btrfs-progs: mkfs: add option to skip trim
[btrfs-progs-unstable/devel.git] / volumes.c
blob8dca5e10a12b1c1273cd1d3f8c345a0298f416ba
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #define _XOPEN_SOURCE 600
19 #define __USE_XOPEN2K
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <uuid/uuid.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
33 struct stripe {
34 struct btrfs_device *dev;
35 u64 physical;
38 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
39 (sizeof(struct btrfs_bio_stripe) * (n)))
41 static LIST_HEAD(fs_uuids);
43 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
44 u8 *uuid)
46 struct btrfs_device *dev;
47 struct list_head *cur;
49 list_for_each(cur, head) {
50 dev = list_entry(cur, struct btrfs_device, dev_list);
51 if (dev->devid == devid &&
52 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
53 return dev;
56 return NULL;
59 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
61 struct list_head *cur;
62 struct btrfs_fs_devices *fs_devices;
64 list_for_each(cur, &fs_uuids) {
65 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
66 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
67 return fs_devices;
69 return NULL;
72 static int device_list_add(const char *path,
73 struct btrfs_super_block *disk_super,
74 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
76 struct btrfs_device *device;
77 struct btrfs_fs_devices *fs_devices;
78 u64 found_transid = btrfs_super_generation(disk_super);
80 fs_devices = find_fsid(disk_super->fsid);
81 if (!fs_devices) {
82 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
83 if (!fs_devices)
84 return -ENOMEM;
85 INIT_LIST_HEAD(&fs_devices->devices);
86 list_add(&fs_devices->list, &fs_uuids);
87 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
88 fs_devices->latest_devid = devid;
89 fs_devices->latest_trans = found_transid;
90 fs_devices->lowest_devid = (u64)-1;
91 device = NULL;
92 } else {
93 device = __find_device(&fs_devices->devices, devid,
94 disk_super->dev_item.uuid);
96 if (!device) {
97 device = kzalloc(sizeof(*device), GFP_NOFS);
98 if (!device) {
99 /* we can safely leave the fs_devices entry around */
100 return -ENOMEM;
102 device->devid = devid;
103 memcpy(device->uuid, disk_super->dev_item.uuid,
104 BTRFS_UUID_SIZE);
105 device->name = kstrdup(path, GFP_NOFS);
106 if (!device->name) {
107 kfree(device);
108 return -ENOMEM;
110 device->label = kstrdup(disk_super->label, GFP_NOFS);
111 device->total_devs = btrfs_super_num_devices(disk_super);
112 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
113 device->total_bytes =
114 btrfs_stack_device_total_bytes(&disk_super->dev_item);
115 device->bytes_used =
116 btrfs_stack_device_bytes_used(&disk_super->dev_item);
117 list_add(&device->dev_list, &fs_devices->devices);
118 device->fs_devices = fs_devices;
119 } else if (!device->name || strcmp(device->name, path)) {
120 char *name = strdup(path);
121 if (!name)
122 return -ENOMEM;
123 kfree(device->name);
124 device->name = name;
128 if (found_transid > fs_devices->latest_trans) {
129 fs_devices->latest_devid = devid;
130 fs_devices->latest_trans = found_transid;
132 if (fs_devices->lowest_devid > devid) {
133 fs_devices->lowest_devid = devid;
135 *fs_devices_ret = fs_devices;
136 return 0;
139 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
141 struct btrfs_fs_devices *seed_devices;
142 struct list_head *cur;
143 struct btrfs_device *device;
144 again:
145 list_for_each(cur, &fs_devices->devices) {
146 device = list_entry(cur, struct btrfs_device, dev_list);
147 close(device->fd);
148 device->fd = -1;
149 device->writeable = 0;
152 seed_devices = fs_devices->seed;
153 fs_devices->seed = NULL;
154 if (seed_devices) {
155 fs_devices = seed_devices;
156 goto again;
159 return 0;
162 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
164 int fd;
165 struct list_head *head = &fs_devices->devices;
166 struct list_head *cur;
167 struct btrfs_device *device;
168 int ret;
170 list_for_each(cur, head) {
171 device = list_entry(cur, struct btrfs_device, dev_list);
173 fd = open(device->name, flags);
174 if (fd < 0) {
175 ret = -errno;
176 goto fail;
179 if (device->devid == fs_devices->latest_devid)
180 fs_devices->latest_bdev = fd;
181 if (device->devid == fs_devices->lowest_devid)
182 fs_devices->lowest_bdev = fd;
183 device->fd = fd;
184 if (flags == O_RDWR)
185 device->writeable = 1;
187 return 0;
188 fail:
189 btrfs_close_devices(fs_devices);
190 return ret;
193 int btrfs_scan_one_device(int fd, const char *path,
194 struct btrfs_fs_devices **fs_devices_ret,
195 u64 *total_devs, u64 super_offset)
197 struct btrfs_super_block *disk_super;
198 char *buf;
199 int ret;
200 u64 devid;
201 char uuidbuf[37];
203 buf = malloc(4096);
204 if (!buf) {
205 ret = -ENOMEM;
206 goto error;
208 disk_super = (struct btrfs_super_block *)buf;
209 ret = btrfs_read_dev_super(fd, disk_super, super_offset);
210 if (ret < 0) {
211 ret = -EIO;
212 goto error_brelse;
214 devid = le64_to_cpu(disk_super->dev_item.devid);
215 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
216 *total_devs = 1;
217 else
218 *total_devs = btrfs_super_num_devices(disk_super);
219 uuid_unparse(disk_super->fsid, uuidbuf);
221 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
223 error_brelse:
224 free(buf);
225 error:
226 return ret;
