Fixup the code to merge during path walks
[btrfs-progs-unstable.git] / ctree.c
blobafa5bc5c7c1ae724a4f42e1a94a41dd70a9bf3dd
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
9 static int split_node(struct ctree_root *root, struct ctree_path *path,
10 int level);
11 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
12 int data_size);
13 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
14 struct tree_buffer *src);
15 static int balance_node_right(struct ctree_root *root,
16 struct tree_buffer *dst_buf,
17 struct tree_buffer *src_buf);
18 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
19 int slot);
21 inline void init_path(struct ctree_path *p)
23 memset(p, 0, sizeof(*p));
26 void release_path(struct ctree_root *root, struct ctree_path *p)
28 int i;
29 for (i = 0; i < MAX_LEVEL; i++) {
30 if (!p->nodes[i])
31 break;
32 tree_block_release(root, p->nodes[i]);
34 memset(p, 0, sizeof(*p));
38 * The leaf data grows from end-to-front in the node.
39 * this returns the address of the start of the last item,
40 * which is the stop of the leaf data stack
42 static inline unsigned int leaf_data_end(struct leaf *leaf)
44 unsigned int nr = leaf->header.nritems;
45 if (nr == 0)
46 return sizeof(leaf->data);
47 return leaf->items[nr-1].offset;
51 * The space between the end of the leaf items and
52 * the start of the leaf data. IOW, how much room
53 * the leaf has left for both items and data
55 int leaf_free_space(struct leaf *leaf)
57 int data_end = leaf_data_end(leaf);
58 int nritems = leaf->header.nritems;
59 char *items_end = (char *)(leaf->items + nritems + 1);
60 return (char *)(leaf->data + data_end) - (char *)items_end;
64 * compare two keys in a memcmp fashion
66 int comp_keys(struct key *k1, struct key *k2)
68 if (k1->objectid > k2->objectid)
69 return 1;
70 if (k1->objectid < k2->objectid)
71 return -1;
72 if (k1->flags > k2->flags)
73 return 1;
74 if (k1->flags < k2->flags)
75 return -1;
76 if (k1->offset > k2->offset)
77 return 1;
78 if (k1->offset < k2->offset)
79 return -1;
80 return 0;
83 int check_node(struct ctree_path *path, int level)
85 int i;
86 struct node *parent = NULL;
87 struct node *node = &path->nodes[level]->node;
88 int parent_slot;
90 if (path->nodes[level + 1])
91 parent = &path->nodes[level + 1]->node;
92 parent_slot = path->slots[level + 1];
93 if (parent && node->header.nritems > 0) {
94 struct key *parent_key;
95 parent_key = &parent->keys[parent_slot];
96 BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
97 BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr);
99 BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK);
100 for (i = 0; i < node->header.nritems - 2; i++) {
101 BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
103 return 0;
106 int check_leaf(struct ctree_path *path, int level)
108 int i;
109 struct leaf *leaf = &path->nodes[level]->leaf;
110 struct node *parent = NULL;
111 int parent_slot;
113 if (path->nodes[level + 1])
114 parent = &path->nodes[level + 1]->node;
115 parent_slot = path->slots[level + 1];
116 if (parent && leaf->header.nritems > 0) {
117 struct key *parent_key;
118 parent_key = &parent->keys[parent_slot];
119 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
120 sizeof(struct key)));
121 BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr);
123 for (i = 0; i < leaf->header.nritems - 2; i++) {
124 BUG_ON(comp_keys(&leaf->items[i].key,
125 &leaf->items[i+1].key) >= 0);
126 BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
127 leaf->items[i + 1].size);
128 if (i == 0) {
129 BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
130 LEAF_DATA_SIZE);
133 BUG_ON(leaf_free_space(leaf) < 0);
134 return 0;
137 int check_block(struct ctree_path *path, int level)
139 if (level == 0)
140 return check_leaf(path, level);
141 return check_node(path, level);
145 * search for key in the array p. items p are item_size apart
146 * and there are 'max' items in p
147 * the slot in the array is returned via slot, and it points to
148 * the place where you would insert key if it is not found in
149 * the array.
