);
2740 key.objectid = objectid;
2741 key.offset = 0;
2742 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
2743 ret = btrfs_search_slot(NULL, image_root, &key, &path, 0, 0);
2744 if (ret != 0) {
2745 fprintf(stderr, "unable to find first file extent\n");
2746 btrfs_release_path(&path);
2747 goto fail;
2750 /* build mapping tree for the relocated blocks */
2751 for (offset = 0; offset < total_bytes; ) {
2752 leaf = path.nodes[0];
2753 if (path.slots[0] >= btrfs_header_nritems(leaf)) {
2754 ret = btrfs_next_leaf(root, &path);
2755 if (ret != 0)
2756 break;
2757 continue;
2760 btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
2761 if (key.objectid != objectid || key.offset != offset ||
2762 btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2763 break;
2765 fi = btrfs_item_ptr(leaf, path.slots[0],
2766 struct btrfs_file_extent_item);
2767 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2768 break;
2769 if (btrfs_file_extent_compression(leaf, fi) ||
2770 btrfs_file_extent_encryption(leaf, fi) ||
2771 btrfs_file_extent_other_encoding(leaf, fi))
2772 break;
2774 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2775 /* skip holes and direct mapped extents */
2776 if (bytenr == 0 || bytenr == offset)
2777 goto next_extent;
2779 bytenr += btrfs_file_extent_offset(leaf, fi);
2780 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
2782 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2783 cache2 = btrfs_lookup_block_group(root->fs_info,
2784 offset + num_bytes - 1);
2786 * Here we must take consideration of old and new convert
2787 * behavior.
2788 * For old convert case, sign, there is no consist chunk type
2789 * that will cover the extent. META/DATA/SYS are all possible.
2790 * Just ensure relocate one is in SYS chunk.
2791 * For new convert case, they are all covered by DATA chunk.
2793 * So, there is not valid chunk type check for it now.
2795 if (cache1 != cache2)
2796 break;
2798 set_extent_bits(&io_tree, offset, offset + num_bytes - 1,
2799 EXTENT_LOCKED, GFP_NOFS);
2800 set_state_private(&io_tree, offset, bytenr);
2801 next_extent:
2802 offset += btrfs_file_extent_num_bytes(leaf, fi);
2803 path.slots[0]++;
2805 btrfs_release_path(&path);
2807 if (offset < total_bytes) {
2808 fprintf(stderr, "unable to build extent mapping\n");
2809 fprintf(stderr, "converted filesystem after balance is unable to rollback\n");
2810 goto fail;
2813 first_free = BTRFS_SUPER_INFO_OFFSET + 2 * sectorsize - 1;
2814 first_free &= ~((u64)sectorsize - 1);
2815 /* backup for extent #0 should exist */
2816 if(!test_range_bit(&io_tree, 0, first_free - 1, EXTENT_LOCKED, 1)) {
2817 fprintf(stderr, "no backup for the first extent\n");
2818 goto fail;
2820 /* force no allocation from system block group */
2821 root->fs_info->system_allocs = -1;
2822 trans = btrfs_start_transaction(root, 1);
2823 BUG_ON(!trans);
2825 * recow the whole chunk tree, this will remove all chunk tree blocks
2826 * from system block group
2828 chunk_root = root->fs_info->chunk_root;
2829 memset(&key, 0, sizeof(key));
2830 while (1) {
2831 ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
2832 if (ret < 0)
2833 break;
2835 ret = btrfs_next_leaf(chunk_root, &path);
2836 if (ret)
2837 break;
2839 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2840 btrfs_release_path(&path);
2842 btrfs_release_path(&path);
2844 offset = 0;
2845 num_bytes = 0;
2846 while(1) {
2847 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2848 if (!cache1)
2849 break;
2851 if (cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2852 num_bytes += btrfs_block_group_used(&cache1->item);