230 * this uses a pretty simple search, the expectation is that it is
231 * called very infrequently and that a given device has a small number
232 * of extents
234 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
235 struct btrfs_device *device,
236 struct btrfs_path *path,
237 u64 num_bytes, u64 *start)
239 struct btrfs_key key;
240 struct btrfs_root *root = device->dev_root;
241 struct btrfs_dev_extent *dev_extent = NULL;
242 u64 hole_size = 0;
243 u64 last_byte = 0;
244 u64 search_start = 0;
245 u64 search_end = device->total_bytes;
246 int ret;
247 int slot = 0;
248 int start_found;
249 struct extent_buffer *l;
251 start_found = 0;
252 path->reada = 2;
254 /* FIXME use last free of some kind */
256 /* we don't want to overwrite the superblock on the drive,
257 * so we make sure to start at an offset of at least 1MB
259 search_start = max((u64)1024 * 1024, search_start);
261 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
262 search_start = max(root->fs_info->alloc_start, search_start);
264 key.objectid = device->devid;
265 key.offset = search_start;
266 key.type = BTRFS_DEV_EXTENT_KEY;
267 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
268 if (ret < 0)
269 goto error;
270 ret = btrfs_previous_item(root, path, 0, key.type);
271 if (ret < 0)
272 goto error;
273 l = path->nodes[0];
274 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
275 while (1) {
276 l = path->nodes[0];
277 slot = path->slots[0];
278 if (slot >= btrfs_header_nritems(l)) {
279 ret = btrfs_next_leaf(root, path);
280 if (ret == 0)
281 continue;
282 if (ret < 0)
283 goto error;
284 no_more_items:
285 if (!start_found) {
286 if (search_start >= search_end) {
287 ret = -ENOSPC;
288 goto error;
290 *start = search_start;
291 start_found = 1;
292 goto check_pending;
294 *start = last_byte > search_start ?
295 last_byte : search_start;
296 if (search_end <= *start) {
297 ret = -ENOSPC;
298 goto error;
300 goto check_pending;
302 btrfs_item_key_to_cpu(l, &key, slot);
304 if (key.objectid < device->devid)
305 goto next;
307 if (key.objectid > device->devid)
308 goto no_more_items;
310 if (key.offset >= search_start && key.offset > last_byte &&
311 start_found) {
312 if (last_byte < search_start)
313 last_byte = search_start;
314 hole_size = key.offset - last_byte;
315 if (key.offset > last_byte &&
316 hole_size >= num_bytes) {
317 *start = last_byte;
318 goto check_pending;
321 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
322 goto next;
325 start_found = 1;
326 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
327 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
328 next:
329 path->slots[0]++;
330 cond_resched();
332 check_pending:
333 /* we have to make sure we didn't find an extent that has already
334 * been allocated by the map tree or the original allocation
336 btrfs_release_path(root, path);
337 BUG_ON(*start < search_start);
339 if (*start + num_bytes > search_end) {
340 ret = -ENOSPC;
341 goto error;
343 /* check for pending inserts here */
344 return 0;
346 error:
347 btrfs_release_path(root, path);
348 return ret;
351 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
352 struct btrfs_device *device,
353 u64 chunk_tree, u64 chunk_objectid,
354 u64 chunk_offset,
355 u64 num_bytes, u64 *start)
357 int ret;
358 struct btrfs_path *path;
359 struct btrfs_root *root = device->dev_root;
360 struct btrfs_dev_extent *extent;
361 struct extent_buffer *leaf;
362 struct btrfs_key key;
364 path = btrfs_alloc_path();
365 if (!path)
366 return -ENOMEM;
368 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
369 if (ret) {
370 goto err;
373 key.objectid = device->devid;
374 key.offset = *start;
375 key.type = BTRFS_DEV_EXTENT_KEY;
376 ret = btrfs_insert_empty_item(trans, root, path, &key,
377 sizeof(*extent));
378 BUG_ON(ret);
380 leaf = path->nodes[0];
381 extent = btrfs_item_ptr(leaf, path->slots[0],
382 struct btrfs_dev_extent);
383 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
384 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
385 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
387 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
388 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
389 BTRFS_UUID_SIZE);
391 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
392 btrfs_mark_buffer_dirty(leaf);
393 err:
394 btrfs_free_path(path);
395 return ret;
398 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
400 struct btrfs_path *path;
401 int ret;
402 struct btrfs_key key;
403 struct btrfs_chunk *chunk;
404 struct btrfs_key found_key;
406 path = btrfs_alloc_path();
407 BUG_ON(!path);
409 key.objectid = objectid;
410 key.offset = (u64)-1;
411 key.type = BTRFS_CHUNK_ITEM_KEY;
413 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
414 if (ret < 0)
415 goto error;
417 BUG_ON(ret == 0);
419 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
420 if (ret) {
421 *offset = 0;
422 } else {
423 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
424 path->slots[0]);
425 if (found_key.objectid != objectid)
426 *offset = 0;
427 else {
428 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
429 struct btrfs_chunk);
430 *offset = found_key.offset +
431 btrfs_chunk_length(path->nodes[0], chunk);
434 ret = 0;
435 error:
436 btrfs_free_path(path);
437 return ret;
440 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