151 * slot may point to max if the key is bigger than all of the keys
153 int generic_bin_search(char *p, int item_size, struct key *key,
154 int max, int *slot)
156 int low = 0;
157 int high = max;
158 int mid;
159 int ret;
160 struct key *tmp;
162 while(low < high) {
163 mid = (low + high) / 2;
164 tmp = (struct key *)(p + mid * item_size);
165 ret = comp_keys(tmp, key);
167 if (ret < 0)
168 low = mid + 1;
169 else if (ret > 0)
170 high = mid;
171 else {
172 *slot = mid;
173 return 0;
176 *slot = low;
177 return 1;
181 * simple bin_search frontend that does the right thing for
182 * leaves vs nodes
184 int bin_search(struct node *c, struct key *key, int *slot)
186 if (is_leaf(c->header.flags)) {
187 struct leaf *l = (struct leaf *)c;
188 return generic_bin_search((void *)l->items, sizeof(struct item),
189 key, c->header.nritems, slot);
190 } else {
191 return generic_bin_search((void *)c->keys, sizeof(struct key),
192 key, c->header.nritems, slot);
194 return -1;
197 struct tree_buffer *read_node_slot(struct ctree_root *root,
198 struct tree_buffer *parent_buf,
199 int slot)
201 struct node *node = &parent_buf->node;
202 if (slot < 0)
203 return NULL;
204 if (slot >= node->header.nritems)
205 return NULL;
206 return read_tree_block(root, node->blockptrs[slot]);
209 static int balance_level(struct ctree_root *root, struct ctree_path *path,
210 int level)
212 struct tree_buffer *right_buf;
213 struct tree_buffer *mid_buf;
214 struct tree_buffer *left_buf;
215 struct tree_buffer *parent_buf = NULL;
216 struct node *right = NULL;
217 struct node *mid;
218 struct node *left = NULL;
219 struct node *parent = NULL;
220 int ret = 0;
221 int wret;
222 int pslot;
223 int orig_slot = path->slots[level];
224 u64 orig_ptr;
226 if (level == 0)
227 return 0;
229 mid_buf = path->nodes[level];
230 mid = &mid_buf->node;
231 orig_ptr = mid->blockptrs[orig_slot];
233 if (level < MAX_LEVEL - 1)
234 parent_buf = path->nodes[level + 1];
235 pslot = path->slots[level + 1];
237 if (!parent_buf) {
238 struct tree_buffer *child;
239 u64 blocknr = mid_buf->blocknr;
241 if (mid->header.nritems != 1)
242 return 0;
244 /* promote the child to a root */
245 child = read_node_slot(root, mid_buf, 0);
246 BUG_ON(!child);
247 root->node = child;
248 path->nodes[level] = NULL;
249 /* once for the path */
250 tree_block_release(root, mid_buf);
251 /* once for the root ptr */
252 tree_block_release(root, mid_buf);
253 return free_extent(root, blocknr, 1);
255 parent = &parent_buf->node;
257 if (mid->header.nritems > NODEPTRS_PER_BLOCK / 4)
258 return 0;
260 left_buf = read_node_slot(root, parent_buf, pslot - 1);
261 right_buf = read_node_slot(root, parent_buf, pslot + 1);
263 /* first, try to make some room in the middle buffer */
264 if (left_buf) {
265 left = &left_buf->node;
266 orig_slot += left->header.nritems;
267 wret = push_node_left(root, left_buf, mid_buf);
268 if (wret < 0)
269 ret = wret;
273 * then try to empty the right most buffer into the middle
275 if (right_buf) {
276 right = &right_buf->node;
277 wret = push_node_left(root, mid_buf, right_buf);
278 if (wret < 0)
279 ret = wret;
280 if (right->header.nritems == 0) {
281 u64 blocknr = right_buf->blocknr;
282 tree_block_release(root, right_buf);
283 right_buf = NULL;
284 right = NULL;
285 wret = del_ptr(root, path, level + 1, pslot + 1);
286 if (wret)
287 ret = wret;
288 wret = free_extent(root, blocknr, 1);
289 if (wret)
290 ret = wret;
291 } else {
292 memcpy(parent->keys + pslot + 1, right->keys,
293 sizeof(struct key));
294 wret = write_tree_block(root, parent_buf);
295 if (wret)
296 ret = wret;
299 if (mid->header.nritems == 1) {
301 * we're not allowed to leave a node with one item in the
302 * tree during a delete. A deletion from lower in the tree
303 * could try to delete the only pointer in this node.
304 * So, pull some keys from the left.