2854 offset = cache1->key.objectid + cache1->key.offset;
2856 /* only extent #0 left in system block group? */
2857 if (num_bytes > first_free) {
2858 fprintf(stderr, "unable to empty system block group\n");
2859 goto fail;
2861 /* create a system chunk that maps the whole device */
2862 ret = prepare_system_chunk_sb(root->fs_info->super_copy);
2863 if (ret) {
2864 fprintf(stderr, "unable to update system chunk\n");
2865 goto fail;
2868 ret = btrfs_commit_transaction(trans, root);
2869 BUG_ON(ret);
2871 ret = close_ctree(root);
2872 if (ret) {
2873 fprintf(stderr, "error during close_ctree %d\n", ret);
2874 goto fail;
2877 /* zero btrfs super block mirrors */
2878 memset(buf, 0, sectorsize);
2879 for (i = 1 ; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2880 bytenr = btrfs_sb_offset(i);
2881 if (bytenr >= total_bytes)
2882 break;
2883 ret = pwrite(fd, buf, sectorsize, bytenr);
2884 if (ret != sectorsize) {
2885 fprintf(stderr,
2886 "error during zeroing superblock %d: %d\n",
2887 i, ret);
2888 goto fail;
2892 sb_bytenr = (u64)-1;
2893 /* copy all relocated blocks back */
2894 while(1) {
2895 ret = find_first_extent_bit(&io_tree, 0, &start, &end,
2896 EXTENT_LOCKED);
2897 if (ret)
2898 break;
2900 ret = get_state_private(&io_tree, start, &bytenr);
2901 BUG_ON(ret);
2903 clear_extent_bits(&io_tree, start, end, EXTENT_LOCKED,
2904 GFP_NOFS);
2906 while (start <= end) {
2907 if (start == BTRFS_SUPER_INFO_OFFSET) {
2908 sb_bytenr = bytenr;
2909 goto next_sector;
2911 ret = pread(fd, buf, sectorsize, bytenr);
2912 if (ret < 0) {
2913 fprintf(stderr, "error during pread %d\n", ret);
2914 goto fail;
2916 BUG_ON(ret != sectorsize);
2917 ret = pwrite(fd, buf, sectorsize, start);
2918 if (ret < 0) {
2919 fprintf(stderr, "error during pwrite %d\n", ret);
2920 goto fail;
2922 BUG_ON(ret != sectorsize);
2923 next_sector:
2924 start += sectorsize;
2925 bytenr += sectorsize;
2929 ret = fsync(fd);
2930 if (ret) {
2931 fprintf(stderr, "error during fsync %d\n", ret);
2932 goto fail;
2935 * finally, overwrite btrfs super block.
2937 ret = pread(fd, buf, sectorsize, sb_bytenr);
2938 if (ret < 0) {
2939 fprintf(stderr, "error during pread %d\n", ret);
2940 goto fail;
2942 BUG_ON(ret != sectorsize);
2943 ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET);
2944 if (ret < 0) {
2945 fprintf(stderr, "error during pwrite %d\n", ret);
2946 goto fail;
2948 BUG_ON(ret != sectorsize);
2949 ret = fsync(fd);
2950 if (ret) {
2951 fprintf(stderr, "error during fsync %d\n", ret);
2952 goto fail;
2955 close(fd);
2956 free(buf);
2957 extent_io_tree_cleanup(&io_tree);
2958 printf("rollback complete.\n");
2959 return 0;
2961 fail:
2962 if (fd != -1)
2963 close(fd);
2964 free(buf);
2965 fprintf(stderr, "rollback aborted.\n");
2966 return -1;
2969 static void print_usage(void)
2971 printf("usage: btrfs-convert [options] device\n");
2972 printf("options:\n");
2973 printf("\t-d|--no-datasum disable data checksum, sets NODATASUM\n");
2974 printf("\t-i|--no-xattr ignore xattrs and ACLs\n");
2975 printf("\t-n|--no-inline disable inlining of small files to metadata\n");
2976 printf("\t-N|--nodesize SIZE set filesystem metadata nodesize\n");
2977 printf("\t-r|--rollback roll back to the original filesystem\n");
2978 printf("\t-l|--label LABEL set filesystem label\n");
2979 printf("\t-L|--copy-label use label from converted filesystem\n");
2980 printf("\t-p|--progress show converting progress (default)\n");
2981 printf("\t-O|--features LIST comma separated list of filesystem features\n");
2982 printf("\t--no-progress show only overview, not the detailed progress\n");
