3 #include "kerncompat.h"
4 #include "radix-tree.h"
7 #include "print-tree.h"
9 static int split_node(struct btrfs_root
*root
, struct btrfs_path
*path
,
11 static int split_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
13 static int push_node_left(struct btrfs_root
*root
, struct btrfs_buffer
*dst
,
14 struct btrfs_buffer
*src
);
15 static int balance_node_right(struct btrfs_root
*root
,
16 struct btrfs_buffer
*dst_buf
,
17 struct btrfs_buffer
*src_buf
);
18 static int del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
, int level
,
21 inline void btrfs_init_path(struct btrfs_path
*p
)
23 memset(p
, 0, sizeof(*p
));
26 void btrfs_release_path(struct btrfs_root
*root
, struct btrfs_path
*p
)
29 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
32 btrfs_block_release(root
, p
->nodes
[i
]);
34 memset(p
, 0, sizeof(*p
));
37 static int btrfs_cow_block(struct btrfs_root
*root
,
38 struct btrfs_buffer
*buf
,
39 struct btrfs_buffer
*parent
,
41 struct btrfs_buffer
**cow_ret
)
43 struct btrfs_buffer
*cow
;
45 if (!list_empty(&buf
->dirty
)) {
49 cow
= btrfs_alloc_free_block(root
);
50 memcpy(&cow
->node
, &buf
->node
, root
->blocksize
);
51 btrfs_set_header_blocknr(&cow
->node
.header
, cow
->blocknr
);
53 btrfs_inc_ref(root
, buf
);
54 if (buf
== root
->node
) {
57 if (buf
!= root
->commit_root
)
58 btrfs_free_extent(root
, buf
->blocknr
, 1);
59 btrfs_block_release(root
, buf
);
61 btrfs_set_node_blockptr(&parent
->node
, parent_slot
,
63 BUG_ON(list_empty(&parent
->dirty
));
64 btrfs_free_extent(root
, buf
->blocknr
, 1);
66 btrfs_block_release(root
, buf
);
71 * The leaf data grows from end-to-front in the node.
72 * this returns the address of the start of the last item,
73 * which is the stop of the leaf data stack
75 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
76 struct btrfs_leaf
*leaf
)
78 u32 nr
= btrfs_header_nritems(&leaf
->header
);
80 return BTRFS_LEAF_DATA_SIZE(root
);
81 return btrfs_item_offset(leaf
->items
+ nr
- 1);
85 * The space between the end of the leaf items and
86 * the start of the leaf data. IOW, how much room
87 * the leaf has left for both items and data
89 int btrfs_leaf_free_space(struct btrfs_root
*root
, struct btrfs_leaf
*leaf
)
91 int data_end
= leaf_data_end(root
, leaf
);
92 int nritems
= btrfs_header_nritems(&leaf
->header
);
93 char *items_end
= (char *)(leaf
->items
+ nritems
+ 1);
94 return (char *)(btrfs_leaf_data(leaf
) + data_end
) - (char *)items_end
;
98 * compare two keys in a memcmp fashion
100 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
104 btrfs_disk_key_to_cpu(&k1
, disk
);
106 if (k1
.objectid
> k2
->objectid
)
108 if (k1
.objectid
< k2
->objectid
)
110 if (k1
.offset
> k2
->offset
)
112 if (k1
.offset
< k2
->offset
)
114 if (k1
.flags
> k2
->flags
)
116 if (k1
.flags
< k2
->flags
)
121 static int check_node(struct btrfs_root
*root
, struct btrfs_path
*path
,
125 struct btrfs_node
*parent
= NULL
;
126 struct btrfs_node
*node
= &path
->nodes
[level
]->node
;
128 u32 nritems
= btrfs_header_nritems(&node
->header
);
130 if (path
->nodes
[level
+ 1])
131 parent
= &path
->nodes
[level
+ 1]->node
;
132 parent_slot
= path
->slots
[level
+ 1];
133 BUG_ON(nritems
== 0);
135 struct btrfs_disk_key
*parent_key
;
136 parent_key
= &parent
->ptrs
[parent_slot
].key
;
137 BUG_ON(memcmp(parent_key
, &node
->ptrs
[0].key
,
138 sizeof(struct btrfs_disk_key
)));
139 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
140 btrfs_header_blocknr(&node
->header
));
142 BUG_ON(nritems
> BTRFS_NODEPTRS_PER_BLOCK(root
));
143 for (i
= 0; nritems
> 1 && i
< nritems
- 2; i
++) {
144 struct btrfs_key cpukey
;
145 btrfs_disk_key_to_cpu(&cpukey
, &node
->ptrs
[i
+ 1].key
);
146 BUG_ON(comp_keys(&node
->ptrs
[i
].key
, &cpukey
) >= 0);
151 static int check_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
155 struct btrfs_leaf
*leaf
= &path
->nodes
[level
]->leaf
;
156 struct btrfs_node
*parent
= NULL
;
158 u32 nritems
= btrfs_header_nritems(&leaf
->header
);
160 if (path
->nodes
[level
+ 1])
161 parent
= &path
->nodes
[level
+ 1]->node
;
162 parent_slot
= path
->slots
[level
+ 1];
163 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
169 struct btrfs_disk_key
*parent_key
;
170 parent_key
= &parent
->ptrs
[parent_slot
].key
;
171 BUG_ON(memcmp(parent_key
, &leaf
->items
[0].key
,
172 sizeof(struct btrfs_disk_key
)));
173 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
174 btrfs_header_blocknr(&leaf
->header
));
176 for (i
= 0; nritems
