btrfs-progs: replace leafsize with nodesize
[btrfs-progs-unstable/devel.git] / qgroup-verify.c
blob7e6349bbc28058277fb2e939af565875b16a842c
1 /*
2 * Copyright (C) 2014 SUSE. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 * Authors: Mark Fasheh <mfasheh@suse.de>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <uuid/uuid.h>
24 #include "kerncompat.h"
25 #include "radix-tree.h"
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "print-tree.h"
29 #include "utils.h"
30 #include "ulist.h"
31 #include "rbtree-utils.h"
33 #include "qgroup-verify.h"
35 /*#define QGROUP_VERIFY_DEBUG*/
36 static unsigned long tot_extents_scanned = 0;
38 static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive);
40 struct qgroup_info {
41 u64 referenced;
42 u64 referenced_compressed;
43 u64 exclusive;
44 u64 exclusive_compressed;
47 struct qgroup_count {
48 u64 qgroupid;
49 int subvol_exists;
51 struct btrfs_disk_key key;
52 struct qgroup_info diskinfo;
54 struct qgroup_info info;
56 struct rb_node rb_node;
59 static struct counts_tree {
60 struct rb_root root;
61 unsigned int num_groups;
62 } counts = { .root = RB_ROOT };
64 static struct rb_root by_bytenr = RB_ROOT;
67 * List of interior tree blocks. We walk this list after loading the
68 * extent tree to resolve implied refs. For each interior node we'll
69 * place a shared ref in the ref tree against each child object. This
70 * allows the shared ref resolving code to do the actual work later of
71 * finding roots to account against.
73 * An implied ref is when a tree block has refs on it that may not
74 * exist in any of its child nodes. Even though the refs might not
75 * exist further down the tree, the fact that our interior node has a
76 * ref means we need to account anything below it to all its roots.
78 static struct ulist *tree_blocks = NULL; /* unode->val = bytenr, ->aux
79 * = tree_block pointer */
80 struct tree_block {
81 int level;
82 u64 num_bytes;
85 struct ref {
86 u64 bytenr;
87 u64 num_bytes;
88 u64 parent;
89 u64 root;
91 struct rb_node bytenr_node;
94 #ifdef QGROUP_VERIFY_DEBUG
95 static void print_ref(struct ref *ref)
97 printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
98 "root: %llu\n", ref->bytenr, ref->num_bytes,
99 ref->parent, ref->root);
102 static void print_all_refs(void)
104 unsigned long count = 0;
105 struct ref *ref;
106 struct rb_node *node;
108 node = rb_first(&by_bytenr);
109 while (node) {
110 ref = rb_entry(node, struct ref, bytenr_node);
112 print_ref(ref);
114 count++;
115 node = rb_next(node);
118 printf("%lu extents scanned with %lu refs in total.\n",
119 tot_extents_scanned, count);
121 #endif
124 * Store by bytenr in rbtree
126 * The tree is sorted in ascending order by bytenr, then parent, then
127 * root. Since full refs have a parent == 0, those will come before
128 * shared refs.
130 static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
132 if (bytenr < orig->bytenr)
133 return -1;
134 if (bytenr > orig->bytenr)
135 return 1;
137 if (parent < orig->parent)
138 return -1;
139 if (parent > orig->parent)
140 return 1;
142 if (root < orig->root)
143 return -1;
144 if (root > orig->root)
145 return 1;
147 return 0;
151 * insert a new ref into the tree. returns the existing ref entry
152 * if one is already there.
154 static struct ref *insert_ref(struct ref *ref)
156 int ret;
157 struct rb_node **p = &by_bytenr.rb_node;
158 struct rb_node *parent = NULL;
159 struct ref *curr;
161 while (*p) {
162 parent = *p;
163 curr = rb_entry(parent, struct ref, bytenr_node);
165 ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
166 if (ret < 0)
167 p = &(*p)->rb_left;
168 else if (ret > 0)
169 p = &(*p)->rb_right;
170 else
171 return curr;
174 rb_link_node(&ref->bytenr_node, parent, p);
175 rb_insert_color(&ref->bytenr_node, &by_bytenr);
176 return ref;
180 * Partial search, returns the first ref with matching bytenr. Caller
181 * can walk forward from there.
183 * Leftmost refs will be full refs - this is used to our advantage
184 * when resolving roots.