441 u64 *objectid)
443 int ret;
444 struct btrfs_key key;
445 struct btrfs_key found_key;
447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
448 key.type = BTRFS_DEV_ITEM_KEY;
449 key.offset = (u64)-1;
451 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
452 if (ret < 0)
453 goto error;
455 BUG_ON(ret == 0);
457 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
458 BTRFS_DEV_ITEM_KEY);
459 if (ret) {
460 *objectid = 1;
461 } else {
462 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
463 path->slots[0]);
464 *objectid = found_key.offset + 1;
466 ret = 0;
467 error:
468 btrfs_release_path(root, path);
469 return ret;
473 * the device information is stored in the chunk root
474 * the btrfs_device struct should be fully filled in
476 int btrfs_add_device(struct btrfs_trans_handle *trans,
477 struct btrfs_root *root,
478 struct btrfs_device *device)
480 int ret;
481 struct btrfs_path *path;
482 struct btrfs_dev_item *dev_item;
483 struct extent_buffer *leaf;
484 struct btrfs_key key;
485 unsigned long ptr;
486 u64 free_devid = 0;
488 root = root->fs_info->chunk_root;
490 path = btrfs_alloc_path();
491 if (!path)
492 return -ENOMEM;
494 ret = find_next_devid(root, path, &free_devid);
495 if (ret)
496 goto out;
498 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
499 key.type = BTRFS_DEV_ITEM_KEY;
500 key.offset = free_devid;
502 ret = btrfs_insert_empty_item(trans, root, path, &key,
503 sizeof(*dev_item));
504 if (ret)
505 goto out;
507 leaf = path->nodes[0];
508 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
510 device->devid = free_devid;
511 btrfs_set_device_id(leaf, dev_item, device->devid);
512 btrfs_set_device_generation(leaf, dev_item, 0);
513 btrfs_set_device_type(leaf, dev_item, device->type);
514 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
515 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
516 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
517 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
518 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
519 btrfs_set_device_group(leaf, dev_item, 0);
520 btrfs_set_device_seek_speed(leaf, dev_item, 0);
521 btrfs_set_device_bandwidth(leaf, dev_item, 0);
522 btrfs_set_device_start_offset(leaf, dev_item, 0);
524 ptr = (unsigned long)btrfs_device_uuid(dev_item);
525 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
526 ptr = (unsigned long)btrfs_device_fsid(dev_item);
527 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
528 btrfs_mark_buffer_dirty(leaf);
529 ret = 0;
531 out:
532 btrfs_free_path(path);
533 return ret;
536 int btrfs_update_device(struct btrfs_trans_handle *trans,
537 struct btrfs_device *device)
539 int ret;
540 struct btrfs_path *path;
541 struct btrfs_root *root;
542 struct btrfs_dev_item *dev_item;
543 struct extent_buffer *leaf;
544 struct btrfs_key key;
546 root = device->dev_root->fs_info->chunk_root;
548 path = btrfs_alloc_path();
549 if (!path)
550 return -ENOMEM;
552 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
553 key.type = BTRFS_DEV_ITEM_KEY;
554 key.offset = device->devid;
556 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
557 if (ret < 0)
558 goto out;
560 if (ret > 0) {
561 ret = -ENOENT;
562 goto out;
565 leaf = path->nodes[0];
566 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
568 btrfs_set_device_id(leaf, dev_item, device->devid);
569 btrfs_set_device_type(leaf, dev_item, device->type);
570 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
571 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
572 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
573 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
574 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
575 btrfs_mark_buffer_dirty(leaf);
577 out:
578 btrfs_free_path(path);
579 return ret;
582 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_key *key,
585 struct btrfs_chunk *chunk, int item_size)
587 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
588 struct btrfs_disk_key disk_key;
589 u32 array_size;
590 u8 *ptr;
592 array_size = btrfs_super_sys_array_size(super_copy);
593 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
594 return -EFBIG;
596 ptr = super_copy->sys_chunk_array + array_size;
597 btrfs_cpu_key_to_disk(&disk_key, key);
598 memcpy(ptr, &disk_key, sizeof(disk_key));
599 ptr += sizeof(disk_key);
600 memcpy(ptr, chunk, item_size);
601 item_size += sizeof(disk_key);
602 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
603 return 0;
606 static u64 div_factor(u64 num, int factor)
608 if (factor == 10)
609 return num;
610 num *= factor;
611 return num / 10;
614 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
615 int sub_stripes)
617 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
618 return calc_size;
619 else if (type & BTRFS_BLOCK_GROUP_RAID10)
620 return calc_size * (num_stripes / sub_stripes);
621 else
622 return calc_size * num_stripes;
626 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
627 struct btrfs_root *extent_root, u64 *start,
628 u64 *num_bytes, u64 type)
630 u64 dev_offset;
631 struct btrfs_fs_info *info = extent_root->fs_info;
632 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
633 struct btrfs_stripe *stripes;
634 struct btrfs_device *device = NULL;
635 struct btrfs_chunk *chunk;
636 struct list_head private_devs;