> 1 && i
< nritems
- 2; i
++) {
177 struct btrfs_key cpukey
;
178 btrfs_disk_key_to_cpu(&cpukey
, &leaf
->items
[i
+ 1].key
);
179 BUG_ON(comp_keys(&leaf
->items
[i
].key
,
181 BUG_ON(btrfs_item_offset(leaf
->items
+ i
) !=
182 btrfs_item_end(leaf
->items
+ i
+ 1));
184 BUG_ON(btrfs_item_offset(leaf
->items
+ i
) +
185 btrfs_item_size(leaf
->items
+ i
) !=
186 BTRFS_LEAF_DATA_SIZE(root
));
192 static int check_block(struct btrfs_root
*root
, struct btrfs_path
*path
,
196 return check_leaf(root
, path
, level
);
197 return check_node(root
, path
, level
);
201 * search for key in the array p. items p are item_size apart
202 * and there are 'max' items in p
203 * the slot in the array is returned via slot, and it points to
204 * the place where you would insert key if it is not found in
207 * slot may point to max if the key is bigger than all of the keys
209 static int generic_bin_search(char *p
, int item_size
, struct btrfs_key
*key
,
216 struct btrfs_disk_key
*tmp
;
219 mid
= (low
+ high
) / 2;
220 tmp
= (struct btrfs_disk_key
*)(p
+ mid
* item_size
);
221 ret
= comp_keys(tmp
, key
);
237 * simple bin_search frontend that does the right thing for
240 static int bin_search(struct btrfs_node
*c
, struct btrfs_key
*key
, int *slot
)
242 if (btrfs_is_leaf(c
)) {
243 struct btrfs_leaf
*l
= (struct btrfs_leaf
*)c
;
244 return generic_bin_search((void *)l
->items
,
245 sizeof(struct btrfs_item
),
246 key
, btrfs_header_nritems(&c
->header
),
249 return generic_bin_search((void *)c
->ptrs
,
250 sizeof(struct btrfs_key_ptr
),
251 key
, btrfs_header_nritems(&c
->header
),
257 static struct btrfs_buffer
*read_node_slot(struct btrfs_root
*root
,
258 struct btrfs_buffer
*parent_buf
,
261 struct btrfs_node
*node
= &parent_buf
->node
;
264 if (slot
>= btrfs_header_nritems(&node
->header
))
266 return read_tree_block(root
, btrfs_node_blockptr(node
, slot
));
269 static int balance_level(struct btrfs_root
*root
, struct btrfs_path
*path
,
272 struct btrfs_buffer
*right_buf
;
273 struct btrfs_buffer
*mid_buf
;
274 struct btrfs_buffer
*left_buf
;
275 struct btrfs_buffer
*parent_buf
= NULL
;
276 struct btrfs_node
*right
= NULL
;
277 struct btrfs_node
*mid
;
278 struct btrfs_node
*left
= NULL
;
279 struct btrfs_node
*parent
= NULL
;
283 int orig_slot
= path
->slots
[level
];
289 mid_buf
= path
->nodes
[level
];
290 mid
= &mid_buf
->node
;
291 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
293 if (level
< BTRFS_MAX_LEVEL
- 1)
294 parent_buf
= path
->nodes
[level
+ 1];
295 pslot
= path
->slots
[level
+ 1];
298 struct btrfs_buffer
*child
;
299 u64 blocknr
= mid_buf
->blocknr
;
301 if (btrfs_header_nritems(&mid
->header
) != 1)
304 /* promote the child to a root */
305 child
= read_node_slot(root
, mid_buf
, 0);
308 path
->nodes
[level
] = NULL
;
309 /* once for the path */
310 btrfs_block_release(root
, mid_buf
);
311 /* once for the root ptr */
312 btrfs_block_release(root
, mid_buf
);
313 clean_tree_block(root
, mid_buf
);
314 return btrfs_free_extent(root
, blocknr
, 1);
316 parent
= &parent_buf
->node
;
318 if (btrfs_header_nritems(&mid
->header
) >
319 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
322 left_buf
= read_node_slot(root
, parent_buf
, pslot
- 1);
323 right_buf
= read_node_slot(root
, parent_buf
, pslot
+ 1);
325 /* first, try to make some room in the middle buffer */
327 btrfs_cow_block(root
, left_buf
, parent_buf
,
328 pslot
- 1, &left_buf
);
329 left
= &left_buf
->node
;
330 orig_slot
+= btrfs_header_nritems(&left
->header
);
331 wret
= push_node_left(root
, left_buf
, mid_buf
);
337 * then try to empty the right most buffer into the middle
340 btrfs_cow_block(root
, right_buf
, parent_buf
,
341 pslot
+ 1, &right_buf
);
342 right
= &right_buf
->node
;
343 wret
= push_node_left(root
, mid_buf
, right_buf
);
346 if (btrfs_header_nritems(&right
->header
) == 0) {
347 u64 blocknr
= right_buf
->blocknr
;
348 btrfs_block_release(root
, right_buf
);
349 clean_tree_block(root
, right_buf
);
352 wret
= del_ptr(root
, path
, level
+ 1, pslot
+ 1);
355 wret
= btrfs_free_extent(root
, blocknr
, 1);
359 memcpy(&parent
->ptrs
[pslot
+ 1].key
,
361 sizeof(struct btrfs_disk_key
));
362 BUG_ON(list_empty(&parent_buf
->dirty
));
365 if (btrfs_header_nritems(&mid
->header
) == 1) {
367 * we're not allowed to leave a node with one item in the
368 * tree during a delete. A deletion from lower in the tree
369 * could try to delete the only pointer in this node.
370 * So, pull some keys from the left.