186 static struct ref *find_ref_bytenr(u64 bytenr)
188 struct rb_node *n = by_bytenr.rb_node;
189 struct ref *ref;
191 while (n) {
192 ref = rb_entry(n, struct ref, bytenr_node);
194 if (bytenr < ref->bytenr)
195 n = n->rb_left;
196 else if (bytenr > ref->bytenr)
197 n = n->rb_right;
198 else {
199 /* Walk to the left to find the first item */
200 struct rb_node *node_left = rb_prev(&ref->bytenr_node);
201 struct ref *ref_left;
203 while (node_left) {
204 ref_left = rb_entry(node_left, struct ref,
205 bytenr_node);
206 if (ref_left->bytenr != ref->bytenr)
207 break;
208 ref = ref_left;
209 node_left = rb_prev(node_left);
211 return ref;
214 return NULL;
217 static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
219 struct rb_node *n = by_bytenr.rb_node;
220 struct ref *ref;
221 int ret;
223 while (n) {
224 ref = rb_entry(n, struct ref, bytenr_node);
226 ret = compare_ref(ref, bytenr, root, parent);
227 if (ret < 0)
228 n = n->rb_left;
229 else if (ret > 0)
230 n = n->rb_right;
231 else
232 return ref;
234 return NULL;
237 static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
239 struct ref *ref = find_ref(bytenr, root, parent);
241 BUG_ON(parent && root);
243 if (ref == NULL) {
244 ref = calloc(1, sizeof(*ref));
245 if (ref) {
246 ref->bytenr = bytenr;
247 ref->root = root;
248 ref->parent = parent;
249 ref->num_bytes = num_bytes;
251 insert_ref(ref);
254 return ref;
257 static void free_ref_node(struct rb_node *node)
259 struct ref *ref = rb_entry(node, struct ref, bytenr_node);
260 free(ref);
263 FREE_RB_BASED_TREE(ref, free_ref_node);
266 * Resolves all the possible roots for the ref at parent.
268 static void find_parent_roots(struct ulist *roots, u64 parent)
270 struct ref *ref;
271 struct rb_node *node;
274 * Search the rbtree for the first ref with bytenr == parent.
275 * Walk forward so long as bytenr == parent, adding resolved root ids.
276 * For each unresolved root, we recurse
278 ref = find_ref_bytenr(parent);
279 node = &ref->bytenr_node;
280 BUG_ON(ref == NULL);
281 BUG_ON(ref->bytenr != parent);
285 * Random sanity check, are we actually getting the
286 * leftmost node?
288 struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
289 struct ref *prev;
290 if (prev_node) {
291 prev = rb_entry(prev_node, struct ref, bytenr_node);
292 BUG_ON(prev->bytenr == parent);
296 do {
297 if (ref->root)
298 ulist_add(roots, ref->root, 0, 0);
299 else
300 find_parent_roots(roots, ref->parent);
302 node = rb_next(node);
303 if (node)
304 ref = rb_entry(node, struct ref, bytenr_node);
305 } while (node && ref->bytenr == parent);
308 static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
309 struct ulist *roots);
311 * Account each ref. Walk the refs, for each set of refs in a
312 * given bytenr:
314 * - add the roots for direct refs to the ref roots ulist
316 * - resolve all possible roots for shared refs, insert each
317 * of those into ref_roots ulist (this is a recursive process)
319 * - Walk ref_roots ulist, adding extent bytes to each qgroup count that
320 * cooresponds to a found root.
322 static void account_all_refs(int do_qgroups, u64 search_subvol)
324 int exclusive;
325 struct ref *ref;
326 struct rb_node *node;
327 u64 bytenr, num_bytes;
328 struct ulist *roots = ulist_alloc(0);
329 struct ulist_iterator uiter;
330 struct ulist_node *unode;
332 node = rb_first(&by_bytenr);
333 while (node) {
334 ulist_reinit(roots);
336 ref = rb_entry(node, struct ref, bytenr_node);
338 * Walk forward through the list of refs for this
339 * bytenr, adding roots to our ulist. If it's a full
340 * ref, then we have the easy case. Otherwise we need
341 * to search for roots.