305 * There has to be a left pointer at this point because
306 * otherwise we would have pulled some pointers from the
307 * right
309 BUG_ON(!left_buf);
310 wret = balance_node_right(root, mid_buf, left_buf);
311 if (wret < 0)
312 ret = wret;
313 BUG_ON(wret == 1);
315 if (mid->header.nritems == 0) {
316 /* we've managed to empty the middle node, drop it */
317 u64 blocknr = mid_buf->blocknr;
318 tree_block_release(root, mid_buf);
319 mid_buf = NULL;
320 mid = NULL;
321 wret = del_ptr(root, path, level + 1, pslot);
322 if (wret)
323 ret = wret;
324 wret = free_extent(root, blocknr, 1);
325 if (wret)
326 ret = wret;
327 } else {
328 /* update the parent key to reflect our changes */
329 memcpy(parent->keys + pslot, mid->keys, sizeof(struct key));
330 wret = write_tree_block(root, parent_buf);
331 if (wret)
332 ret = wret;
335 /* update the path */
336 if (left_buf) {
337 if (left->header.nritems > orig_slot) {
338 left_buf->count++; // released below
339 path->nodes[level] = left_buf;
340 path->slots[level + 1] -= 1;
341 path->slots[level] = orig_slot;
342 if (mid_buf)
343 tree_block_release(root, mid_buf);
344 } else {
345 orig_slot -= left->header.nritems;
346 path->slots[level] = orig_slot;
349 /* double check we haven't messed things up */
350 check_block(path, level);
351 if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
352 BUG();
354 if (right_buf)
355 tree_block_release(root, right_buf);
356 if (left_buf)
357 tree_block_release(root, left_buf);
358 return ret;
362 * look for key in the tree. path is filled in with nodes along the way
363 * if key is found, we return zero and you can find the item in the leaf
364 * level of the path (level 0)
366 * If the key isn't found, the path points to the slot where it should
367 * be inserted, and 1 is returned. If there are other errors during the
368 * search a negative error number is returned.
370 * if ins_len > 0, nodes and leaves will be split as we walk down the
371 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
372 * possible)
374 int search_slot(struct ctree_root *root, struct key *key,
375 struct ctree_path *p, int ins_len)
377 struct tree_buffer *b;
378 struct node *c;
379 int slot;
380 int ret;
381 int level;
383 again:
384 b = root->node;
385 b->count++;
386 while (b) {
387 c = &b->node;
388 level = node_level(c->header.flags);
389 p->nodes[level] = b;
390 ret = check_block(p, level);
391 if (ret)
392 return -1;
393 ret = bin_search(c, key, &slot);
394 if (!is_leaf(c->header.flags)) {
395 if (ret && slot > 0)
396 slot -= 1;
397 p->slots[level] = slot;
398 if (ins_len > 0 &&
399 c->header.nritems == NODEPTRS_PER_BLOCK) {
400 int sret = split_node(root, p, level);
401 BUG_ON(sret > 0);
402 if (sret)
403 return sret;
404 b = p->nodes[level];
405 c = &b->node;
406 slot = p->slots[level];
407 } else if (ins_len < 0) {
408 int sret = balance_level(root, p, level);
409 if (sret)
410 return sret;
411 b = p->nodes[level];
412 if (!b)
413 goto again;
414 c = &b->node;
415 slot = p->slots[level];
416 BUG_ON(c->header.nritems == 1);
418 b = read_tree_block(root, c->blockptrs[slot]);
419 } else {
420 struct leaf *l = (struct leaf *)c;
421 p->slots[level] = slot;
422 if (ins_len > 0 && leaf_free_space(l) <
423 sizeof(struct item) + ins_len) {
424 int sret = split_leaf(root, p, ins_len);
425 BUG_ON(sret > 0);
426 if (sret)
427 return sret;
429 BUG_ON(root->node->count == 1);
430 return ret;
433 BUG_ON(root->node->count == 1);
434 return 1;
438 * adjust the pointers going up the tree, starting at level
439 * making sure the right key of each node is points to 'key'.
440 * This is used after shifting pointers to the left, so it stops
441 * fixing up pointers when a given leaf/node is not in slot 0 of the
442 * higher levels
444 * If this fails to write a tree block, it returns -1, but continues
445 * fixing up the blocks in ram so the tree is consistent.
447 static int fixup_low_keys(struct ctree_root *root,
448 struct ctree_path *path, struct key *key,
449 int level)
451 int i;
452 int ret = 0;
453 int wret;
454 for (i = level; i < MAX_LEVEL; i++) {
455 struct node *t;
456 int tslot = path->slots[i];
457 if (!path->nodes[i])
458 break;
459 t = &path->nodes[i]->node;
460 memcpy(t->keys + tslot, key, sizeof(*key));
461 wret = write_tree_block(root, path->nodes[i]);
462 if (wret)
463 ret = wret;
464 if (tslot != 0)
465 break;
467 return ret;
471 * try to push data from one node into the next node left in the
472 * tree.