371 * There has to be a left pointer at this point because
372 * otherwise we would have pulled some pointers from the
376 wret
= balance_node_right(root
, mid_buf
, left_buf
);
381 if (btrfs_header_nritems(&mid
->header
) == 0) {
382 /* we've managed to empty the middle node, drop it */
383 u64 blocknr
= mid_buf
->blocknr
;
384 btrfs_block_release(root
, mid_buf
);
385 clean_tree_block(root
, mid_buf
);
388 wret
= del_ptr(root
, path
, level
+ 1, pslot
);
391 wret
= btrfs_free_extent(root
, blocknr
, 1);
395 /* update the parent key to reflect our changes */
396 memcpy(&parent
->ptrs
[pslot
].key
, &mid
->ptrs
[0].key
,
397 sizeof(struct btrfs_disk_key
));
398 BUG_ON(list_empty(&parent_buf
->dirty
));
401 /* update the path */
403 if (btrfs_header_nritems(&left
->header
) > orig_slot
) {
404 left_buf
->count
++; // released below
405 path
->nodes
[level
] = left_buf
;
406 path
->slots
[level
+ 1] -= 1;
407 path
->slots
[level
] = orig_slot
;
409 btrfs_block_release(root
, mid_buf
);
411 orig_slot
-= btrfs_header_nritems(&left
->header
);
412 path
->slots
[level
] = orig_slot
;
415 /* double check we haven't messed things up */
416 check_block(root
, path
, level
);
417 if (orig_ptr
!= btrfs_node_blockptr(&path
->nodes
[level
]->node
,
422 btrfs_block_release(root
, right_buf
);
424 btrfs_block_release(root
, left_buf
);
429 * look for key in the tree. path is filled in with nodes along the way
430 * if key is found, we return zero and you can find the item in the leaf
431 * level of the path (level 0)
433 * If the key isn't found, the path points to the slot where it should
434 * be inserted, and 1 is returned. If there are other errors during the
435 * search a negative error number is returned.
437 * if ins_len > 0, nodes and leaves will be split as we walk down the
438 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
441 int btrfs_search_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
442 struct btrfs_path
*p
, int ins_len
, int cow
)
444 struct btrfs_buffer
*b
;
445 struct btrfs_buffer
*cow_buf
;
446 struct btrfs_node
*c
;
455 level
= btrfs_header_level(&b
->node
.header
);
458 wret
= btrfs_cow_block(root
, b
, p
->nodes
[level
+ 1],
459 p
->slots
[level
+ 1], &cow_buf
);
462 BUG_ON(!cow
&& ins_len
);
465 ret
= check_block(root
, p
, level
);
468 ret
= bin_search(c
, key
, &slot
);
469 if (!btrfs_is_leaf(c
)) {
472 p
->slots
[level
] = slot
;
473 if (ins_len
> 0 && btrfs_header_nritems(&c
->header
) ==
474 BTRFS_NODEPTRS_PER_BLOCK(root
)) {
475 int sret
= split_node(root
, p
, level
);
481 slot
= p
->slots
[level
];
482 } else if (ins_len
< 0) {
483 int sret
= balance_level(root
, p
, level
);
490 slot
= p
->slots
[level
];
491 BUG_ON(btrfs_header_nritems(&c
->header
) == 1);
493 b
= read_tree_block(root
, btrfs_node_blockptr(c
, slot
));
495 struct btrfs_leaf
*l
= (struct btrfs_leaf
*)c
;
496 p
->slots
[level
] = slot
;
497 if (ins_len
> 0 && btrfs_leaf_free_space(root
, l
) <
498 sizeof(struct btrfs_item
) + ins_len
) {
499 int sret
= split_leaf(root
, p
, ins_len
);
504 BUG_ON(root
->node
->count
== 1);
508 BUG_ON(root
->node
->count
== 1);
513 * adjust the pointers going up the tree, starting at level
514 * making sure the right key of each node is points to 'key'.
515 * This is used after shifting pointers to the left, so it stops
516 * fixing up pointers when a given leaf/node is not in slot 0 of the
519 * If this fails to write a tree block, it returns -1, but continues
520 * fixing up the blocks in ram so the tree is consistent.
522 static int fixup_low_keys(struct btrfs_root
*root
,
523 struct btrfs_path
*path
, struct btrfs_disk_key
*key
,
528 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
529 struct btrfs_node
*t
;
530 int tslot
= path
->slots
[i
];
533 t
= &path
->nodes
[i
]->node
;
534 memcpy(&t
->ptrs
[tslot
].key
, key
, sizeof(*key
));
535 BUG_ON(list_empty(&path
->nodes
[i
]->dirty
));
543 * try to push data from one node into the next node left in the
546 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
547 * error, and > 0 if there was no room in the left hand block.
549 static int push_node_left(struct btrfs_root
*root
, struct btrfs_buffer
*dst_buf
,
550 struct btrfs_buffer
*src_buf
)
552 struct btrfs_node
*src
= &src_buf
->node
;
553 struct btrfs_node
*dst
= &dst_buf
->node
;
559 src_nritems
= btrfs_header_nritems(&src
->header
);
560 dst_nritems
= btrfs_header_nritems(&dst
->header
);
561 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
562 if (push_items
<= 0) {
566 if (src_nritems
< push_items
)
567 push_items
= src_nritems
;
569 memcpy(dst
->ptrs
+ dst_nritems
, src
->ptrs
,
570 push_items
* sizeof(struct btrfs_key_ptr
));
571 if (push_items
< src_nritems
) {
572 memmove(src
->ptrs
, src
->ptrs
+ push_items
,
573 (src_nritems
- push_items
) *
574 sizeof(struct btrfs_key_ptr
));
576 btrfs_set_header_nritems(&src
->header
, src_nritems
- push_items
);
577 btrfs_set_header_nritems(&dst
->header
, dst_nritems
+ push_items
);
578 BUG_ON(list_empty(&src_buf
->dirty
));
579 BUG_ON(list_empty(&dst_buf
->dirty
));
584 * try to push data from one node into the next node right in the
587 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
588 * error, and > 0 if there was no room in the right hand block.