2983 printf("\n");
2984 printf("Suported filesystems:\n");
2985 printf("\text2/3/4: %s\n", BTRFSCONVERT_EXT2 ? "yes" : "no");
2988 int main(int argc, char *argv[])
2990 int ret;
2991 int packing = 1;
2992 int noxattr = 0;
2993 int datacsum = 1;
2994 u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
2995 BTRFS_MKFS_DEFAULT_NODE_SIZE);
2996 int rollback = 0;
2997 int copylabel = 0;
2998 int usage_error = 0;
2999 int progress = 1;
3000 char *file;
3001 char fslabel[BTRFS_LABEL_SIZE];
3002 u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
3004 while(1) {
3005 enum { GETOPT_VAL_NO_PROGRESS = 256 };
3006 static const struct option long_options[] = {
3007 { "no-progress", no_argument, NULL,
3008 GETOPT_VAL_NO_PROGRESS },
3009 { "no-datasum", no_argument, NULL, 'd' },
3010 { "no-inline", no_argument, NULL, 'n' },
3011 { "no-xattr", no_argument, NULL, 'i' },
3012 { "rollback", no_argument, NULL, 'r' },
3013 { "features", required_argument, NULL, 'O' },
3014 { "progress", no_argument, NULL, 'p' },
3015 { "label", required_argument, NULL, 'l' },
3016 { "copy-label", no_argument, NULL, 'L' },
3017 { "nodesize", required_argument, NULL, 'N' },
3018 { "help", no_argument, NULL, GETOPT_VAL_HELP},
3019 { NULL, 0, NULL, 0 }
3021 int c = getopt_long(argc, argv, "dinN:rl:LpO:", long_options, NULL);
3023 if (c < 0)
3024 break;
3025 switch(c) {
3026 case 'd':
3027 datacsum = 0;
3028 break;
3029 case 'i':
3030 noxattr = 1;
3031 break;
3032 case 'n':
3033 packing = 0;
3034 break;
3035 case 'N':
3036 nodesize = parse_size(optarg);
3037 break;
3038 case 'r':
3039 rollback = 1;
3040 break;
3041 case 'l':
3042 copylabel = -1;
3043 if (strlen(optarg) >= BTRFS_LABEL_SIZE) {
3044 fprintf(stderr,
3045 "WARNING: label too long, trimmed to %d bytes\n",
3046 BTRFS_LABEL_SIZE - 1);
3048 __strncpy_null(fslabel, optarg, BTRFS_LABEL_SIZE - 1);
3049 break;
3050 case 'L':
3051 copylabel = 1;
3052 break;
3053 case 'p':
3054 progress = 1;
3055 break;
3056 case 'O': {
3057 char *orig = strdup(optarg);
3058 char *tmp = orig;
3060 tmp = btrfs_parse_fs_features(tmp, &features);
3061 if (tmp) {
3062 fprintf(stderr,
3063 "Unrecognized filesystem feature '%s'\n",
3064 tmp);
3065 free(orig);
3066 exit(1);
3068 free(orig);
3069 if (features & BTRFS_FEATURE_LIST_ALL) {
3070 btrfs_list_all_fs_features(
3071 ~BTRFS_CONVERT_ALLOWED_FEATURES);
3072 exit(0);
3074 if (features & ~BTRFS_CONVERT_ALLOWED_FEATURES) {
3075 char buf[64];
3077 btrfs_parse_features_to_string(buf,
3078 features & ~BTRFS_CONVERT_ALLOWED_FEATURES);
3079 fprintf(stderr,
3080 "ERROR: features not allowed for convert: %s\n",
3081 buf);
3082 exit(1);
3085 break;
3087 case GETOPT_VAL_NO_PROGRESS:
3088 progress = 0;
3089 break;
3090 case GETOPT_VAL_HELP:
3091 default:
3092 print_usage();
3093 return c != GETOPT_VAL_HELP;
3096 set_argv0(argv);
3097 if (check_argc_exact(argc - optind, 1)) {
3098 print_usage();
3099 return 1;
3102 if (rollback && (!datacsum || noxattr || !packing)) {
3103 fprintf(stderr,
3104 "Usage error: -d, -i, -n options do not apply to rollback\n");
3105 usage_error++;
3108 if (usage_error) {
3109 print_usage();
3110 return 1;
3113 file = argv[optind];
3114 ret = check_mounted(file);
3115 if (ret < 0) {
3116 fprintf(stderr, "Could not check mount status: %s\n",
3117 strerror(-ret));
3118 return 1;
3119 } else if (ret) {
3120 fprintf(stderr, "%s is mounted\n", file);
3121 return 1;
3124 if (rollback) {
3125 ret = do_rollback(file);
3126 } else {
3127 ret = do_convert(file, datacsum, packing, noxattr, nodesize,
3128 copylabel, fslabel, progress, features);
3130 if (ret)
3131 return 1;
3132 return 0;