474 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
475 * error, and > 0 if there was no room in the left hand block.
477 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
478 struct tree_buffer *src_buf)
480 struct node *src = &src_buf->node;
481 struct node *dst = &dst_buf->node;
482 int push_items = 0;
483 int src_nritems;
484 int dst_nritems;
485 int ret = 0;
486 int wret;
488 src_nritems = src->header.nritems;
489 dst_nritems = dst->header.nritems;
490 push_items = NODEPTRS_PER_BLOCK - dst_nritems;
491 if (push_items <= 0) {
492 return 1;
495 if (src_nritems < push_items)
496 push_items = src_nritems;
498 memcpy(dst->keys + dst_nritems, src->keys,
499 push_items * sizeof(struct key));
500 memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
501 push_items * sizeof(u64));
502 if (push_items < src_nritems) {
503 memmove(src->keys, src->keys + push_items,
504 (src_nritems - push_items) * sizeof(struct key));
505 memmove(src->blockptrs, src->blockptrs + push_items,
506 (src_nritems - push_items) * sizeof(u64));
508 src->header.nritems -= push_items;
509 dst->header.nritems += push_items;
511 wret = write_tree_block(root, src_buf);
512 if (wret < 0)
513 ret = wret;
515 wret = write_tree_block(root, dst_buf);
516 if (wret < 0)
517 ret = wret;
518 return ret;
522 * try to push data from one node into the next node right in the
523 * tree.
525 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
526 * error, and > 0 if there was no room in the right hand block.
528 * this will only push up to 1/2 the contents of the left node over
530 static int balance_node_right(struct ctree_root *root,
531 struct tree_buffer *dst_buf,
532 struct tree_buffer *src_buf)
534 struct node *src = &src_buf->node;
535 struct node *dst = &dst_buf->node;
536 int push_items = 0;
537 int max_push;
538 int src_nritems;
539 int dst_nritems;
540 int ret = 0;
541 int wret;
543 src_nritems = src->header.nritems;
544 dst_nritems = dst->header.nritems;
545 push_items = NODEPTRS_PER_BLOCK - dst_nritems;
546 if (push_items <= 0) {
547 return 1;
550 max_push = src_nritems / 2 + 1;
551 /* don't try to empty the node */
552 if (max_push > src_nritems)
553 return 1;
554 if (max_push < push_items)
555 push_items = max_push;
557 memmove(dst->keys + push_items, dst->keys,
558 dst_nritems * sizeof(struct key));
559 memmove(dst->blockptrs + push_items, dst->blockptrs,
560 dst_nritems * sizeof(u64));
561 memcpy(dst->keys, src->keys + src_nritems - push_items,
562 push_items * sizeof(struct key));
563 memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
564 push_items * sizeof(u64));
566 src->header.nritems -= push_items;
567 dst->header.nritems += push_items;
569 wret = write_tree_block(root, src_buf);
570 if (wret < 0)
571 ret = wret;
573 wret = write_tree_block(root, dst_buf);
574 if (wret < 0)
575 ret = wret;
576 return ret;
580 * helper function to insert a new root level in the tree.
581 * A new node is allocated, and a single item is inserted to
582 * point to the existing root
584 * returns zero on success or < 0 on failure.
586 static int insert_new_root(struct ctree_root *root,
587 struct ctree_path *path, int level)
589 struct tree_buffer *t;
590 struct node *lower;
591 struct node *c;
592 struct key *lower_key;
594 BUG_ON(path->nodes[level]);
595 BUG_ON(path->nodes[level-1] != root->node);
597 t = alloc_free_block(root);
598 c = &t->node;
599 memset(c, 0, sizeof(c));
600 c->header.nritems = 1;
601 c->header.flags = node_level(level);
602 c->header.blocknr = t->blocknr;
603 c->header.parentid = root->node->node.header.parentid;
604 lower = &path->nodes[level-1]->node;
605 if (is_leaf(lower->header.flags))
606 lower_key = &((struct leaf *)lower)->items[0].key;
607 else
608 lower_key = lower->keys;
609 memcpy(c->keys, lower_key, sizeof(struct key));
610 c->blockptrs[0] = path->nodes[level-1]->blocknr;
611 /* the super has an extra ref to root->node */
612 tree_block_release(root, root->node);
613 root->node = t;
614 t->count++;
615 write_tree_block(root, t);
616 path->nodes[level] = t;
617 path->slots[level] = 0;
618 return 0;
622 * worker function to insert a single pointer in a node.