590 * this will only push up to 1/2 the contents of the left node over
592 static int balance_node_right(struct btrfs_root
*root
,
593 struct btrfs_buffer
*dst_buf
,
594 struct btrfs_buffer
*src_buf
)
596 struct btrfs_node
*src
= &src_buf
->node
;
597 struct btrfs_node
*dst
= &dst_buf
->node
;
604 src_nritems
= btrfs_header_nritems(&src
->header
);
605 dst_nritems
= btrfs_header_nritems(&dst
->header
);
606 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
607 if (push_items
<= 0) {
611 max_push
= src_nritems
/ 2 + 1;
612 /* don't try to empty the node */
613 if (max_push
> src_nritems
)
615 if (max_push
< push_items
)
616 push_items
= max_push
;
618 memmove(dst
->ptrs
+ push_items
, dst
->ptrs
,
619 dst_nritems
* sizeof(struct btrfs_key_ptr
));
620 memcpy(dst
->ptrs
, src
->ptrs
+ src_nritems
- push_items
,
621 push_items
* sizeof(struct btrfs_key_ptr
));
623 btrfs_set_header_nritems(&src
->header
, src_nritems
- push_items
);
624 btrfs_set_header_nritems(&dst
->header
, dst_nritems
+ push_items
);
626 BUG_ON(list_empty(&src_buf
->dirty
));
627 BUG_ON(list_empty(&dst_buf
->dirty
));
632 * helper function to insert a new root level in the tree.
633 * A new node is allocated, and a single item is inserted to
634 * point to the existing root
636 * returns zero on success or < 0 on failure.
638 static int insert_new_root(struct btrfs_root
*root
,
639 struct btrfs_path
*path
, int level
)
641 struct btrfs_buffer
*t
;
642 struct btrfs_node
*lower
;
643 struct btrfs_node
*c
;
644 struct btrfs_disk_key
*lower_key
;
646 BUG_ON(path
->nodes
[level
]);
647 BUG_ON(path
->nodes
[level
-1] != root
->node
);
649 t
= btrfs_alloc_free_block(root
);
651 memset(c
, 0, root
->blocksize
);
652 btrfs_set_header_nritems(&c
->header
, 1);
653 btrfs_set_header_level(&c
->header
, level
);
654 btrfs_set_header_blocknr(&c
->header
, t
->blocknr
);
655 btrfs_set_header_parentid(&c
->header
,
656 btrfs_header_parentid(&root
->node
->node
.header
));
657 lower
= &path
->nodes
[level
-1]->node
;
658 if (btrfs_is_leaf(lower
))
659 lower_key
= &((struct btrfs_leaf
*)lower
)->items
[0].key
;
661 lower_key
= &lower
->ptrs
[0].key
;
662 memcpy(&c
->ptrs
[0].key
, lower_key
, sizeof(struct btrfs_disk_key
));
663 btrfs_set_node_blockptr(c
, 0, path
->nodes
[level
- 1]->blocknr
);
664 /* the super has an extra ref to root->node */
665 btrfs_block_release(root
, root
->node
);
668 path
->nodes
[level
] = t
;
669 path
->slots
[level
] = 0;
674 * worker function to insert a single pointer in a node.
675 * the node should have enough room for the pointer already
677 * slot and level indicate where you want the key to go, and
678 * blocknr is the block the key points to.
680 * returns zero on success and < 0 on any error
682 static int insert_ptr(struct btrfs_root
*root
,
683 struct btrfs_path
*path
, struct btrfs_disk_key
*key
,
684 u64 blocknr
, int slot
, int level
)
686 struct btrfs_node
*lower
;
689 BUG_ON(!path
->nodes
[level
]);
690 lower
= &path
->nodes
[level
]->node
;
691 nritems
= btrfs_header_nritems(&lower
->header
);
694 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
))
696 if (slot
!= nritems
) {
697 memmove(lower
->ptrs
+ slot
+ 1, lower
->ptrs
+ slot
,
698 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
700 memcpy(&lower
->ptrs
[slot
].key
, key
, sizeof(struct btrfs_disk_key
));
701 btrfs_set_node_blockptr(lower
, slot
, blocknr
);
702 btrfs_set_header_nritems(&lower
->header
, nritems
+ 1);
703 BUG_ON(list_empty(&path
->nodes
[level
]->dirty
));
708 * split the node at the specified level in path in two.
709 * The path is corrected to point to the appropriate node after the split
711 * Before splitting this tries to make some room in the node by pushing
712 * left and right, if either one works, it returns right away.