343 bytenr = ref->bytenr;
344 num_bytes = ref->num_bytes;
345 do {
346 BUG_ON(ref->bytenr != bytenr);
347 BUG_ON(ref->num_bytes != num_bytes);
348 if (ref->root)
349 ulist_add(roots, ref->root, 0, 0);
350 else
351 find_parent_roots(roots, ref->parent);
354 * When we leave this inner loop, node is set
355 * to next in our tree and will be turned into
356 * a ref object up top
358 node = rb_next(node);
359 if (node)
360 ref = rb_entry(node, struct ref, bytenr_node);
361 } while (node && ref->bytenr == bytenr);
364 * Now that we have all roots, we can properly account
365 * this extent against the corresponding qgroups.
367 if (roots->nnodes == 1)
368 exclusive = 1;
369 else
370 exclusive = 0;
372 if (search_subvol)
373 print_subvol_info(search_subvol, bytenr, num_bytes,
374 roots);
376 ULIST_ITER_INIT(&uiter);
377 while ((unode = ulist_next(roots, &uiter))) {
378 BUG_ON(unode->val == 0ULL);
379 /* We only want to account fs trees */
380 if (is_fstree(unode->val) && do_qgroups)
381 add_bytes(unode->val, num_bytes, exclusive);
385 ulist_free(roots);
388 static u64 resolve_one_root(u64 bytenr)
390 struct ref *ref = find_ref_bytenr(bytenr);
392 BUG_ON(ref == NULL);
394 if (ref->root)
395 return ref->root;
396 return resolve_one_root(ref->parent);
399 static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
401 return u64_to_ptr(unode->aux);
403 static inline u64 unode_bytenr(struct ulist_node *unode)
405 return unode->val;
408 static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
410 struct tree_block *block = calloc(1, sizeof(*block));
412 if (block) {
413 block->num_bytes = num_bytes;
414 block->level = level;
415 if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
416 return 0;
417 free(block);
419 return -ENOMEM;
422 static void free_tree_blocks(void)
424 struct ulist_iterator uiter;
425 struct ulist_node *unode;
427 if (!tree_blocks)
428 return;
430 ULIST_ITER_INIT(&uiter);
431 while ((unode = ulist_next(tree_blocks, &uiter)))
432 free(unode_tree_block(unode));
433 ulist_free(tree_blocks);
434 tree_blocks = NULL;
437 #ifdef QGROUP_VERIFY_DEBUG
438 static void print_tree_block(u64 bytenr, struct tree_block *block)
440 struct ref *ref;
441 struct rb_node *node;
443 printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
444 block->level);
446 ref = find_ref_bytenr(bytenr);
447 node = &ref->bytenr_node;
448 do {
449 print_ref(ref);
450 node = rb_next(node);
451 if (node)
452 ref = rb_entry(node, struct ref, bytenr_node);
453 } while (node && ref->bytenr == bytenr);
455 printf("\n");
458 static void print_all_tree_blocks(void)
460 struct ulist_iterator uiter;
461 struct ulist_node *unode;
463 if (!tree_blocks)
464 return;
466 printf("Listing all found interior tree nodes:\n");
468 ULIST_ITER_INIT(&uiter);
469 while ((unode = ulist_next(tree_blocks, &uiter)))
470 print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
472 #endif
474 static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
476 int nr, i;
477 int extent_type;
478 u64 bytenr, num_bytes;
479 struct btrfs_key key;
480 struct btrfs_disk_key disk_key;
481 struct btrfs_file_extent_item *fi;
483 nr = btrfs_header_nritems(eb);
484 for (i = 0; i < nr; i++) {
485 btrfs_item_key(eb, &disk_key, i);
486 btrfs_disk_key_to_cpu(&key, &disk_key);
488 if (key.type != BTRFS_EXTENT_DATA_KEY)
489 continue;
491 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
492 /* filter out: inline, disk_bytenr == 0, compressed?
493 * not if we can avoid it */
494 extent_type = btrfs_file_extent_type(eb, fi);
496 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
497 continue;
499 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
500 if (!bytenr)
501 continue;
503 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
504 if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
505 return ENOMEM;
508 return 0;
511 static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
512 u64 bytenr, u64 num_bytes, u64 ref_parent)
514 int ret, nr, i;
515 struct extent_buffer *eb;
516 u64 new_bytenr;
517 u64 new_num_bytes;
519 // printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
520 // bytenr, num_bytes, ref_parent);
522 eb = read_tree_block(root, bytenr, num_bytes, 0);
523 if (!extent_buffer_uptodate(eb))
524 return -EIO;
526 ret = 0;
527 /* Don't add a ref for our starting tree block to itself */
528 if (bytenr != ref_parent) {
529 if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
530 return ENOMEM;
533 if (btrfs_is_leaf(eb)) {
534 ret = add_refs_for_leaf_items(eb, ref_parent);
535 goto out;
539 * Interior nodes are tuples of (key, bytenr) where key is the
540 * leftmost key in the tree block pointed to by bytenr. We
541 * don't have to care about key here, just follow the bytenr
542 * pointer.
