btrfs-progs: two staged filesystem creation
[btrfs-progs-unstable/devel.git] / cmds-fi-usage.c
blob04d68b18ce11db660c849df57b6b3c07bfc03242
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public
4 * License v2 as published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
9 * General Public License for more details.
11 * You should have received a copy of the GNU General Public
12 * License along with this program; if not, write to the
13 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
14 * Boston, MA 021110-1307, USA.
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <string.h>
20 #include <unistd.h>
21 #include <sys/ioctl.h>
22 #include <errno.h>
23 #include <stdarg.h>
24 #include <getopt.h>
26 #include "utils.h"
27 #include "kerncompat.h"
28 #include "ctree.h"
29 #include "string-table.h"
30 #include "cmds-fi-usage.h"
31 #include "commands.h"
33 #include "version.h"
36 * Add the chunk info to the chunk_info list
38 static int add_info_to_list(struct chunk_info **info_ptr,
39 int *info_count,
40 struct btrfs_chunk *chunk)
43 u64 type = btrfs_stack_chunk_type(chunk);
44 u64 size = btrfs_stack_chunk_length(chunk);
45 int num_stripes = btrfs_stack_chunk_num_stripes(chunk);
46 int j;
48 for (j = 0 ; j < num_stripes ; j++) {
49 int i;
50 struct chunk_info *p = NULL;
51 struct btrfs_stripe *stripe;
52 u64 devid;
54 stripe = btrfs_stripe_nr(chunk, j);
55 devid = btrfs_stack_stripe_devid(stripe);
57 for (i = 0 ; i < *info_count ; i++)
58 if ((*info_ptr)[i].type == type &&
59 (*info_ptr)[i].devid == devid &&
60 (*info_ptr)[i].num_stripes == num_stripes ) {
61 p = (*info_ptr) + i;
62 break;
65 if (!p) {
66 int tmp = sizeof(struct btrfs_chunk) * (*info_count + 1);
67 struct chunk_info *res = realloc(*info_ptr, tmp);
69 if (!res) {
70 free(*info_ptr);
71 error("not enough memory");
72 return -ENOMEM;
75 *info_ptr = res;
76 p = res + *info_count;
77 (*info_count)++;
79 p->devid = devid;
80 p->type = type;
81 p->size = 0;
82 p->num_stripes = num_stripes;
85 p->size += size;
89 return 0;
94 * Helper to sort the chunk type
96 static int cmp_chunk_block_group(u64 f1, u64 f2)
99 u64 mask;
101 if ((f1 & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
102 (f2 & BTRFS_BLOCK_GROUP_TYPE_MASK))
103 mask = BTRFS_BLOCK_GROUP_PROFILE_MASK;
104 else if (f2 & BTRFS_BLOCK_GROUP_SYSTEM)
105 return -1;
106 else if (f1 & BTRFS_BLOCK_GROUP_SYSTEM)
107 return +1;
108 else
109 mask = BTRFS_BLOCK_GROUP_TYPE_MASK;
111 if ((f1 & mask) > (f2 & mask))
112 return +1;
113 else if ((f1 & mask) < (f2 & mask))
114 return -1;
115 else
116 return 0;
120 * Helper to sort the chunk
122 static int cmp_chunk_info(const void *a, const void *b)
124 return cmp_chunk_block_group(
125 ((struct chunk_info *)a)->type,
126 ((struct chunk_info *)b)->type);
129 static int load_chunk_info(int fd, struct chunk_info **info_ptr, int *info_count)
131 int ret;
132 struct btrfs_ioctl_search_args args;
133 struct btrfs_ioctl_search_key *sk = &args.key;
134 struct btrfs_ioctl_search_header *sh;
135 unsigned long off = 0;
136 int i, e;
138 memset(&args, 0, sizeof(args));
141 * there may be more than one ROOT_ITEM key if there are
142 * snapshots pending deletion, we have to loop through
143 * them.