714 * returns 0 on success and < 0 on failure
716 static int split_node(struct btrfs_root
*root
, struct btrfs_path
*path
,
719 struct btrfs_buffer
*t
;
720 struct btrfs_node
*c
;
721 struct btrfs_buffer
*split_buffer
;
722 struct btrfs_node
*split
;
728 t
= path
->nodes
[level
];
730 if (t
== root
->node
) {
731 /* trying to split the root, lets make a new one */
732 ret
= insert_new_root(root
, path
, level
+ 1);
736 c_nritems
= btrfs_header_nritems(&c
->header
);
737 split_buffer
= btrfs_alloc_free_block(root
);
738 split
= &split_buffer
->node
;
739 btrfs_set_header_flags(&split
->header
, btrfs_header_flags(&c
->header
));
740 btrfs_set_header_blocknr(&split
->header
, split_buffer
->blocknr
);
741 btrfs_set_header_parentid(&split
->header
,
742 btrfs_header_parentid(&root
->node
->node
.header
));
743 mid
= (c_nritems
+ 1) / 2;
744 memcpy(split
->ptrs
, c
->ptrs
+ mid
,
745 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
746 btrfs_set_header_nritems(&split
->header
, c_nritems
- mid
);
747 btrfs_set_header_nritems(&c
->header
, mid
);
750 BUG_ON(list_empty(&t
->dirty
));
751 wret
= insert_ptr(root
, path
, &split
->ptrs
[0].key
,
752 split_buffer
->blocknr
, path
->slots
[level
+ 1] + 1,
757 if (path
->slots
[level
] >= mid
) {
758 path
->slots
[level
] -= mid
;
759 btrfs_block_release(root
, t
);
760 path
->nodes
[level
] = split_buffer
;
761 path
->slots
[level
+ 1] += 1;
763 btrfs_block_release(root
, split_buffer
);
769 * how many bytes are required to store the items in a leaf. start
770 * and nr indicate which items in the leaf to check. This totals up the
771 * space used both by the item structs and the item data
773 static int leaf_space_used(struct btrfs_leaf
*l
, int start
, int nr
)
776 int end
= start
+ nr
- 1;
780 data_len
= btrfs_item_end(l
->items
+ start
);
781 data_len
= data_len
- btrfs_item_offset(l
->items
+ end
);
782 data_len
+= sizeof(struct btrfs_item
) * nr
;
787 * push some data in the path leaf to the right, trying to free up at
788 * least data_size bytes. returns zero if the push worked, nonzero otherwise
790 * returns 1 if the push failed because the other node didn't have enough
791 * room, 0 if everything worked out and < 0 if there were major errors.
793 static int push_leaf_right(struct btrfs_root
*root
, struct btrfs_path
*path
,
796 struct btrfs_buffer
*left_buf
= path
->nodes
[0];
797 struct btrfs_leaf
*left
= &left_buf
->leaf
;
798 struct btrfs_leaf
*right
;
799 struct btrfs_buffer
*right_buf
;
800 struct btrfs_buffer
*upper
;
806 struct btrfs_item
*item
;
810 slot
= path
->slots
[1];
811 if (!path
->nodes
[1]) {
814 upper
= path
->nodes
[1];
815 if (slot
>= btrfs_header_nritems(&upper
->node
.header
) - 1) {
818 right_buf
= read_tree_block(root
, btrfs_node_blockptr(&upper
->node
,
820 right
= &right_buf
->leaf
;
821 free_space
= btrfs_leaf_free_space(root
, right
);
822 if (free_space
< data_size
+ sizeof(struct btrfs_item
)) {
823 btrfs_block_release(root
, right_buf
);
826 /* cow and double check */
827 btrfs_cow_block(root
, right_buf
, upper
, slot
+ 1, &right_buf
);
828 right
= &right_buf
->leaf
;
829 free_space
= btrfs_leaf_free_space(root
, right
);
830 if (free_space
< data_size
+ sizeof(struct btrfs_item
)) {
831 btrfs_block_release(root
, right_buf
);
835 left_nritems
= btrfs_header_nritems(&left
->header
);
836 for (i
= left_nritems
- 1; i
>= 0; i
--) {
837 item
= left
->items
+ i
;
838 if (path
->slots
[0] == i
)
839 push_space
+= data_size
+ sizeof(*item
);
840 if (btrfs_item_size(item
) + sizeof(*item
) + push_space
>
844 push_space
+= btrfs_item_size(item
) + sizeof(*item
);
846 if (push_items
== 0) {
847 btrfs_block_release(root
, right_buf
);
850 right_nritems
= btrfs_header_nritems(&right
->header
);
851 /* push left to right */
852 push_space
= btrfs_item_end(left
->items
+ left_nritems
- push_items
);
853 push_space
-= leaf_data_end(root
, left
);
854 /* make room in the right data area */
855 memmove(btrfs_leaf_data(right
) + leaf_data_end(root
, right
) -
856 push_space
, btrfs_leaf_data(right
) + leaf_data_end(root
, right
),
857 BTRFS_LEAF_DATA_SIZE(root
) - leaf_data_end(root
, right
));
858 /* copy from the left data area */
859 memcpy(btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
860 btrfs_leaf_data(left
) + leaf_data_end(root
, left
), push_space
);
861 memmove(right
->items
+ push_items
, right
->items
,
862 right_nritems
* sizeof(struct btrfs_item
));
863 /* copy the items from left to right */
864 memcpy(right
->items
, left
->items
+ left_nritems
- push_items
,
865 push_items
* sizeof(struct btrfs_item
));
867 /* update the item pointers */
868 right_nritems
+= push_items