544 nr = btrfs_header_nritems(eb);
545 for (i = 0; i < nr; i++) {
546 new_bytenr = btrfs_node_blockptr(eb, i);
547 new_num_bytes = btrfs_level_size(root,
548 btrfs_header_level(eb) - 1);
550 ret = travel_tree(info, root, new_bytenr, new_num_bytes,
551 ref_parent);
554 out:
555 free_extent_buffer(eb);
556 return ret;
559 static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
560 struct tree_block *block)
562 int ret;
563 u64 root_id = resolve_one_root(bytenr);
564 struct btrfs_root *root;
565 struct btrfs_key key;
567 key.objectid = root_id;
568 key.type = BTRFS_ROOT_ITEM_KEY;
569 key.offset = (u64)-1;
572 * XXX: Don't free the root object as we don't know whether it
573 * came off our fs_info struct or not.
575 root = btrfs_read_fs_root(info, &key);
576 if (!root || IS_ERR(root))
577 return ENOENT;
579 ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
580 if (ret)
581 return ret;
583 return 0;
587 * Place shared refs in the ref tree for each child of an interior tree node.
589 static int map_implied_refs(struct btrfs_fs_info *info)
591 int ret = 0;
592 struct ulist_iterator uiter;
593 struct ulist_node *unode;
595 ULIST_ITER_INIT(&uiter);
596 while ((unode = ulist_next(tree_blocks, &uiter))) {
597 ret = add_refs_for_implied(info, unode_bytenr(unode),
598 unode_tree_block(unode));
599 if (ret)
600 goto out;
602 out:
603 return ret;
607 * insert a new root into the tree. returns the existing root entry
608 * if one is already there. qgroupid is used
609 * as the key
611 static int insert_count(struct qgroup_count *qc)
613 struct rb_node **p = &counts.root.rb_node;
614 struct rb_node *parent = NULL;
615 struct qgroup_count *curr;
617 while (*p) {
618 parent = *p;
619 curr = rb_entry(parent, struct qgroup_count, rb_node);
621 if (qc->qgroupid < curr->qgroupid)
622 p = &(*p)->rb_left;
623 else if (qc->qgroupid > curr->qgroupid)
624 p = &(*p)->rb_right;
625 else
626 return EEXIST;
628 counts.num_groups++;
629 rb_link_node(&qc->rb_node, parent, p);
630 rb_insert_color(&qc->rb_node, &counts.root);
631 return 0;
634 static struct qgroup_count *find_count(u64 qgroupid)
636 struct rb_node *n = counts.root.rb_node;
637 struct qgroup_count *count;
639 while (n) {
640 count = rb_entry(n, struct qgroup_count, rb_node);
642 if (qgroupid < count->qgroupid)
643 n = n->rb_left;
644 else if (qgroupid > count->qgroupid)
645 n = n->rb_right;
646 else
647 return count;
649 return NULL;
652 static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
653 struct extent_buffer *leaf,
654 struct btrfs_qgroup_info_item *disk)
656 struct qgroup_count *c = calloc(1, sizeof(*c));
657 struct qgroup_info *item;
659 if (c) {
660 c->qgroupid = btrfs_disk_key_offset(key);
661 c->key = *key;
663 item = &c->diskinfo;
664 item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
665 item->referenced_compressed =
666 btrfs_qgroup_info_referenced_compressed(leaf, disk);
667 item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
668 item->exclusive_compressed =
669 btrfs_qgroup_info_exclusive_compressed(leaf, disk);
671 if (insert_count(c)) {
672 free(c);
673 c = NULL;
676 return c;
679 static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive)
681 struct qgroup_count *count = find_count(root_objectid);
682 struct qgroup_info *qg;
684 BUG_ON(num_bytes < 4096); /* Random sanity check. */
686 if (!count)
687 return;
689 qg = &count->info;
691 qg->referenced += num_bytes;
693 * count of compressed bytes is unimplemented, so we do the
694 * same as kernel.