145 sk->tree_id = BTRFS_CHUNK_TREE_OBJECTID;
147 sk->min_objectid = 0;
148 sk->max_objectid = (u64)-1;
149 sk->max_type = 0;
150 sk->min_type = (u8)-1;
151 sk->min_offset = 0;
152 sk->max_offset = (u64)-1;
153 sk->min_transid = 0;
154 sk->max_transid = (u64)-1;
155 sk->nr_items = 4096;
157 while (1) {
158 ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args);
159 e = errno;
160 if (e == EPERM)
161 return -e;
163 if (ret < 0) {
164 error("cannot look up chunk tree info: %s",
165 strerror(e));
166 return 1;
168 /* the ioctl returns the number of item it found in nr_items */
170 if (sk->nr_items == 0)
171 break;
173 off = 0;
174 for (i = 0; i < sk->nr_items; i++) {
175 struct btrfs_chunk *item;
176 sh = (struct btrfs_ioctl_search_header *)(args.buf +
177 off);
179 off += sizeof(*sh);
180 item = (struct btrfs_chunk *)(args.buf + off);
182 ret = add_info_to_list(info_ptr, info_count, item);
183 if (ret) {
184 *info_ptr = NULL;
185 return 1;
188 off += btrfs_search_header_len(sh);
190 sk->min_objectid = btrfs_search_header_objectid(sh);
191 sk->min_type = btrfs_search_header_type(sh);
192 sk->min_offset = btrfs_search_header_offset(sh)+1;
195 if (!sk->min_offset) /* overflow */
196 sk->min_type++;
197 else
198 continue;
200 if (!sk->min_type)
201 sk->min_objectid++;
202 else
203 continue;
205 if (!sk->min_objectid)
206 break;
209 qsort(*info_ptr, *info_count, sizeof(struct chunk_info),
210 cmp_chunk_info);
212 return 0;
216 * Helper to sort the struct btrfs_ioctl_space_info
218 static int cmp_btrfs_ioctl_space_info(const void *a, const void *b)
220 return cmp_chunk_block_group(
221 ((struct btrfs_ioctl_space_info *)a)->flags,
222 ((struct btrfs_ioctl_space_info *)b)->flags);
226 * This function load all the information about the space usage
228 static struct btrfs_ioctl_space_args *load_space_info(int fd, char *path)
230 struct btrfs_ioctl_space_args *sargs = NULL, *sargs_orig = NULL;
231 int ret, count;
233 sargs_orig = sargs = calloc(1, sizeof(struct btrfs_ioctl_space_args));
234 if (!sargs) {
235 error("not enough memory");
236 return NULL;
239 sargs->space_slots = 0;
240 sargs->total_spaces = 0;
242 ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
243 if (ret < 0) {
244 error("cannot get space info on '%s': %s", path,
245 strerror(errno));
246 free(sargs);
247 return NULL;
249 if (!sargs->total_spaces) {
250 free(sargs);
251 printf("No chunks found\n");
252 return NULL;
255 count = sargs->total_spaces;
257 sargs = realloc(sargs, sizeof(struct btrfs_ioctl_space_args) +
258 (count * sizeof(struct btrfs_ioctl_space_info)));
259 if (!sargs) {
260 free(sargs_orig);
261 error("not enough memory");
262 return NULL;
265 sargs->space_slots = count;
266 sargs->total_spaces = 0;
268 ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
269 if (ret < 0) {
270 error("cannot get space info with %u slots: %s",
271 count, strerror(errno));
272 free(sargs);
273 return NULL;
276 qsort(&(sargs->spaces), count, sizeof(struct btrfs_ioctl_space_info),
277 cmp_btrfs_ioctl_space_info);
279 return sargs;
283 * This function computes the space occupied by a *single* RAID5/RAID6 chunk.
284 * The computation is performed on the basis of the number of stripes
285 * which compose the chunk, which could be different from the number of devices
286 * if a disk is added later.