637 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
638 struct list_head *cur;
639 struct map_lookup *map;
640 int min_stripe_size = 1 * 1024 * 1024;
641 u64 calc_size = 8 * 1024 * 1024;
642 u64 min_free;
643 u64 max_chunk_size = 4 * calc_size;
644 u64 avail;
645 u64 max_avail = 0;
646 u64 percent_max;
647 int num_stripes = 1;
648 int min_stripes = 1;
649 int sub_stripes = 0;
650 int looped = 0;
651 int ret;
652 int index;
653 int stripe_len = 64 * 1024;
654 struct btrfs_key key;
656 if (list_empty(dev_list)) {
657 return -ENOSPC;
660 if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
661 BTRFS_BLOCK_GROUP_RAID10 |
662 BTRFS_BLOCK_GROUP_DUP)) {
663 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
664 calc_size = 8 * 1024 * 1024;
665 max_chunk_size = calc_size * 2;
666 min_stripe_size = 1 * 1024 * 1024;
667 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
668 calc_size = 1024 * 1024 * 1024;
669 max_chunk_size = 10 * calc_size;
670 min_stripe_size = 64 * 1024 * 1024;
671 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
672 calc_size = 1024 * 1024 * 1024;
673 max_chunk_size = 4 * calc_size;
674 min_stripe_size = 32 * 1024 * 1024;
677 if (type & BTRFS_BLOCK_GROUP_RAID1) {
678 num_stripes = min_t(u64, 2,
679 btrfs_super_num_devices(&info->super_copy));
680 if (num_stripes < 2)
681 return -ENOSPC;
682 min_stripes = 2;
684 if (type & BTRFS_BLOCK_GROUP_DUP) {
685 num_stripes = 2;
686 min_stripes = 2;
688 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
689 num_stripes = btrfs_super_num_devices(&info->super_copy);
690 min_stripes = 2;
692 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
693 num_stripes = btrfs_super_num_devices(&info->super_copy);
694 if (num_stripes < 4)
695 return -ENOSPC;
696 num_stripes &= ~(u32)1;
697 sub_stripes = 2;
698 min_stripes = 4;
701 /* we don't want a chunk larger than 10% of the FS */
702 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
703 max_chunk_size = min(percent_max, max_chunk_size);
705 again:
706 if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
707 max_chunk_size) {
708 calc_size = max_chunk_size;
709 calc_size /= num_stripes;
710 calc_size /= stripe_len;
711 calc_size *= stripe_len;
713 /* we don't want tiny stripes */
714 calc_size = max_t(u64, calc_size, min_stripe_size);
716 calc_size /= stripe_len;
717 calc_size *= stripe_len;
718 INIT_LIST_HEAD(&private_devs);
719 cur = dev_list->next;
720 index = 0;
722 if (type & BTRFS_BLOCK_GROUP_DUP)
723 min_free = calc_size * 2;
724 else
725 min_free = calc_size;
727 /* build a private list of devices we will allocate from */
728 while(index < num_stripes) {
729 device = list_entry(cur, struct btrfs_device, dev_list);
730 avail = device->total_bytes - device->bytes_used;
731 cur = cur->next;
732 if (avail >= min_free) {
733 list_move_tail(&device->dev_list, &private_devs);
734 index++;
735 if (type & BTRFS_BLOCK_GROUP_DUP)
736 index++;
737 } else if (avail > max_avail)
738 max_avail = avail;
739 if (cur == dev_list)
740 break;
742 if (index < num_stripes) {
743 list_splice(&private_devs, dev_list);
744 if (index >= min_stripes) {
745 num_stripes = index;
746 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
747 num_stripes /= sub_stripes;
748 num_stripes *= sub_stripes;
750 looped = 1;
751 goto again;
753 if (!looped && max_avail > 0) {
754 looped = 1;
755 calc_size = max_avail;
756 goto again;
758 return -ENOSPC;
760 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
761 key.type = BTRFS_CHUNK_ITEM_KEY;
762 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
763 &key.offset);
764 if (ret)
765 return ret;
767 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
768 if (!chunk)
769 return -ENOMEM;
771 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
772 if (!map) {
773 kfree(chunk);
774 return -ENOMEM;
777 stripes = &chunk->stripe;
778 *num_bytes = chunk_bytes_by_type(type, calc_size,
779 num_stripes, sub_stripes);
780 index = 0;
781 while(index < num_stripes) {
782 struct btrfs_stripe *stripe;
783 BUG_ON(list_empty(&private_devs));
784 cur = private_devs.next;
785 device = list_entry(cur, struct btrfs_device, dev_list);
787 /* loop over this device again if we're doing a dup group */
788 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
789 (index == num_stripes - 1))
790 list_move_tail(&device->dev_list, dev_list);
792 ret = btrfs_alloc_dev_extent(trans, device,
793 info->chunk_root->root_key.objectid,
794 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
795 calc_size, &dev_offset);
796 BUG_ON(ret);
798 device->bytes_used += calc_size;
799 ret = btrfs_update_device(trans, device);
800 BUG_ON(ret);
802 map->stripes[index].dev = device;
803 map->stripes[index].physical = dev_offset;
804 stripe = stripes + index;
805 btrfs_set_stack_stripe_devid(stripe, device->devid);
806 btrfs_set_stack_stripe_offset(stripe, dev_offset);
807 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
808 index++;
810 BUG_ON(!list_empty(&private_devs));
812 /* key was set above */
813 btrfs_set_stack_chunk_length(chunk, *num_bytes);
814 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
815 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
816 btrfs_set_stack_chunk_type(chunk, type);
817 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
818 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