696 qg->referenced_compressed += num_bytes;
698 if (exclusive) {
699 qg->exclusive += num_bytes;
700 qg->exclusive_compressed += num_bytes;
704 static int load_quota_info(struct btrfs_fs_info *info)
706 int ret;
707 struct btrfs_root *root = info->quota_root;
708 struct btrfs_root *tmproot;
709 struct btrfs_path path;
710 struct btrfs_key key;
711 struct btrfs_key root_key;
712 struct btrfs_disk_key disk_key;
713 struct extent_buffer *leaf;
714 struct btrfs_qgroup_info_item *item;
715 struct qgroup_count *count;
716 int i, nr;
718 btrfs_init_path(&path);
720 key.offset = 0;
721 key.objectid = 0;
722 key.type = 0;
724 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
725 if (ret < 0) {
726 fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
727 goto out;
730 while (1) {
731 leaf = path.nodes[0];
733 nr = btrfs_header_nritems(leaf);
734 for(i = 0; i < nr; i++) {
735 btrfs_item_key(leaf, &disk_key, i);
736 btrfs_disk_key_to_cpu(&key, &disk_key);
738 if (key.type == BTRFS_QGROUP_RELATION_KEY)
739 printf("Ignoring qgroup relation key %llu\n",
740 key.objectid);
743 * Ignore: BTRFS_QGROUP_STATUS_KEY,
744 * BTRFS_QGROUP_LIMIT_KEY, BTRFS_QGROUP_RELATION_KEY
746 if (key.type != BTRFS_QGROUP_INFO_KEY)
747 continue;
749 item = btrfs_item_ptr(leaf, i,
750 struct btrfs_qgroup_info_item);
752 count = alloc_count(&disk_key, leaf, item);
753 if (!count) {
754 ret = ENOMEM;
755 fprintf(stderr, "ERROR: out of memory\n");
756 goto out;
759 root_key.objectid = key.offset;
760 root_key.type = BTRFS_ROOT_ITEM_KEY;
761 root_key.offset = (u64)-1;
762 tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
763 if (tmproot && !IS_ERR(tmproot)) {
764 count->subvol_exists = 1;
765 free(tmproot);
769 ret = btrfs_next_leaf(root, &path);
770 if (ret != 0)
771 break;
774 ret = 0;
775 btrfs_release_path(&path);
776 out:
777 return ret;
780 static int add_inline_refs(struct btrfs_fs_info *info,
781 struct extent_buffer *ei_leaf, int slot,
782 u64 bytenr, u64 num_bytes, int meta_item)
784 struct btrfs_extent_item *ei;
785 struct btrfs_extent_inline_ref *iref;
786 struct btrfs_extent_data_ref *dref;
787 u64 flags, root_obj, offset, parent;
788 u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
789 int type;
790 unsigned long end;
791 unsigned long ptr;
793 ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
794 flags = btrfs_extent_flags(ei_leaf, ei);
796 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
797 struct btrfs_tree_block_info *tbinfo;
798 tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
799 iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
800 } else {
801 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
804 ptr = (unsigned long)iref;
805 end = (unsigned long)ei + item_size;
806 while (ptr < end) {
807 iref = (struct btrfs_extent_inline_ref *)ptr;
809 parent = root_obj = 0;
810 offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
811 type = btrfs_extent_inline_ref_type(ei_leaf, iref);
812 switch (type) {
813 case BTRFS_TREE_BLOCK_REF_KEY:
814 root_obj = offset;
815 break;
816 case BTRFS_EXTENT_DATA_REF_KEY:
817 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
818 root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
819 break;
820 case BTRFS_SHARED_DATA_REF_KEY:
821 case BTRFS_SHARED_BLOCK_REF_KEY:
822 parent = offset;
823 break;
824 default:
825 return 1;
828 if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
829 return ENOMEM;
831 ptr += btrfs_extent_inline_ref_size(type);
834 return 0;
837 static int add_keyed_ref(struct btrfs_fs_info *info,
838 struct btrfs_key *key,
839 struct extent_buffer *leaf, int slot,
840 u64 bytenr, u64 num_bytes)
842 u64 root_obj = 0, parent = 0;
843 struct btrfs_extent_data_ref *dref;
845 switch(key->type) {
846 case BTRFS_TREE_BLOCK_REF_KEY:
847 root_obj = key->offset;
848 break;
849 case BTRFS_EXTENT_DATA_REF_KEY:
850 dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
851 root_obj = btrfs_extent_data_ref_root(leaf, dref);
852 break;
853 case BTRFS_SHARED_DATA_REF_KEY:
854 case BTRFS_SHARED_BLOCK_REF_KEY:
855 parent = key->offset;
856 break;
857 default:
858 return 1;
861 if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
862 return ENOMEM;
864 return 0;
868 * return value of 0 indicates leaf or not meta data. The code that
869 * calls this does not need to make a distinction between the two as
870 * it is only concerned with intermediate blocks which will always
871 * have level > 0.