288 static void get_raid56_used(int fd, struct chunk_info *chunks, int chunkcount,
289 u64 *raid5_used, u64 *raid6_used)
291 struct chunk_info *info_ptr = chunks;
292 *raid5_used = 0;
293 *raid6_used = 0;
295 while (chunkcount-- > 0) {
296 if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID5)
297 (*raid5_used) += info_ptr->size / (info_ptr->num_stripes - 1);
298 if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID6)
299 (*raid6_used) += info_ptr->size / (info_ptr->num_stripes - 2);
300 info_ptr++;
304 #define MIN_UNALOCATED_THRESH (16 * 1024 * 1024)
305 static int print_filesystem_usage_overall(int fd, struct chunk_info *chunkinfo,
306 int chunkcount, struct device_info *devinfo, int devcount,
307 char *path, unsigned unit_mode)
309 struct btrfs_ioctl_space_args *sargs = NULL;
310 int i;
311 int ret = 0;
312 int width = 10; /* default 10 for human units */
314 * r_* prefix is for raw data
315 * l_* is for logical
317 u64 r_total_size = 0; /* filesystem size, sum of device sizes */
318 u64 r_total_chunks = 0; /* sum of chunks sizes on disk(s) */
319 u64 r_total_used = 0;
320 u64 r_total_unused = 0;
321 u64 r_total_missing = 0; /* sum of missing devices size */
322 u64 r_data_used = 0;
323 u64 r_data_chunks = 0;
324 u64 l_data_chunks = 0;
325 u64 r_metadata_used = 0;
326 u64 r_metadata_chunks = 0;
327 u64 l_metadata_chunks = 0;
328 u64 r_system_used = 0;
329 u64 r_system_chunks = 0;
330 double data_ratio;
331 double metadata_ratio;
332 /* logical */
333 u64 raid5_used = 0;
334 u64 raid6_used = 0;
335 u64 l_global_reserve = 0;
336 u64 l_global_reserve_used = 0;
337 u64 free_estimated = 0;
338 u64 free_min = 0;
339 int max_data_ratio = 1;
340 int mixed = 0;
342 sargs = load_space_info(fd, path);
343 if (!sargs) {
344 ret = 1;
345 goto exit;
348 r_total_size = 0;
349 for (i = 0; i < devcount; i++) {
350 r_total_size += devinfo[i].size;
351 if (!devinfo[i].device_size)
352 r_total_missing += devinfo[i].size;
355 if (r_total_size == 0) {
356 error("cannot get space info on '%s': %s",
357 path, strerror(errno));
359 ret = 1;
360 goto exit;
362 get_raid56_used(fd, chunkinfo, chunkcount, &raid5_used, &raid6_used);
364 for (i = 0; i < sargs->total_spaces; i++) {
365 int ratio;
366 u64 flags = sargs->spaces[i].flags;
369 * The raid5/raid6 ratio depends by the stripes number
370 * used by every chunk. It is computed separately
372 if (flags & BTRFS_BLOCK_GROUP_RAID0)
373 ratio = 1;
374 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
375 ratio = 2;
376 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
377 ratio = 0;
378 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
379 ratio = 0;
380 else if (flags & BTRFS_BLOCK_GROUP_DUP)
381 ratio = 2;
382 else if (flags & BTRFS_BLOCK_GROUP_RAID10)
383 ratio = 2;
384 else
385 ratio = 1;
387 if (!ratio)
388 warning("RAID56 detected, not implemented");
390 if (ratio > max_data_ratio)
391 max_data_ratio = ratio;
393 if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV) {
394 l_global_reserve = sargs->spaces[i].total_bytes;
395 l_global_reserve_used = sargs->spaces[i].used_bytes;
397 if ((flags & (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA))
398 == (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA)) {
399 mixed = 1;
401 if (flags & BTRFS_BLOCK_GROUP_DATA) {