819 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
820 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
821 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
822 map->sector_size = extent_root->sectorsize;
823 map->stripe_len = stripe_len;
824 map->io_align = stripe_len;
825 map->io_width = stripe_len;
826 map->type = type;
827 map->num_stripes = num_stripes;
828 map->sub_stripes = sub_stripes;
830 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
831 btrfs_chunk_item_size(num_stripes));
832 BUG_ON(ret);
833 *start = key.offset;;
835 map->ce.start = key.offset;
836 map->ce.size = *num_bytes;
838 ret = insert_existing_cache_extent(
839 &extent_root->fs_info->mapping_tree.cache_tree,
840 &map->ce);
841 BUG_ON(ret);
843 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
844 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
845 chunk, btrfs_chunk_item_size(num_stripes));
846 BUG_ON(ret);
849 kfree(chunk);
850 return ret;
853 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
854 struct btrfs_root *extent_root, u64 *start,
855 u64 num_bytes, u64 type)
857 u64 dev_offset;
858 struct btrfs_fs_info *info = extent_root->fs_info;
859 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
860 struct btrfs_stripe *stripes;
861 struct btrfs_device *device = NULL;
862 struct btrfs_chunk *chunk;
863 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
864 struct list_head *cur;
865 struct map_lookup *map;
866 u64 calc_size = 8 * 1024 * 1024;
867 int num_stripes = 1;
868 int sub_stripes = 0;
869 int ret;
870 int index;
871 int stripe_len = 64 * 1024;
872 struct btrfs_key key;
874 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
875 key.type = BTRFS_CHUNK_ITEM_KEY;
876 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
877 &key.offset);
878 if (ret)
879 return ret;
881 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
882 if (!chunk)
883 return -ENOMEM;
885 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
886 if (!map) {
887 kfree(chunk);
888 return -ENOMEM;
891 stripes = &chunk->stripe;
892 calc_size = num_bytes;
894 index = 0;
895 cur = dev_list->next;
896 device = list_entry(cur, struct btrfs_device, dev_list);
898 while (index < num_stripes) {
899 struct btrfs_stripe *stripe;
901 ret = btrfs_alloc_dev_extent(trans, device,
902 info->chunk_root->root_key.objectid,
903 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
904 calc_size, &dev_offset);
905 BUG_ON(ret);
907 device->bytes_used += calc_size;
908 ret = btrfs_update_device(trans, device);
909 BUG_ON(ret);
911 map->stripes[index].dev = device;
912 map->stripes[index].physical = dev_offset;
913 stripe = stripes + index;
914 btrfs_set_stack_stripe_devid(stripe, device->devid);
915 btrfs_set_stack_stripe_offset(stripe, dev_offset);
916 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
917 index++;
920 /* key was set above */
921 btrfs_set_stack_chunk_length(chunk, num_bytes);
922 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
923 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
924 btrfs_set_stack_chunk_type(chunk, type);
925 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
926 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
927 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
928 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
929 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
930 map->sector_size = extent_root->sectorsize;
931 map->stripe_len = stripe_len;
932 map->io_align = stripe_len;
933 map->io_width = stripe_len;
934 map->type = type;
935 map->num_stripes = num_stripes;
936 map->sub_stripes = sub_stripes;
938 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
939 btrfs_chunk_item_size(num_stripes));
940 BUG_ON(ret);
941 *start = key.offset;
943 map->ce.start = key.offset;
944 map->ce.size = num_bytes;
946 ret = insert_existing_cache_extent(
947 &extent_root->fs_info->mapping_tree.cache_tree,
948 &map->ce);
949 BUG_ON(ret);
951 kfree(chunk);
952 return ret;
955 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
957 cache_tree_init(&tree->cache_tree);
960 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
962 struct cache_extent *ce;
963 struct map_lookup *map;
964 int ret;
966 ce = find_first_cache_extent(&map_tree->cache_tree, logical);
967 BUG_ON(!ce);
968 BUG_ON(ce->start > logical || ce->start + ce->size < logical);
969 map = container_of(ce, struct map_lookup, ce);
971 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
972 ret = map->num_stripes;
973 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
974 ret = map->sub_stripes;
975 else
976 ret = 1;
977 return ret;
980 int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
981 u64 *size)
983 struct cache_extent *ce;
984 struct map_lookup *map;
986 ce = find_first_cache_extent(&map_tree->cache_tree, *logical);
988 while (ce) {
989 ce = next_cache_extent(ce);
990 if (!ce)
991 return -ENOENT;
993 map = container_of(ce, struct map_lookup, ce);
994 if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
995 *logical = ce->start;
996 *size = ce->size;
997 return 0;
1001 return -ENOENT;
1004 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
1005 u64 chunk_start, u64 physical, u64 devid,
1006 u64 **logical, int *naddrs, int *stripe_len)
1008 struct cache_extent *ce;
1009 struct map_lookup *map;