873 static int get_tree_block_level(struct btrfs_key *key,
874 struct extent_buffer *ei_leaf,
875 int slot)
877 int level = 0;
878 int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
879 u64 flags;
880 struct btrfs_extent_item *ei;
882 ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
883 flags = btrfs_extent_flags(ei_leaf, ei);
885 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
886 struct btrfs_tree_block_info *tbinfo;
887 tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
888 level = btrfs_tree_block_level(ei_leaf, tbinfo);
889 } else if (meta_key) {
890 /* skinny metadata */
891 level = (int)key->offset;
893 return level;
897 * Walk the extent tree, allocating a ref item for every ref and
898 * storing it in the bytenr tree.
900 static int scan_extents(struct btrfs_fs_info *info,
901 u64 start, u64 end)
903 int ret, i, nr, level;
904 struct btrfs_root *root = info->extent_root;
905 struct btrfs_key key;
906 struct btrfs_path path;
907 struct btrfs_disk_key disk_key;
908 struct extent_buffer *leaf;
909 u64 bytenr = 0, num_bytes = 0;
911 btrfs_init_path(&path);
913 key.objectid = start;
914 key.type = 0;
915 key.offset = 0;
917 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
918 if (ret < 0) {
919 fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
920 goto out;
922 path.reada = 1;
924 while (1) {
925 leaf = path.nodes[0];
927 nr = btrfs_header_nritems(leaf);
928 for(i = 0; i < nr; i++) {
929 btrfs_item_key(leaf, &disk_key, i);
930 btrfs_disk_key_to_cpu(&key, &disk_key);
932 if (key.objectid < start)
933 continue;
935 if (key.objectid > end)
936 goto done;
938 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
939 key.type == BTRFS_METADATA_ITEM_KEY) {
940 int meta = 0;
942 tot_extents_scanned++;
944 bytenr = key.objectid;
945 num_bytes = key.offset;
946 if (key.type == BTRFS_METADATA_ITEM_KEY) {
947 num_bytes = info->extent_root->nodesize;
948 meta = 1;
951 ret = add_inline_refs(info, leaf, i, bytenr,
952 num_bytes, meta);
953 if (ret)
954 goto out;
956 level = get_tree_block_level(&key, leaf, i);
957 if (level) {
958 if (alloc_tree_block(bytenr, num_bytes,
959 level))
960 return ENOMEM;
963 continue;
966 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
967 continue;
968 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
969 continue;
972 * Keyed refs should come after their extent
973 * item in the tree. As a result, the value of
974 * bytenr and num_bytes should be unchanged
975 * from the above block that catches the
976 * original extent item.