402 r_data_used += sargs->spaces[i].used_bytes * ratio;
403 r_data_chunks += sargs->spaces[i].total_bytes * ratio;
404 l_data_chunks += sargs->spaces[i].total_bytes;
406 if (flags & BTRFS_BLOCK_GROUP_METADATA) {
407 r_metadata_used += sargs->spaces[i].used_bytes * ratio;
408 r_metadata_chunks += sargs->spaces[i].total_bytes * ratio;
409 l_metadata_chunks += sargs->spaces[i].total_bytes;
411 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) {
412 r_system_used += sargs->spaces[i].used_bytes * ratio;
413 r_system_chunks += sargs->spaces[i].total_bytes * ratio;
417 r_total_chunks = r_data_chunks + r_system_chunks;
418 r_total_used = r_data_used + r_system_used;
419 if (!mixed) {
420 r_total_chunks += r_metadata_chunks;
421 r_total_used += r_metadata_used;
423 r_total_unused = r_total_size - r_total_chunks;
425 /* Raw / Logical = raid factor, >= 1 */
426 data_ratio = (double)r_data_chunks / l_data_chunks;
427 if (mixed)
428 metadata_ratio = data_ratio;
429 else
430 metadata_ratio = (double)r_metadata_chunks / l_metadata_chunks;
432 #if 0
433 /* add the raid5/6 allocated space */
434 total_chunks += raid5_used + raid6_used;
435 #endif
438 * We're able to fill at least DATA for the unused space
440 * With mixed raid levels, this gives a rough estimate but more
441 * accurate than just counting the logical free space
442 * (l_data_chunks - l_data_used)
444 * In non-mixed case there's no difference.
446 free_estimated = (r_data_chunks - r_data_used) / data_ratio;
448 * For mixed-bg the metadata are left out in calculations thus global
449 * reserve would be lost. Part of it could be permanently allocated,
450 * we have to subtract the used bytes so we don't go under zero free.
452 if (mixed)
453 free_estimated -= l_global_reserve - l_global_reserve_used;
454 free_min = free_estimated;
456 /* Chop unallocatable space */
457 /* FIXME: must be applied per device */
458 if (r_total_unused >= MIN_UNALOCATED_THRESH) {
459 free_estimated += r_total_unused / data_ratio;
460 /* Match the calculation of 'df', use the highest raid ratio */
461 free_min += r_total_unused / max_data_ratio;
464 if (unit_mode != UNITS_HUMAN)
465 width = 18;
467 printf("Overall:\n");
469 printf(" Device size:\t\t%*s\n", width,
470 pretty_size_mode(r_total_size, unit_mode));
471 printf(" Device allocated:\t\t%*s\n", width,
472 pretty_size_mode(r_total_chunks, unit_mode));
473 printf(" Device unallocated:\t\t%*s\n", width,
474 pretty_size_mode(r_total_unused, unit_mode));
475 printf(" Device missing:\t\t%*s\n", width,
476 pretty_size_mode(r_total_missing, unit_mode));
477 printf(" Used:\t\t\t%*s\n", width,
478 pretty_size_mode(r_total_used, unit_mode));
479 printf(" Free (estimated):\t\t%*s\t(",
480 width,
481 pretty_size_mode(free_estimated, unit_mode));
482 printf("min: %s)\n", pretty_size_mode(free_min, unit_mode));
483 printf(" Data ratio:\t\t\t%*.2f\n",
484 width, data_ratio);
485 printf(" Metadata ratio:\t\t%*.2f\n",
486 width, metadata_ratio);
487 printf(" Global reserve:\t\t%*s\t(used: %s)\n", width,
488 pretty_size_mode(l_global_reserve, unit_mode),
489 pretty_size_mode(l_global_reserve_used, unit_mode));
491 exit:
493 if (sargs)
494 free(sargs);
496 return ret;
500 * Helper to sort the device_info structure
502 static int cmp_device_info(const void *a, const void *b)
504 return strcmp(((struct device_info *)a)->path,