;
869 btrfs_set_header_nritems(&right
->header
, right_nritems
);
870 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
871 for (i
= 0; i
< right_nritems
; i
++) {
872 btrfs_set_item_offset(right
->items
+ i
, push_space
-
873 btrfs_item_size(right
->items
+ i
));
874 push_space
= btrfs_item_offset(right
->items
+ i
);
876 left_nritems
-= push_items
;
877 btrfs_set_header_nritems(&left
->header
, left_nritems
);
879 BUG_ON(list_empty(&left_buf
->dirty
));
880 BUG_ON(list_empty(&right_buf
->dirty
));
881 memcpy(&upper
->node
.ptrs
[slot
+ 1].key
,
882 &right
->items
[0].key
, sizeof(struct btrfs_disk_key
));
883 BUG_ON(list_empty(&upper
->dirty
));
885 /* then fixup the leaf pointer in the path */
886 if (path
->slots
[0] >= left_nritems
) {
887 path
->slots
[0] -= left_nritems
;
888 btrfs_block_release(root
, path
->nodes
[0]);
889 path
->nodes
[0] = right_buf
;
892 btrfs_block_release(root
, right_buf
);
897 * push some data in the path leaf to the left, trying to free up at
898 * least data_size bytes. returns zero if the push worked, nonzero otherwise
900 static int push_leaf_left(struct btrfs_root
*root
, struct btrfs_path
*path
,
903 struct btrfs_buffer
*right_buf
= path
->nodes
[0];
904 struct btrfs_leaf
*right
= &right_buf
->leaf
;
905 struct btrfs_buffer
*t
;
906 struct btrfs_leaf
*left
;
912 struct btrfs_item
*item
;
913 u32 old_left_nritems
;
917 slot
= path
->slots
[1];
921 if (!path
->nodes
[1]) {
924 t
= read_tree_block(root
, btrfs_node_blockptr(&path
->nodes
[1]->node
,
927 free_space
= btrfs_leaf_free_space(root
, left
);
928 if (free_space
< data_size
+ sizeof(struct btrfs_item
)) {
929 btrfs_block_release(root
, t
);
933 /* cow and double check */
934 btrfs_cow_block(root
, t
, path
->nodes
[1], slot
- 1, &t
);
936 free_space
= btrfs_leaf_free_space(root
, left
);
937 if (free_space
< data_size
+ sizeof(struct btrfs_item
)) {
938 btrfs_block_release(root
, t
);
942 for (i
= 0; i
< btrfs_header_nritems(&right
->header
); i
++) {
943 item
= right
->items
+ i
;
944 if (path
->slots
[0] == i
)
945 push_space
+= data_size
+ sizeof(*item
);
946 if (btrfs_item_size(item
) + sizeof(*item
) + push_space
>
950 push_space
+= btrfs_item_size(item
) + sizeof(*item
);
952 if (push_items
== 0) {
953 btrfs_block_release(root
, t
);
956 /* push data from right to left */
957 memcpy(left
->items
+ btrfs_header_nritems(&left
->header
),
958 right
->items
, push_items
* sizeof(struct btrfs_item
));
959 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
960 btrfs_item_offset(right
->items
+ push_items
-1);
961 memcpy(btrfs_leaf_data(left
) + leaf_data_end(root
, left
) - push_space
,
962 btrfs_leaf_data(right
) +
963 btrfs_item_offset(right
->items
+ push_items
- 1),
965 old_left_nritems
= btrfs_header_nritems(&left
->header
);
966 BUG_ON(old_left_nritems
< 0);
968 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
969 u32 ioff
= btrfs_item_offset(left
->items
+ i
);
970 btrfs_set_item_offset(left
->items
+ i
, ioff
-
971 (BTRFS_LEAF_DATA_SIZE(root
) -
972 btrfs_item_offset(left
->items
+
973 old_left_nritems
- 1)));
975 btrfs_set_header_nritems(&left
->header
, old_left_nritems
+ push_items
);
977 /* fixup right node */
978 push_space
= btrfs_item_offset(right
->items
+ push_items
- 1) -
979 leaf_data_end(root
, right
);
980 memmove(btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
981 push_space
, btrfs_leaf_data(right
) +
982 leaf_data_end(root
, right
), push_space
);
983 memmove(right
->items
, right
->items
+ push_items
,
984 (btrfs_header_nritems(&right
->header
) - push_items
) *
985 sizeof(struct btrfs_item
));
986 btrfs_set_header_nritems(&right
->header
,
987 btrfs_header_nritems(&right
->header
) -
989 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
991 for (i
= 0; i
< btrfs_header_nritems(&right
->header
); i
++) {
992 btrfs_set_item_offset(right
->items
+ i
, push_space
-
993 btrfs_item_size(right
->items
+ i
));
994 push_space
= btrfs_item_offset(right
->items
+ i
);
997 BUG_ON(list_empty(&t
->dirty
));
998 BUG_ON(list_empty(&right_buf
->dirty
));
1000 wret
= fixup_low_keys(root
, path
, &right
->items
[0].key
, 1);
1004 /* then fixup the leaf pointer in the path */
1005 if (path
->slots
[0] < push_items
) {
1006 path
->slots
[0] += old_left_nritems
;
1007 btrfs_block_release(root
, path
->nodes
[0]);
1009 path
->slots
[1] -= 1;
1011 btrfs_block_release(root
, t
);
1012 path
->slots
[0] -= push_items
;
1014 BUG_ON(path
->slots
[0] < 0);
1019 * split the path's leaf in two, making sure there is at least data_size
1020 * available for the resulting leaf level of the path.
1022 * returns 0 if all went well and < 0 on failure.