623 * the node should have enough room for the pointer already
625 * slot and level indicate where you want the key to go, and
626 * blocknr is the block the key points to.
628 * returns zero on success and < 0 on any error
630 static int insert_ptr(struct ctree_root *root,
631 struct ctree_path *path, struct key *key,
632 u64 blocknr, int slot, int level)
634 struct node *lower;
635 int nritems;
637 BUG_ON(!path->nodes[level]);
638 lower = &path->nodes[level]->node;
639 nritems = lower->header.nritems;
640 if (slot > nritems)
641 BUG();
642 if (nritems == NODEPTRS_PER_BLOCK)
643 BUG();
644 if (slot != nritems) {
645 memmove(lower->keys + slot + 1, lower->keys + slot,
646 (nritems - slot) * sizeof(struct key));
647 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
648 (nritems - slot) * sizeof(u64));
650 memcpy(lower->keys + slot, key, sizeof(struct key));
651 lower->blockptrs[slot] = blocknr;
652 lower->header.nritems++;
653 if (lower->keys[1].objectid == 0)
654 BUG();
655 write_tree_block(root, path->nodes[level]);
656 return 0;
660 * split the node at the specified level in path in two.
661 * The path is corrected to point to the appropriate node after the split
663 * Before splitting this tries to make some room in the node by pushing
664 * left and right, if either one works, it returns right away.
666 * returns 0 on success and < 0 on failure
668 static int split_node(struct ctree_root *root, struct ctree_path *path,
669 int level)
671 struct tree_buffer *t;
672 struct node *c;
673 struct tree_buffer *split_buffer;
674 struct node *split;
675 int mid;
676 int ret;
677 int wret;
679 t = path->nodes[level];
680 c = &t->node;
681 if (t == root->node) {
682 /* trying to split the root, lets make a new one */
683 ret = insert_new_root(root, path, level + 1);
684 if (ret)
685 return ret;
687 split_buffer = alloc_free_block(root);
688 split = &split_buffer->node;
689 split->header.flags = c->header.flags;
690 split->header.blocknr = split_buffer->blocknr;
691 split->header.parentid = root->node->node.header.parentid;
692 mid = (c->header.nritems + 1) / 2;
693 memcpy(split->keys, c->keys + mid,
694 (c->header.nritems - mid) * sizeof(struct key));
695 memcpy(split->blockptrs, c->blockptrs + mid,
696 (c->header.nritems - mid) * sizeof(u64));
697 split->header.nritems = c->header.nritems - mid;
698 c->header.nritems = mid;
699 ret = 0;
701 wret = write_tree_block(root, t);
702 if (wret)
703 ret = wret;
704 wret = write_tree_block(root, split_buffer);
705 if (wret)
706 ret = wret;
707 wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
708 path->slots[level + 1] + 1, level + 1);
709 if (wret)
710 ret = wret;
712 if (path->slots[level] >= mid) {
713 path->slots[level] -= mid;
714 tree_block_release(root, t);
715 path->nodes[level] = split_buffer;
716 path->slots[level + 1] += 1;
717 } else {
718 tree_block_release(root, split_buffer);
720 return ret;
724 * how many bytes are required to store the items in a leaf. start
725 * and nr indicate which items in the leaf to check. This totals up the
726 * space used both by the item structs and the item data
728 static int leaf_space_used(struct leaf *l, int start, int nr)
730 int data_len;
731 int end = start + nr - 1;
733 if (!nr)
734 return 0;
735 data_len = l->items[start].offset + l->items[start].size;
736 data_len = data_len - l->items[end].offset;
737 data_len += sizeof(struct item) * nr;
738 return data_len;
742 * push some data in the path leaf to the right, trying to free up at
743 * least data_size bytes. returns zero if the push worked, nonzero otherwise
745 * returns 1 if the push failed because the other node didn't have enough
746 * room, 0 if everything worked out and < 0 if there were major errors.