505 ((struct device_info *)b)->path);
509 * This function loads the device_info structure and put them in an array
511 static int load_device_info(int fd, struct device_info **device_info_ptr,
512 int *device_info_count)
514 int ret, i, ndevs;
515 struct btrfs_ioctl_fs_info_args fi_args;
516 struct btrfs_ioctl_dev_info_args dev_info;
517 struct device_info *info;
519 *device_info_count = 0;
520 *device_info_ptr = NULL;
522 ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args);
523 if (ret < 0) {
524 if (errno == EPERM)
525 return -errno;
526 error("cannot get filesystem info: %s",
527 strerror(errno));
528 return 1;
531 info = calloc(fi_args.num_devices, sizeof(struct device_info));
532 if (!info) {
533 error("not enough memory");
534 return 1;
537 for (i = 0, ndevs = 0 ; i <= fi_args.max_id ; i++) {
538 BUG_ON(ndevs >= fi_args.num_devices);
539 memset(&dev_info, 0, sizeof(dev_info));
540 ret = get_device_info(fd, i, &dev_info);
542 if (ret == -ENODEV)
543 continue;
544 if (ret) {
545 error("cannot get info about device devid=%d", i);
546 free(info);
547 return ret;
550 info[ndevs].devid = dev_info.devid;
551 if (!dev_info.path[0]) {
552 strcpy(info[ndevs].path, "missing");
553 } else {
554 strcpy(info[ndevs].path, (char *)dev_info.path);
555 info[ndevs].device_size =
556 get_partition_size((char *)dev_info.path);
558 info[ndevs].size = dev_info.total_bytes;
559 ++ndevs;
562 BUG_ON(ndevs != fi_args.num_devices);
563 qsort(info, fi_args.num_devices,
564 sizeof(struct device_info), cmp_device_info);
566 *device_info_count = fi_args.num_devices;
567 *device_info_ptr = info;
569 return 0;
572 int load_chunk_and_device_info(int fd, struct chunk_info **chunkinfo,
573 int *chunkcount, struct device_info **devinfo, int *devcount)
575 int ret;
577 ret = load_chunk_info(fd, chunkinfo, chunkcount);
578 if (ret == -EPERM) {
579 warning(
580 "cannot read detailed chunk info, RAID5/6 numbers will be incorrect, run as root");
581 } else if (ret) {
582 return ret;
585 ret = load_device_info(fd, devinfo, devcount);
586 if (ret == -EPERM) {
587 warning(
588 "cannot get filesystem info from ioctl(FS_INFO), run as root");
589 ret = 0;
592 return ret;
596 * This function computes the size of a chunk in a disk
598 static u64 calc_chunk_size(struct chunk_info *ci)
600 if (ci->type & BTRFS_BLOCK_GROUP_RAID0)
601 return ci->size / ci->num_stripes;
602 else if (ci->type & BTRFS_BLOCK_GROUP_RAID1)
603 return ci->size ;
604 else if (ci->type & BTRFS_BLOCK_GROUP_DUP)
605 return ci->size ;
606 else if (ci->type & BTRFS_BLOCK_GROUP_RAID5)
607 return ci->size / (ci->num_stripes -1);
608 else if (ci->type & BTRFS_BLOCK_GROUP_RAID6)
609 return ci->size / (ci->num_stripes -2);
610 else if (ci->type & BTRFS_BLOCK_GROUP_RAID10)
611 return ci->size / ci->num_stripes;
612 return ci->size;
616 * This function print the results of the command "btrfs fi usage"
617 * in tabular format
619 static void _cmd_filesystem_usage_tabular(unsigned unit_mode,
620 struct btrfs_ioctl_space_args *sargs,
621 struct chunk_info *chunks_info_ptr,
622 int chunks_info_count,
623 struct device_info *device_info_ptr,
624 int device_info_count)
626 int i;
627 u64 total_unused = 0;
628 struct string_table *matrix = NULL;
629 int ncols, nrows;
630 int col;
631 int unallocated_col;
632 int spaceinfos_col;