1024 static int split_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
1027 struct btrfs_buffer
*l_buf
;
1028 struct btrfs_leaf
*l
;
1032 struct btrfs_leaf
*right
;
1033 struct btrfs_buffer
*right_buffer
;
1034 int space_needed
= data_size
+ sizeof(struct btrfs_item
);
1041 wret
= push_leaf_left(root
, path
, data_size
);
1045 wret
= push_leaf_right(root
, path
, data_size
);
1049 l_buf
= path
->nodes
[0];
1052 /* did the pushes work? */
1053 if (btrfs_leaf_free_space(root
, l
) >=
1054 sizeof(struct btrfs_item
) + data_size
)
1057 if (!path
->nodes
[1]) {
1058 ret
= insert_new_root(root
, path
, 1);
1062 slot
= path
->slots
[0];
1063 nritems
= btrfs_header_nritems(&l
->header
);
1064 mid
= (nritems
+ 1)/ 2;
1065 right_buffer
= btrfs_alloc_free_block(root
);
1066 BUG_ON(!right_buffer
);
1067 BUG_ON(mid
== nritems
);
1068 right
= &right_buffer
->leaf
;
1069 memset(&right
->header
, 0, sizeof(right
->header
));
1071 /* FIXME, just alloc a new leaf here */
1072 if (leaf_space_used(l
, mid
, nritems
- mid
) + space_needed
>
1073 BTRFS_LEAF_DATA_SIZE(root
))
1076 /* FIXME, just alloc a new leaf here */
1077 if (leaf_space_used(l
, 0, mid
+ 1) + space_needed
>
1078 BTRFS_LEAF_DATA_SIZE(root
))
1081 btrfs_set_header_nritems(&right
->header
, nritems
- mid
);
1082 btrfs_set_header_blocknr(&right
->header
, right_buffer
->blocknr
);
1083 btrfs_set_header_level(&right
->header
, 0);
1084 btrfs_set_header_parentid(&right
->header
,
1085 btrfs_header_parentid(&root
->node
->node
.header
));
1086 data_copy_size
= btrfs_item_end(l
->items
+ mid
) -
1087 leaf_data_end(root
, l
);
1088 memcpy(right
->items
, l
->items
+ mid
,
1089 (nritems
- mid
) * sizeof(struct btrfs_item
));
1090 memcpy(btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
1091 data_copy_size
, btrfs_leaf_data(l
) +
1092 leaf_data_end(root
, l
), data_copy_size
);
1093 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
1094 btrfs_item_end(l
->items
+ mid
);
1096 for (i
= 0; i
< btrfs_header_nritems(&right
->header
); i
++) {
1097 u32 ioff
= btrfs_item_offset(right
->items
+ i
);
1098 btrfs_set_item_offset(right
->items
+ i
, ioff
+ rt_data_off
);
1101 btrfs_set_header_nritems(&l
->header
, mid
);
1103 wret
= insert_ptr(root
, path
, &right
->items
[0].key
,
1104 right_buffer
->blocknr
, path
->slots
[1] + 1, 1);
1107 BUG_ON(list_empty(&right_buffer
->dirty
));
1108 BUG_ON(list_empty(&l_buf
->dirty
));
1109 BUG_ON(path
->slots
[0] != slot
);
1111 btrfs_block_release(root
, path
->nodes
[0]);
1112 path
->nodes
[0] = right_buffer
;
1113 path
->slots
[0] -= mid
;
1114 path
->slots
[1] += 1;
1116 btrfs_block_release(root
, right_buffer
);
1117 BUG_ON(path
->slots
[0] < 0);
1122 * Given a key and some data, insert an item into the tree.
1123 * This does all the path init required, making room in the tree if needed.
1125 int btrfs_insert_empty_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1126 struct btrfs_key
*cpu_key
, u32 data_size
)
1131 struct btrfs_leaf
*leaf
;
1132 struct btrfs_buffer
*leaf_buf
;
1134 unsigned int data_end
;
1135 struct btrfs_disk_key disk_key
;
1137 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
1139 /* create a root if there isn't one */
1142 ret
= btrfs_search_slot(root
, cpu_key
, path
, data_size
, 1);
1144 btrfs_release_path(root
, path
);
1150 slot_orig
= path
->slots
[0];
1151 leaf_buf
= path
->nodes
[0];
1152 leaf
= &leaf_buf
->leaf
;
1154 nritems
= btrfs_header_nritems(&leaf
->header
);
1155 data_end
= leaf_data_end(root
, leaf
);
1157 if (btrfs_leaf_free_space(root
, leaf
) <
1158 sizeof(struct btrfs_item
) + data_size
)
1161 slot
= path
->slots
[0];
1163 if (slot
!= nritems
) {
1165 unsigned int old_data
= btrfs_item_end(leaf
->items
+ slot
);
1168 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1170 /* first correct the data pointers */
1171 for (i
= slot
; i
< nritems
; i
++) {
1172 u32 ioff
= btrfs_item_offset(leaf
->items
+ i
);
1173 btrfs_set_item_offset(leaf
->items
+ i
,
1177 /* shift the items */
1178 memmove(leaf
->items
+ slot
+ 1, leaf
->items
+ slot
,
1179 (nritems
- slot
) * sizeof(struct btrfs_item
));
1181 /* shift the data */
1182 memmove(btrfs_leaf_data(leaf
) + data_end
- data_size
,
1183 btrfs_leaf_data(leaf
) +
1184 data_end
, old_data
- data_end
);
1185 data_end
= old_data
;
1187 /* setup the item for the new data */
1188 memcpy(&leaf
->items
[slot
].key
, &disk_key
,
1189 sizeof(struct btrfs_disk_key
));
1190 btrfs_set_item_offset(leaf
->items
+ slot
, data_end
- data_size
);
1191 btrfs_set_item_size(leaf
->items
+ slot
, data_size
);
1192 btrfs_set_header_nritems(&leaf
->header
, nritems
+ 1);
1196 ret
= fixup_low_keys(root
, path
, &disk_key
, 1);
1198 BUG_ON(list_empty(&leaf_buf
->dirty
));
1199 if (btrfs_leaf_free_space(root
, leaf
) < 0)
1201 check_leaf(root
, path
, 0);
1207 * Given a key and some data, insert an item into the tree.
1208 * This does all the path init required, making room in the tree if needed.
1210 int btrfs_insert_item(struct btrfs_root
*root
, struct btrfs_key
*cpu_key
,
1211 void *data
, u32 data_size
)
1214 struct btrfs_path path
;
1217 btrfs_init_path(&path
);
1218 ret
= btrfs_insert_empty_item(root
, &path
, cpu_key
, data_size
);
1220 ptr
= btrfs_item_ptr(&path
.nodes
[0]->leaf
, path
.slots
[0], u8
);
1221 memcpy(ptr
, data
, data_size
);
1223 btrfs_release_path(root
, &path
);
1228 * delete the pointer from a given node.