748 static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
749 int data_size)
751 struct tree_buffer *left_buf = path->nodes[0];
752 struct leaf *left = &left_buf->leaf;
753 struct leaf *right;
754 struct tree_buffer *right_buf;
755 struct tree_buffer *upper;
756 int slot;
757 int i;
758 int free_space;
759 int push_space = 0;
760 int push_items = 0;
761 struct item *item;
763 slot = path->slots[1];
764 if (!path->nodes[1]) {
765 return 1;
767 upper = path->nodes[1];
768 if (slot >= upper->node.header.nritems - 1) {
769 return 1;
771 right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
772 right = &right_buf->leaf;
773 free_space = leaf_free_space(right);
774 if (free_space < data_size + sizeof(struct item)) {
775 tree_block_release(root, right_buf);
776 return 1;
778 for (i = left->header.nritems - 1; i >= 0; i--) {
779 item = left->items + i;
780 if (path->slots[0] == i)
781 push_space += data_size + sizeof(*item);
782 if (item->size + sizeof(*item) + push_space > free_space)
783 break;
784 push_items++;
785 push_space += item->size + sizeof(*item);
787 if (push_items == 0) {
788 tree_block_release(root, right_buf);
789 return 1;
791 /* push left to right */
792 push_space = left->items[left->header.nritems - push_items].offset +
793 left->items[left->header.nritems - push_items].size;
794 push_space -= leaf_data_end(left);
795 /* make room in the right data area */
796 memmove(right->data + leaf_data_end(right) - push_space,
797 right->data + leaf_data_end(right),
798 LEAF_DATA_SIZE - leaf_data_end(right));
799 /* copy from the left data area */
800 memcpy(right->data + LEAF_DATA_SIZE - push_space,
801 left->data + leaf_data_end(left),
802 push_space);
803 memmove(right->items + push_items, right->items,
804 right->header.nritems * sizeof(struct item));
805 /* copy the items from left to right */
806 memcpy(right->items, left->items + left->header.nritems - push_items,
807 push_items * sizeof(struct item));
809 /* update the item pointers */
810 right->header.nritems += push_items;
811 push_space = LEAF_DATA_SIZE;
812 for (i = 0; i < right->header.nritems; i++) {
813 right->items[i].offset = push_space - right->items[i].size;
814 push_space = right->items[i].offset;
816 left->header.nritems -= push_items;
818 write_tree_block(root, left_buf);
819 write_tree_block(root, right_buf);
820 memcpy(upper->node.keys + slot + 1,
821 &right->items[0].key, sizeof(struct key));
822 write_tree_block(root, upper);
823 /* then fixup the leaf pointer in the path */
824 if (path->slots[0] >= left->header.nritems) {
825 path->slots[0] -= left->header.nritems;
826 tree_block_release(root, path->nodes[0]);
827 path->nodes[0] = right_buf;
828 path->slots[1] += 1;
829 } else {
830 tree_block_release(root, right_buf);
832 return 0;
835 * push some data in the path leaf to the left, trying to free up at
836 * least data_size bytes. returns zero if the push worked, nonzero otherwise
838 static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
839 int data_size)
841 struct tree_buffer *right_buf = path->nodes[0];
842 struct leaf *right = &right_buf->leaf;
843 struct tree_buffer *t;
844 struct leaf *left;
845 int slot;
846 int i;
847 int free_space;
848 int push_space = 0;
849 int push_items = 0;
850 struct item *item;
851 int old_left_nritems;
852 int ret = 0;
853 int wret;
855 slot = path->slots[1];
856 if (slot == 0) {
857 return 1;
859 if (!path->nodes[1]) {
860 return 1;
862 t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
863 left = &t->leaf;
864 free_space = leaf_free_space(left);
865 if (free_space < data_size + sizeof(struct item)) {
866 tree_block_release(root, t);
867 return 1;
869 for (i = 0; i < right->header.nritems; i++) {
870 item = right->items + i;
871 if (path->slots[0] == i)
872 push_space += data_size + sizeof(*item);
873 if (item->size + sizeof(*item) + push_space > free_space)
874 break;
875 push_items++;
876 push_space += item->size + sizeof(*item);
878 if (push_items == 0) {
879 tree_block_release(root, t);
880 return 1;
882 /* push data from right to left */
883 memcpy(left->items + left->header.nritems,
884 right->items, push_items * sizeof(struct item));
885 push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
886 memcpy(left->data + leaf_data_end(left) - push_space,
887 right->data + right->items[push_items - 1].offset,
888 push_space);
889 old_left_nritems = left->header.nritems;
890 BUG_ON(old_left_nritems < 0);
892 for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
893 left->items[i].offset -= LEAF_DATA_SIZE -
894 left->items[old_left_nritems -1].offset;
896 left->header.nritems += push_items;
898 /* fixup right node */
899 push_space = right->items[push_items-1].offset - leaf_data_end(right);
900 memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
901 leaf_data_end(right), push_space);
902 memmove(right->items, right->items + push_items,
903 (right->header.nritems - push_items) * sizeof(struct item));
904 right->header.nritems -= push_items;
905 push_space = LEAF_DATA_SIZE;
907 for (i = 0; i < right->header.nritems; i++) {
908 right->items[i].offset = push_space - right->items[i].size;
909 push_space = right->items[i].offset;
912 wret = write_tree_block(root, t);
913 if (wret)
914 ret = wret;
915 wret = write_tree_block(root, right_buf);
916 if (wret)
917 ret = wret;
919 wret = fixup_low_keys(root, path, &right->items[0].key, 1);
920 if (wret)
921 ret = wret;
923 /* then fixup the leaf pointer in the path */
924 if (path->slots[0] < push_items) {
925 path->slots[0] += old_left_nritems;
926 tree_block_release(root, path->nodes[0]);
927 path->nodes[0] = t;
928 path->slots[1] -= 1;
929 } else {
930 tree_block_release(root, t);
931 path->slots[0] -= push_items;
933 BUG_ON(path->slots[0] < 0);
934 return ret;
938 * split the path's leaf in two, making sure there is at least data_size
939 * available for the resulting leaf level of the path.