633 const int vhdr_skip = 3; /* amount of vertical header space */
635 /* id, path, unallocated */
636 ncols = 3;
637 spaceinfos_col = 2;
638 /* Properly count the real space infos */
639 for (i = 0; i < sargs->total_spaces; i++) {
640 if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
641 continue;
642 ncols++;
645 /* 2 for header, empty line, devices, ===, total, used */
646 nrows = vhdr_skip + device_info_count + 1 + 2;
648 matrix = table_create(ncols, nrows);
649 if (!matrix) {
650 error("not enough memory");
651 return;
655 * We have to skip the global block reserve everywhere as it's an
656 * artificial blockgroup
659 /* header */
660 for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
661 u64 flags = sargs->spaces[i].flags;
663 if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
664 continue;
666 table_printf(matrix, col, 0, "<%s",
667 btrfs_group_type_str(flags));
668 table_printf(matrix, col, 1, "<%s",
669 btrfs_group_profile_str(flags));
670 col++;
672 unallocated_col = col;
674 table_printf(matrix, 0, 1, "<Id");
675 table_printf(matrix, 1, 1, "<Path");
676 table_printf(matrix, unallocated_col, 1, "<Unallocated");
678 /* body */
679 for (i = 0; i < device_info_count; i++) {
680 int k;
681 char *p;
683 u64 total_allocated = 0, unused;
685 p = strrchr(device_info_ptr[i].path, '/');
686 if (!p)
687 p = device_info_ptr[i].path;
688 else
689 p++;
691 table_printf(matrix, 0, vhdr_skip + i, ">%llu",
692 device_info_ptr[i].devid);
693 table_printf(matrix, 1, vhdr_skip + i, "<%s",
694 device_info_ptr[i].path);
696 for (col = spaceinfos_col, k = 0; k < sargs->total_spaces; k++) {
697 u64 flags = sargs->spaces[k].flags;
698 u64 devid = device_info_ptr[i].devid;
699 int j;
700 u64 size = 0;
702 if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
703 continue;
705 for (j = 0 ; j < chunks_info_count ; j++) {
706 if (chunks_info_ptr[j].type != flags )
707 continue;
708 if (chunks_info_ptr[j].devid != devid)
709 continue;
711 size += calc_chunk_size(chunks_info_ptr+j);
714 if (size)
715 table_printf(matrix, col, vhdr_skip+ i,
716 ">%s", pretty_size_mode(size, unit_mode));
717 else
718 table_printf(matrix, col, vhdr_skip + i, ">-");
720 total_allocated += size;
721 col++;
724 unused = get_partition_size(device_info_ptr[i].path)
725 - total_allocated;
727 table_printf(matrix, unallocated_col, vhdr_skip + i,
728 ">%s", pretty_size_mode(unused, unit_mode));
729 total_unused += unused;
733 for (i = 0; i < spaceinfos_col; i++) {
734 table_printf(matrix, i, vhdr_skip - 1, "*-");
735 table_printf(matrix, i, vhdr_skip + device_info_count, "*-");
738 for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
739 if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
740 continue;
742 table_printf(matrix, col, vhdr_skip - 1, "*-");
743 table_printf(matrix, col, vhdr_skip + device_info_count, "*-");
744 col++;
746 /* One for Unallocated */
747 table_printf(matrix, col, vhdr_skip - 1, "*-");
748 table_printf(matrix, col, vhdr_skip + device_info_count, "*-");
750 /* footer */
751 table_printf(matrix, 1, vhdr_skip + device_info_count + 1, "<Total");
752 for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
753 if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
754 continue;
756 table_printf(matrix, col++, vhdr_skip + device_info_count + 1,