1230 * If the delete empties a node, the node is removed from the tree,
1231 * continuing all the way the root if required. The root is converted into
1232 * a leaf if all the nodes are emptied.
1234 static int del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
, int level
,
1237 struct btrfs_node
*node
;
1238 struct btrfs_buffer
*parent
= path
->nodes
[level
];
1243 node
= &parent
->node
;
1244 nritems
= btrfs_header_nritems(&node
->header
);
1245 if (slot
!= nritems
-1) {
1246 memmove(node
->ptrs
+ slot
, node
->ptrs
+ slot
+ 1,
1247 sizeof(struct btrfs_key_ptr
) * (nritems
- slot
- 1));
1250 btrfs_set_header_nritems(&node
->header
, nritems
);
1251 if (nritems
== 0 && parent
== root
->node
) {
1252 BUG_ON(btrfs_header_level(&root
->node
->node
.header
) != 1);
1253 /* just turn the root into a leaf and break */
1254 btrfs_set_header_level(&root
->node
->node
.header
, 0);
1255 } else if (slot
== 0) {
1256 wret
= fixup_low_keys(root
, path
, &node
->ptrs
[0].key
,
1261 BUG_ON(list_empty(&parent
->dirty
));
1266 * delete the item at the leaf level in path. If that empties
1267 * the leaf, remove it from the tree
1269 int btrfs_del_item(struct btrfs_root
*root
, struct btrfs_path
*path
)
1272 struct btrfs_leaf
*leaf
;
1273 struct btrfs_buffer
*leaf_buf
;
1280 leaf_buf
= path
->nodes
[0];
1281 leaf
= &leaf_buf
->leaf
;
1282 slot
= path
->slots
[0];
1283 doff
= btrfs_item_offset(leaf
->items
+ slot
);
1284 dsize
= btrfs_item_size(leaf
->items
+ slot
);
1285 nritems
= btrfs_header_nritems(&leaf
->header
);
1287 if (slot
!= nritems
- 1) {
1289 int data_end
= leaf_data_end(root
, leaf
);
1290 memmove(btrfs_leaf_data(leaf
) + data_end
+ dsize
,
1291 btrfs_leaf_data(leaf
) + data_end
,
1293 for (i
= slot
+ 1; i
< nritems
; i
++) {
1294 u32 ioff
= btrfs_item_offset(leaf
->items
+ i
);
1295 btrfs_set_item_offset(leaf
->items
+ i
, ioff
+ dsize
);
1297 memmove(leaf
->items
+ slot
, leaf
->items
+ slot
+ 1,
1298 sizeof(struct btrfs_item
) *
1299 (nritems
- slot
- 1));
1301 btrfs_set_header_nritems(&leaf
->header
, nritems
- 1);
1303 /* delete the leaf if we've emptied it */
1305 if (leaf_buf
== root
->node
) {
1306 btrfs_set_header_level(&leaf
->header
, 0);
1307 BUG_ON(list_empty(&leaf_buf
->dirty
));
1309 clean_tree_block(root
, leaf_buf
);
1310 wret
= del_ptr(root
, path
, 1, path
->slots
[1]);
1313 wret
= btrfs_free_extent(root
, leaf_buf
->blocknr
, 1);
1318 int used
= leaf_space_used(leaf
, 0, nritems
);
1320 wret
= fixup_low_keys(root
, path
,
1321 &leaf
->items
[0].key
, 1);
1325 BUG_ON(list_empty(&leaf_buf
->dirty
));
1327 /* delete the leaf if it is mostly empty */
1328 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
1329 /* push_leaf_left fixes the path.
1330 * make sure the path still points to our leaf
1331 * for possible call to del_ptr below
1333 slot
= path
->slots
[1];
1335 wret
= push_leaf_left(root
, path
, 1);
1338 if (path
->nodes
[0] == leaf_buf
&&
1339 btrfs_header_nritems(&leaf
->header
)) {
1340 wret
= push_leaf_right(root
, path
, 1);
1344 if (btrfs_header_nritems(&leaf
->header
) == 0) {
1345 u64 blocknr
= leaf_buf
->blocknr
;
1346 clean_tree_block(root
, leaf_buf
);
1347 wret
= del_ptr(root
, path
, 1, slot
);
1350 btrfs_block_release(root
, leaf_buf
);
1351 wret
= btrfs_free_extent(root
, blocknr
, 1);
1355 btrfs_block_release(root
, leaf_buf
);
1363 * walk up the tree as far as required to find the next leaf.
1364 * returns 0 if it found something or 1 if there are no greater leaves.
1365 * returns < 0 on io errors.
1367 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
1372 struct btrfs_buffer
*c
;
1373 struct btrfs_buffer
*next
= NULL
;
1375 while(level
< BTRFS_MAX_LEVEL
) {
1376 if (!path
->nodes
[level
])
1378 slot
= path
->slots
[level
] + 1;
1379 c
= path
->nodes
[level
];
1380 if (slot
>= btrfs_header_nritems(&c
->node
.header
)) {
1384 blocknr
= btrfs_node_blockptr(&c
->node
, slot
);
1386 btrfs_block_release(root
, next
);
1387 next
= read_tree_block(root
, blocknr
);
1390 path
->slots
[level
] = slot
;
1393 c
= path
->nodes
[level
];
1394 btrfs_block_release(root
, c
);
1395 path
->nodes
[level
] = next
;
1396 path
->slots
[level
] = 0;
1399 next
= read_tree_block(root
,
1400 btrfs_node_blockptr(&next
->node
, 0));