941 * returns 0 if all went well and < 0 on failure.
943 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
944 int data_size)
946 struct tree_buffer *l_buf;
947 struct leaf *l;
948 int nritems;
949 int mid;
950 int slot;
951 struct leaf *right;
952 struct tree_buffer *right_buffer;
953 int space_needed = data_size + sizeof(struct item);
954 int data_copy_size;
955 int rt_data_off;
956 int i;
957 int ret;
958 int wret;
960 wret = push_leaf_left(root, path, data_size);
961 if (wret < 0)
962 return wret;
963 if (wret) {
964 wret = push_leaf_right(root, path, data_size);
965 if (wret < 0)
966 return wret;
968 l_buf = path->nodes[0];
969 l = &l_buf->leaf;
971 /* did the pushes work? */
972 if (leaf_free_space(l) >= sizeof(struct item) + data_size)
973 return 0;
975 if (!path->nodes[1]) {
976 ret = insert_new_root(root, path, 1);
977 if (ret)
978 return ret;
980 slot = path->slots[0];
981 nritems = l->header.nritems;
982 mid = (nritems + 1)/ 2;
984 right_buffer = alloc_free_block(root);
985 BUG_ON(!right_buffer);
986 BUG_ON(mid == nritems);
987 right = &right_buffer->leaf;
988 memset(right, 0, sizeof(*right));
989 if (mid <= slot) {
990 /* FIXME, just alloc a new leaf here */
991 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
992 LEAF_DATA_SIZE)
993 BUG();
994 } else {
995 /* FIXME, just alloc a new leaf here */
996 if (leaf_space_used(l, 0, mid + 1) + space_needed >
997 LEAF_DATA_SIZE)
998 BUG();
1000 right->header.nritems = nritems - mid;
1001 right->header.blocknr = right_buffer->blocknr;
1002 right->header.flags = node_level(0);
1003 right->header.parentid = root->node->node.header.parentid;
1004 data_copy_size = l->items[mid].offset + l->items[mid].size -
1005 leaf_data_end(l);
1006 memcpy(right->items, l->items + mid,
1007 (nritems - mid) * sizeof(struct item));
1008 memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
1009 l->data + leaf_data_end(l), data_copy_size);
1010 rt_data_off = LEAF_DATA_SIZE -
1011 (l->items[mid].offset + l->items[mid].size);
1013 for (i = 0; i < right->header.nritems; i++)
1014 right->items[i].offset += rt_data_off;
1016 l->header.nritems = mid;
1017 ret = 0;
1018 wret = insert_ptr(root, path, &right->items[0].key,
1019 right_buffer->blocknr, path->slots[1] + 1, 1);
1020 if (wret)
1021 ret = wret;
1022 wret = write_tree_block(root, right_buffer);
1023 if (wret)
1024 ret = wret;
1025 wret = write_tree_block(root, l_buf);
1026 if (wret)
1027 ret = wret;
1029 BUG_ON(path->slots[0] != slot);
1030 if (mid <= slot) {
1031 tree_block_release(root, path->nodes[0]);
1032 path->nodes[0] = right_buffer;
1033 path->slots[0] -= mid;
1034 path->slots[1] += 1;
1035 } else
1036 tree_block_release(root, right_buffer);
1037 BUG_ON(path->slots[0] < 0);
1038 return ret;
1042 * Given a key and some data, insert an item into the tree.
1043 * This does all the path init required, making room in the tree if needed.