757 ">%s",
758 pretty_size_mode(sargs->spaces[i].total_bytes, unit_mode));
761 table_printf(matrix, unallocated_col, vhdr_skip + device_info_count + 1,
762 ">%s", pretty_size_mode(total_unused, unit_mode));
764 table_printf(matrix, 1, vhdr_skip + device_info_count + 2, "<Used");
765 for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
766 if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
767 continue;
769 table_printf(matrix, col++, vhdr_skip + device_info_count + 2,
770 ">%s",
771 pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode));
774 table_dump(matrix);
775 table_free(matrix);
779 * This function prints the unused space per every disk
781 static void print_unused(struct chunk_info *info_ptr,
782 int info_count,
783 struct device_info *device_info_ptr,
784 int device_info_count,
785 unsigned unit_mode)
787 int i;
788 for (i = 0; i < device_info_count; i++) {
789 int j;
790 u64 total = 0;
792 for (j = 0; j < info_count; j++)
793 if (info_ptr[j].devid == device_info_ptr[i].devid)
794 total += calc_chunk_size(info_ptr+j);
796 printf(" %s\t%10s\n",
797 device_info_ptr[i].path,
798 pretty_size_mode(device_info_ptr[i].size - total,
799 unit_mode));
804 * This function prints the allocated chunk per every disk
806 static void print_chunk_device(u64 chunk_type,
807 struct chunk_info *chunks_info_ptr,
808 int chunks_info_count,
809 struct device_info *device_info_ptr,
810 int device_info_count,
811 unsigned unit_mode)
813 int i;
815 for (i = 0; i < device_info_count; i++) {
816 int j;
817 u64 total = 0;
819 for (j = 0; j < chunks_info_count; j++) {
821 if (chunks_info_ptr[j].type != chunk_type)
822 continue;
823 if (chunks_info_ptr[j].devid != device_info_ptr[i].devid)
824 continue;
826 total += calc_chunk_size(&(chunks_info_ptr[j]));
827 //total += chunks_info_ptr[j].size;
830 if (total > 0)
831 printf(" %s\t%10s\n",
832 device_info_ptr[i].path,
833 pretty_size_mode(total, unit_mode));
838 * This function print the results of the command "btrfs fi usage"
839 * in linear format
841 static void _cmd_filesystem_usage_linear(unsigned unit_mode,
842 struct btrfs_ioctl_space_args *sargs,
843 struct chunk_info *info_ptr,
844 int info_count,
845 struct device_info *device_info_ptr,
846 int device_info_count)
848 int i;
850 for (i = 0; i < sargs->total_spaces; i++) {
851 const char *description;
852 const char *r_mode;
853 u64 flags = sargs->spaces[i].flags;
855 if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
856 continue;
858 description = btrfs_group_type_str(flags);
859 r_mode = btrfs_group_profile_str(flags);
861 printf("%s,%s: Size:%s, ",
862 description,
863 r_mode,
864 pretty_size_mode(sargs->spaces[i].total_bytes,
865 unit_mode));
866 printf("Used:%s\n",
867 pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode));
868 print_chunk_device(flags, info_ptr, info_count,
869 device_info_ptr, device_info_count, unit_mode);
870 printf("\n");
873 printf("Unallocated:\n");
874 print_unused(info_ptr, info_count, device_info_ptr, device_info_count,
875 unit_mode);
878 static int print_filesystem_usage_by_chunk(int fd,
879 struct chunk_info *chunkinfo, int chunkcount,
880 struct device_info *devinfo, int devcount,
881 char *path, unsigned unit_mode, int tabular)
883 struct btrfs_ioctl_space_args *sargs;
884 int ret = 0;
886 if (!chunkinfo)