1010 u64 *buf;
1011 u64 bytenr;
1012 u64 length;
1013 u64 stripe_nr;
1014 int i, j, nr = 0;
1016 ce = find_first_cache_extent(&map_tree->cache_tree, chunk_start);
1017 BUG_ON(!ce);
1018 map = container_of(ce, struct map_lookup, ce);
1020 length = ce->size;
1021 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1022 length = ce->size / (map->num_stripes / map->sub_stripes);
1023 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1024 length = ce->size / map->num_stripes;
1026 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1028 for (i = 0; i < map->num_stripes; i++) {
1029 if (devid && map->stripes[i].dev->devid != devid)
1030 continue;
1031 if (map->stripes[i].physical > physical ||
1032 map->stripes[i].physical + length <= physical)
1033 continue;
1035 stripe_nr = (physical - map->stripes[i].physical) /
1036 map->stripe_len;
1038 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1039 stripe_nr = (stripe_nr * map->num_stripes + i) /
1040 map->sub_stripes;
1041 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1042 stripe_nr = stripe_nr * map->num_stripes + i;
1044 bytenr = ce->start + stripe_nr * map->stripe_len;
1045 for (j = 0; j < nr; j++) {
1046 if (buf[j] == bytenr)
1047 break;
1049 if (j == nr)
1050 buf[nr++] = bytenr;
1053 *logical = buf;
1054 *naddrs = nr;
1055 *stripe_len = map->stripe_len;
1057 return 0;
1060 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1061 u64 logical, u64 *length,
1062 struct btrfs_multi_bio **multi_ret, int mirror_num)
1064 return __btrfs_map_block(map_tree, rw, logical, length, NULL,
1065 multi_ret, mirror_num);
1068 int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1069 u64 logical, u64 *length, u64 *type,
1070 struct btrfs_multi_bio **multi_ret, int mirror_num)
1072 struct cache_extent *ce;
1073 struct map_lookup *map;
1074 u64 offset;
1075 u64 stripe_offset;
1076 u64 stripe_nr;
1077 int stripes_allocated = 8;
1078 int stripes_required = 1;
1079 int stripe_index;
1080 int i;
1081 struct btrfs_multi_bio *multi = NULL;
1083 if (multi_ret && rw == READ) {
1084 stripes_allocated = 1;
1086 again:
1087 ce = find_first_cache_extent(&map_tree->cache_tree, logical);
1088 if (!ce) {
1089 if (multi)
1090 kfree(multi);
1091 return -ENOENT;
1093 if (ce->start > logical || ce->start + ce->size < logical) {
1094 if (multi)
1095 kfree(multi);
1096 return -ENOENT;
1099 if (multi_ret) {
1100 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1101 GFP_NOFS);
1102 if (!multi)
1103 return -ENOMEM;
1105 map = container_of(ce, struct map_lookup, ce);
1106 offset = logical - ce->start;
1108 if (rw == WRITE) {
1109 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1110 BTRFS_BLOCK_GROUP_DUP)) {
1111 stripes_required = map->num_stripes;
1112 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1113 stripes_required = map->sub_stripes;
1116 /* if our multi bio struct is too small, back off and try again */
1117 if (multi_ret && rw == WRITE &&
1118 stripes_allocated < stripes_required) {
1119 stripes_allocated = map->num_stripes;
1120 kfree(multi);
1121 goto again;
1123 stripe_nr = offset;
1125 * stripe_nr counts the total number of stripes we have to stride
1126 * to get to this block
1128 stripe_nr = stripe_nr / map->stripe_len;
1130 stripe_offset = stripe_nr * map->stripe_len;
1131 BUG_ON(offset < stripe_offset);
1133 /* stripe_offset is the offset of this block in its stripe*/
1134 stripe_offset = offset - stripe_offset;
1136 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1137 BTRFS_BLOCK_GROUP_RAID10 |
1138 BTRFS_BLOCK_GROUP_DUP)) {
1139 /* we limit the length of each bio to what fits in a stripe */
1140 *length = min_t(u64, ce->size - offset,
1141 map->stripe_len - stripe_offset);
1142 } else {
1143 *length = ce->size - offset;
1146 if (!multi_ret)
1147 goto out;
1149 multi->num_stripes = 1;
1150 stripe_index = 0;
1151 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1152 if (rw == WRITE)
1153 multi->num_stripes = map->num_stripes;
1154 else if (mirror_num)
1155 stripe_index = mirror_num - 1;
1156 else
1157 stripe_index = stripe_nr % map->num_stripes;
1158 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1159 int factor = map->num_stripes / map->sub_stripes;
1161 stripe_index = stripe_nr % factor;
1162 stripe_index *= map->sub_stripes;
1164 if (rw == WRITE)
1165 multi->num_stripes = map->sub_stripes;
1166 else if (mirror_num)
1167 stripe_index += mirror_num - 1;
1169 stripe_nr = stripe_nr / factor;
1170 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1171 if (rw == WRITE)
1172 multi->num_stripes = map->num_stripes;
1173 else if (mirror_num)
1174 stripe_index = mirror_num - 1;
1175 } else {
1177 * after this do_div call, stripe_nr is the number of stripes
1178 * on this device we have to walk to find the data, and
1179 * stripe_index is the number of our device in the stripe array
1181 stripe_index = stripe_nr % map->num_stripes;
1182 stripe_nr = stripe_nr / map->num_stripes;
1184 BUG_ON(stripe_index >= map->num_stripes);
1186 for (i = 0; i < multi->num_stripes; i++) {
1187 multi->stripes[i].physical =
1188 map->stripes[stripe_index].physical + stripe_offset +
1189 stripe_nr * map->stripe_len;
1190 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1191 stripe_index++;
1193 *multi_ret = multi;
1194 if (type)
1195 *type = map->type;
1196 out:
1197 return 0;
1200 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1201 u8 *uuid, u8 *fsid)
1203 struct btrfs_device *device;
1204 struct btrfs_fs_devices *cur_devices;
1206 cur_devices = root->fs_info->fs_devices;
1207 while (cur_devices) {
1208 if (!fsid ||
1209 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1210 device = __find_device(&cur_devices->devices,
1211 devid, uuid);
1212 if (device)
1213 return device;
1215 cur_devices = cur_devices->seed;
1217 return NULL;
1220 int btrfs_bootstrap_super_map(struct btrfs_mapping_tree *map_tree,
1221 struct btrfs_fs_devices *fs_devices)
1223 struct map_lookup *map;
1224 u64 logical = BTRFS_SUPER_INFO_OFFSET;
1225 u64 length = BTRFS_SUPER_INFO_SIZE;
1226 int num_stripes = 0;
1227 int sub_stripes = 0;
1228 int ret;
1229 int i;
1230 struct list_head *cur;
1232 list_for_each(cur, &fs_devices->devices) {
1233 num_stripes++;
1235 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1236 if (!map)
1237 return -ENOMEM;
1239 map->ce.start = logical;
1240 map->ce.size = length;
1241 map->num_stripes = num_stripes;
1242 map->sub_stripes = sub_stripes;
1243 map->io_width = length;
1244 map->io_align = length;
1245 map->sector_size = length;
1246 map->stripe_len = length;
1247 map->type = BTRFS_BLOCK_GROUP_RAID1;
1249 i = 0;
1250 list_for_each(cur, &fs_devices->devices) {
1251 struct btrfs_device *device = list_entry(cur,
1252 struct btrfs_device,
1253 dev_list);
1254 map->stripes[i].physical = logical;
1255 map->stripes[i].dev = device;
1256 i++;
1258 ret = insert_existing_cache_extent(&map_tree->cache_tree, &map->ce);
1259 if (ret == -EEXIST) {
1260 struct cache_extent *old;
1261 struct map_lookup *old_map;
1262 old = find_cache_extent(&map_tree->cache_tree, logical, length);
1263 old_map = container_of(old, struct map_lookup, ce);
1264 remove_cache_extent(&map_tree->cache_tree, old);
1265 kfree(old_map);
1266 ret = insert_existing_cache_extent(&map_tree->cache_tree,
1267 &map->ce);
1269 BUG_ON(ret);
1270 return 0;
1273 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
1275 struct cache_extent *ce;
1276 struct map_lookup *map;
1277 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1278 int readonly = 0;
1279 int i;
1281 ce = find_first_cache_extent(&map_tree->cache_tree, chunk_offset);
1282 BUG_ON(!ce);
1284 map = container_of(ce, struct map_lookup, ce);
1285 for (i = 0; i < map->num_stripes; i++) {
1286 if (!map->stripes[i].dev->writeable) {
1287 readonly = 1;
1288 break;
1292 return readonly;
1295 static struct btrfs_device *fill_missing_device(u64 devid)
1297 struct btrfs_device *device;
1299 device = kzalloc(sizeof(*device), GFP_NOFS);
1300 device->devid = devid;
1301 device->fd = -1;
1302 return device;
1305 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1306 struct extent_buffer *leaf,
1307 struct btrfs_chunk *chunk)
1309 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1310 struct map_lookup *map;
1311 struct cache_extent *ce;
1312 u64 logical;
1313 u64 length;
1314 u64 devid;
1315 u8 uuid[BTRFS_UUID_SIZE];
1316 int num_stripes;
1317 int ret;
1318 int i;
1320 logical = key->offset;
1321 length = btrfs_chunk_length(leaf, chunk);
1323 ce = find_first_cache_extent(&map_tree->cache_tree, logical);
1325 /* already mapped? */
1326 if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1327 return 0;
1330 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1331 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1332 if (!map)
1333 return -ENOMEM;
1335 map->ce.start = logical;
1336 map->ce.size = length;
1337 map->num_stripes = num_stripes;
1338 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1339 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1340 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1341 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1342 map->type = btrfs_chunk_type(leaf, chunk);
1343 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1345 for (i = 0; i < num_stripes; i++) {
1346 map->stripes[i].physical =
1347 btrfs_stripe_offset_nr(leaf, chunk, i);
1348 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1349 read_extent_buffer(leaf, uuid, (unsigned long)
1350 btrfs_stripe_dev_uuid_nr(chunk, i),
1351 BTRFS_UUID_SIZE);
1352 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
1353 NULL);
1354 if (!map->stripes[i].dev) {
1355 map->stripes[i].dev = fill_missing_device(devid);
1356 printf("warning, device %llu is missing\n",
1357 (unsigned long long)devid);
1361 ret = insert_existing_cache_extent(&map_tree->cache_tree, &map->ce);
1362 BUG_ON(ret);
1364 return 0;
1367 static int fill_device_from_item(struct extent_buffer *leaf,
1368 struct btrfs_dev_item *dev_item,
1369 struct btrfs_device *device)
1371 unsigned long ptr;
1373 device->devid = btrfs_device_id(leaf, dev_item);
1374 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1375 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1376 device->type = btrfs_device_type(leaf, dev_item);
1377 device->io_align = btrfs_device_io_align(leaf, dev_item);
1378 device->io_width = btrfs_device_io_width(leaf, dev_item);
1379 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1381 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1382 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1384 return 0;
1387 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