978 BUG_ON(key.objectid != bytenr);
980 ret = add_keyed_ref(info, &key, leaf, i, bytenr,
981 num_bytes);
982 if (ret)
983 goto out;
986 ret = btrfs_next_leaf(root, &path);
987 if (ret != 0) {
988 if (ret < 0) {
989 fprintf(stderr,
990 "ERROR: Next leaf failed: %d\n", ret);
991 goto out;
993 break;
996 done:
997 ret = 0;
998 out:
999 btrfs_release_path(&path);
1001 return ret;
1004 static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
1005 char *type)
1007 printf("%s\t\t%s %llu %s compressed %llu\n",
1008 prefix, type, (unsigned long long)bytes, type,
1009 (unsigned long long)bytes_compressed);
1012 static void print_fields_signed(long long bytes,
1013 long long bytes_compressed,
1014 char *prefix, char *type)
1016 printf("%s\t\t%s %lld %s compressed %lld\n",
1017 prefix, type, bytes, type, bytes_compressed);
1020 static void print_qgroup_difference(struct qgroup_count *count, int verbose)
1022 int is_different;
1023 struct qgroup_info *info = &count->info;
1024 struct qgroup_info *disk = &count->diskinfo;
1025 long long excl_diff = info->exclusive - disk->exclusive;
1026 long long ref_diff = info->referenced - disk->referenced;
1028 is_different = excl_diff || ref_diff;
1030 if (verbose || (is_different && count->subvol_exists)) {
1031 printf("Counts for qgroup id: %llu %s\n",
1032 (unsigned long long)count->qgroupid,
1033 is_different ? "are different" : "");
1035 print_fields(info->referenced, info->referenced_compressed,
1036 "our:", "referenced");
1037 print_fields(disk->referenced, disk->referenced_compressed,
1038 "disk:", "referenced");
1039 if (ref_diff)
1040 print_fields_signed(ref_diff, ref_diff,
1041 "diff:", "referenced");
1042 print_fields(info->exclusive, info->exclusive_compressed,
1043 "our:", "exclusive");
1044 print_fields(disk->exclusive, disk->exclusive_compressed,
1045 "disk:", "exclusive");
1046 if (excl_diff)
1047 print_fields_signed(excl_diff, excl_diff,
1048 "diff:", "exclusive");
1052 void print_qgroup_report(int all)
1054 struct rb_node *node;
1055 struct qgroup_count *c;
1057 node = rb_first(&counts.root);
1058 while (node) {
1059 c = rb_entry(node, struct qgroup_count, rb_node);
1060 print_qgroup_difference(c, all);
1061 node = rb_next(node);
1065 int qgroup_verify_all(struct btrfs_fs_info *info)
1067 int ret;
1069 if (!info->quota_enabled)
1070 return 0;
1072 tree_blocks = ulist_alloc(0);
1073 if (!tree_blocks) {
1074 fprintf(stderr,
1075 "ERROR: Out of memory while allocating ulist.\n");
1076 return ENOMEM;
1079 ret = load_quota_info(info);
1080 if (ret) {
1081 fprintf(stderr, "ERROR: Loading qgroups from disk: %d\n", ret);
1082 goto out;
1086 * Put all extent refs into our rbtree
1088 ret = scan_extents(info, 0, ~0ULL);
1089 if (ret) {
1090 fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
1091 goto out;
1094 ret = map_implied_refs(info);
1095 if (ret) {
1096 fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
1097 goto out;
1100 account_all_refs(1, 0);
1102 out:
1104 * Don't free the qgroup count records as they will be walked
1105 * later via the print function.
1107 free_tree_blocks();
1108 free_ref_tree(&by_bytenr);
1109 return ret;
1112 static void __print_subvol_info(u64 bytenr, u64 num_bytes, struct ulist *roots)
1114 int n = roots->nnodes;
1115 struct ulist_iterator uiter;
1116 struct ulist_node *unode;
1118 printf("%llu\t%llu\t%d\t", bytenr, num_bytes, n);
1120 ULIST_ITER_INIT(&uiter);
1121 while ((unode = ulist_next(roots, &uiter))) {
1122 printf("%llu ", unode->val);
1124 printf("\n");
1127 static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
1128 struct ulist *roots)
1130 struct ulist_iterator uiter;
1131 struct ulist_node *unode;
1133 ULIST_ITER_INIT(&uiter);
1134 while ((unode = ulist_next(roots, &uiter))) {
1135 BUG_ON(unode->val == 0ULL);
1136 if (unode->val == subvolid) {
1137 __print_subvol_info(bytenr, num_bytes, roots);
1138 return;
1145 int print_extent_state(struct btrfs_fs_info *info, u64 subvol)
1147 int ret;
1149 tree_blocks = ulist_alloc(0);
1150 if (!tree_blocks) {
1151 fprintf(stderr,
1152 "ERROR: Out of memory while allocating ulist.\n");
1153 return ENOMEM;
1157 * Put all extent refs into our rbtree
1159 ret = scan_extents(info, 0, ~0ULL);
1160 if (ret) {
1161 fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
1162 goto out;
1165 ret = map_implied_refs(info);
1166 if (ret) {
1167 fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
1168 goto out;
1171 printf("Offset\t\tLen\tRoot Refs\tRoots\n");
1172 account_all_refs(0, subvol);
1174 out:
1175 free_tree_blocks();
1176 free_ref_tree(&by_bytenr);
1177 return ret;