887 return 0;
889 sargs = load_space_info(fd, path);
890 if (!sargs) {
891 ret = 1;
892 goto out;
895 if (tabular)
896 _cmd_filesystem_usage_tabular(unit_mode, sargs, chunkinfo,
897 chunkcount, devinfo, devcount);
898 else
899 _cmd_filesystem_usage_linear(unit_mode, sargs, chunkinfo,
900 chunkcount, devinfo, devcount);
902 free(sargs);
903 out:
904 return ret;
907 const char * const cmd_filesystem_usage_usage[] = {
908 "btrfs filesystem usage [options] <path> [<path>..]",
909 "Show detailed information about internal filesystem usage .",
910 HELPINFO_UNITS_SHORT_LONG,
911 "-T show data in tabular format",
912 NULL
915 int cmd_filesystem_usage(int argc, char **argv)
917 int ret = 0;
918 unsigned unit_mode;
919 int i;
920 int more_than_one = 0;
921 int tabular = 0;
923 unit_mode = get_unit_mode_from_arg(&argc, argv, 1);
925 while (1) {
926 int c;
928 c = getopt(argc, argv, "T");
929 if (c < 0)
930 break;
932 switch (c) {
933 case 'T':
934 tabular = 1;
935 break;
936 default:
937 usage(cmd_filesystem_usage_usage);
941 if (check_argc_min(argc - optind, 1))
942 usage(cmd_filesystem_usage_usage);
944 for (i = optind; i < argc; i++) {
945 int fd;
946 DIR *dirstream = NULL;
947 struct chunk_info *chunkinfo = NULL;
948 struct device_info *devinfo = NULL;
949 int chunkcount = 0;
950 int devcount = 0;
952 fd = btrfs_open_dir(argv[i], &dirstream, 1);
953 if (fd < 0) {
954 ret = 1;
955 goto out;
957 if (more_than_one)
958 printf("\n");
960 ret = load_chunk_and_device_info(fd, &chunkinfo, &chunkcount,
961 &devinfo, &devcount);
962 if (ret)
963 goto cleanup;
965 ret = print_filesystem_usage_overall(fd, chunkinfo, chunkcount,
966 devinfo, devcount, argv[i], unit_mode);
967 if (ret)
968 goto cleanup;
969 printf("\n");
970 ret = print_filesystem_usage_by_chunk(fd, chunkinfo, chunkcount,
971 devinfo, devcount, argv[i], unit_mode, tabular);
972 cleanup:
973 close_file_or_dir(fd, dirstream);
974 free(chunkinfo);
975 free(devinfo);
977 if (ret)
978 goto out;
979 more_than_one = 1;
982 out:
983 return !!ret;
986 void print_device_chunks(int fd, struct device_info *devinfo,
987 struct chunk_info *chunks_info_ptr,
988 int chunks_info_count, unsigned unit_mode)
990 int i;
991 u64 allocated = 0;
993 for (i = 0 ; i < chunks_info_count ; i++) {
994 const char *description;
995 const char *r_mode;
996 u64 flags;
997 u64 size;
999 if (chunks_info_ptr[i].devid != devinfo->devid)
1000 continue;
1002 flags = chunks_info_ptr[i].type;
1004 description = btrfs_group_type_str(flags);
1005 r_mode = btrfs_group_profile_str(flags);
1006 size = calc_chunk_size(chunks_info_ptr+i);
1007 printf(" %s,%s:%*s%10s\n",
1008 description,
1009 r_mode,
1010 (int)(20 - strlen(description) - strlen(r_mode)), "",
1011 pretty_size_mode(size, unit_mode));
1013 allocated += size;
1016 printf(" Unallocated: %*s%10s\n",
1017 (int)(20 - strlen("Unallocated")), "",
1018 pretty_size_mode(devinfo->size - allocated, unit_mode));
1021 void print_device_sizes(int fd, struct device_info *devinfo, unsigned unit_mode)
1023 printf(" Device size: %*s%10s\n",
1024 (int)(20 - strlen("Device size")), "",
1025 pretty_size_mode(devinfo->device_size, unit_mode));
1026 printf(" Device slack: %*s%10s\n",
1027 (int)(20 - strlen("Device slack")), "",
1028 pretty_size_mode(devinfo->device_size - devinfo->size,
1029 unit_mode));