1389 struct btrfs_fs_devices *fs_devices;
1390 int ret;
1392 fs_devices = root->fs_info->fs_devices->seed;
1393 while (fs_devices) {
1394 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1395 ret = 0;
1396 goto out;
1398 fs_devices = fs_devices->seed;
1401 fs_devices = find_fsid(fsid);
1402 if (!fs_devices) {
1403 ret = -ENOENT;
1404 goto out;
1407 ret = btrfs_open_devices(fs_devices, O_RDONLY);
1408 if (ret)
1409 goto out;
1411 fs_devices->seed = root->fs_info->fs_devices->seed;
1412 root->fs_info->fs_devices->seed = fs_devices;
1413 out:
1414 return ret;
1417 static int read_one_dev(struct btrfs_root *root,
1418 struct extent_buffer *leaf,
1419 struct btrfs_dev_item *dev_item)
1421 struct btrfs_device *device;
1422 u64 devid;
1423 int ret = 0;
1424 u8 fs_uuid[BTRFS_UUID_SIZE];
1425 u8 dev_uuid[BTRFS_UUID_SIZE];
1427 devid = btrfs_device_id(leaf, dev_item);
1428 read_extent_buffer(leaf, dev_uuid,
1429 (unsigned long)btrfs_device_uuid(dev_item),
1430 BTRFS_UUID_SIZE);
1431 read_extent_buffer(leaf, fs_uuid,
1432 (unsigned long)btrfs_device_fsid(dev_item),
1433 BTRFS_UUID_SIZE);
1435 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
1436 ret = open_seed_devices(root, fs_uuid);
1437 if (ret)
1438 return ret;
1441 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1442 if (!device) {
1443 printk("warning devid %llu not found already\n",
1444 (unsigned long long)devid);
1445 device = kmalloc(sizeof(*device), GFP_NOFS);
1446 if (!device)
1447 return -ENOMEM;
1448 device->total_ios = 0;
1449 list_add(&device->dev_list,
1450 &root->fs_info->fs_devices->devices);
1453 fill_device_from_item(leaf, dev_item, device);
1454 device->dev_root = root->fs_info->dev_root;
1455 return ret;
1458 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1460 struct btrfs_dev_item *dev_item;
1462 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1463 dev_item);
1464 return read_one_dev(root, buf, dev_item);
1467 int btrfs_read_sys_array(struct btrfs_root *root)
1469 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1470 struct extent_buffer *sb;
1471 struct btrfs_disk_key *disk_key;
1472 struct btrfs_chunk *chunk;
1473 struct btrfs_key key;
1474 u32 num_stripes;
1475 u32 array_size;
1476 u32 len = 0;
1477 u8 *ptr;
1478 unsigned long sb_ptr;
1479 u32 cur;
1480 int ret = 0;
1482 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
1483 BTRFS_SUPER_INFO_SIZE);
1484 if (!sb)
1485 return -ENOMEM;
1486 btrfs_set_buffer_uptodate(sb);
1487 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
1488 array_size = btrfs_super_sys_array_size(super_copy);
1491 * we do this loop twice, once for the device items and
1492 * once for all of the chunks. This way there are device
1493 * structs filled in for every chunk
1495 ptr = super_copy->sys_chunk_array;
1496 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1497 cur = 0;
1499 while (cur < array_size) {
1500 disk_key = (struct btrfs_disk_key *)ptr;
1501 btrfs_disk_key_to_cpu(&key, disk_key);
1503 len = sizeof(*disk_key);
1504 ptr += len;
1505 sb_ptr += len;
1506 cur += len;
1508 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1509 chunk = (struct btrfs_chunk *)sb_ptr;
1510 ret = read_one_chunk(root, &key, sb, chunk);
1511 if (ret)
1512 break;
1513 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1514 len = btrfs_chunk_item_size(num_stripes);
1515 } else {
1516 BUG();
1518 ptr += len;
1519 sb_ptr += len;
1520 cur += len;
1522 free_extent_buffer(sb);
1523 return ret;
1526 int btrfs_read_chunk_tree(struct btrfs_root *root)
1528 struct btrfs_path *path;
1529 struct extent_buffer *leaf;
1530 struct btrfs_key key;
1531 struct btrfs_key found_key;
1532 int ret;
1533 int slot;
1535 root = root->fs_info->chunk_root;
1537 path = btrfs_alloc_path();
1538 if (!path)
1539 return -ENOMEM;
1541 /* first we search for all of the device items, and then we
1542 * read in all of the chunk items. This way we can create chunk
1543 * mappings that reference all of the devices that are afound
1545 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1546 key.offset = 0;
1547 key.type = 0;
1548 again:
1549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1550 while(1) {
1551 leaf = path->nodes[0];
1552 slot = path->slots[0];
1553 if (slot >= btrfs_header_nritems(leaf)) {
1554 ret = btrfs_next_leaf(root, path);
1555 if (ret == 0)
1556 continue;
1557 if (ret < 0)
1558 goto error;
1559 break;
1561 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1562 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1563 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1564 break;
1565 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1566 struct btrfs_dev_item *dev_item;
1567 dev_item = btrfs_item_ptr(leaf, slot,
1568 struct btrfs_dev_item);
1569 ret = read_one_dev(root, leaf, dev_item);
1570 BUG_ON(ret);
1572 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1573 struct btrfs_chunk *chunk;
1574 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1575 ret = read_one_chunk(root, &found_key, leaf, chunk);
1576 BUG_ON(ret);
1578 path->slots[0]++;
1580 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1581 key.objectid = 0;
1582 btrfs_release_path(root, path);
1583 goto again;
1586 btrfs_free_path(path);
1587 ret = 0;
1588 error:
1589 return ret;
1592 struct list_head *btrfs_scanned_uuids(void)
1594 return &fs_uuids;