1045 int insert_item(struct ctree_root *root, struct key *key,
1046 void *data, int data_size)
1048 int ret = 0;
1049 int wret;
1050 int slot;
1051 int slot_orig;
1052 struct leaf *leaf;
1053 struct tree_buffer *leaf_buf;
1054 unsigned int nritems;
1055 unsigned int data_end;
1056 struct ctree_path path;
1058 /* create a root if there isn't one */
1059 if (!root->node)
1060 BUG();
1061 init_path(&path);
1062 ret = search_slot(root, key, &path, data_size);
1063 if (ret == 0) {
1064 release_path(root, &path);
1065 return -EEXIST;
1067 if (ret < 0) {
1068 release_path(root, &path);
1069 return ret;
1072 slot_orig = path.slots[0];
1073 leaf_buf = path.nodes[0];
1074 leaf = &leaf_buf->leaf;
1076 nritems = leaf->header.nritems;
1077 data_end = leaf_data_end(leaf);
1079 if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
1080 BUG();
1082 slot = path.slots[0];
1083 BUG_ON(slot < 0);
1084 if (slot != nritems) {
1085 int i;
1086 unsigned int old_data = leaf->items[slot].offset +
1087 leaf->items[slot].size;
1090 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1092 /* first correct the data pointers */
1093 for (i = slot; i < nritems; i++)
1094 leaf->items[i].offset -= data_size;
1096 /* shift the items */
1097 memmove(leaf->items + slot + 1, leaf->items + slot,
1098 (nritems - slot) * sizeof(struct item));
1100 /* shift the data */
1101 memmove(leaf->data + data_end - data_size, leaf->data +
1102 data_end, old_data - data_end);
1103 data_end = old_data;
1105 /* copy the new data in */
1106 memcpy(&leaf->items[slot].key, key, sizeof(struct key));
1107 leaf->items[slot].offset = data_end - data_size;
1108 leaf->items[slot].size = data_size;
1109 memcpy(leaf->data + data_end - data_size, data, data_size);
1110 leaf->header.nritems += 1;
1112 ret = 0;
1113 if (slot == 0)
1114 ret = fixup_low_keys(root, &path, key, 1);
1116 wret = write_tree_block(root, leaf_buf);
1117 if (wret)
1118 ret = wret;
1120 if (leaf_free_space(leaf) < 0)
1121 BUG();
1122 check_leaf(&path, 0);
1123 release_path(root, &path);
1124 return ret;
1128 * delete the pointer from a given node.
1130 * If the delete empties a node, the node is removed from the tree,
1131 * continuing all the way the root if required. The root is converted into
1132 * a leaf if all the nodes are emptied.
1134 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
1135 int slot)
1137 struct node *node;
1138 struct tree_buffer *parent = path->nodes[level];
1139 int nritems;
1140 int ret = 0;
1141 int wret;
1143 node = &parent->node;
1144 nritems = node->header.nritems;
1146 if (slot != nritems -1) {
1147 memmove(node->keys + slot, node->keys + slot + 1,
1148 sizeof(struct key) * (nritems - slot - 1));
1149 memmove(node->blockptrs + slot,
1150 node->blockptrs + slot + 1,
1151 sizeof(u64) * (nritems - slot - 1));
1153 node->header.nritems--;
1154 if (node->header.nritems == 0 && parent == root->node) {
1155 BUG_ON(node_level(root->node->node.header.flags) != 1);
1156 /* just turn the root into a leaf and break */
1157 root->node->node.header.flags = node_level(0);
1158 } else if (slot == 0) {
1159 wret = fixup_low_keys(root, path, node->keys, level + 1);
1160 if (wret)
1161 ret = wret;
1163 wret = write_tree_block(root, parent);
1164 if (wret)
1165 ret = wret;
1166 return ret;
1170 * delete the item at the leaf level in path. If that empties
1171 * the leaf, remove it from the tree
1173 int del_item(struct ctree_root *root, struct ctree_path *path)
1175 int slot;
1176 struct leaf *leaf;
1177 struct tree_buffer *leaf_buf;
1178 int doff;
1179 int dsize;
1180 int ret = 0;
1181 int wret;
1183 leaf_buf = path->nodes[0];
1184 leaf = &leaf_buf->leaf;
1185 slot = path->slots[0];
1186 doff = leaf->items[slot].offset;
1187 dsize = leaf->items[slot].size;
1189 if (slot != leaf->header.nritems - 1) {
1190 int i;
1191 int data_end = leaf_data_end(leaf);
1192 memmove(leaf->data + data_end + dsize,
1193 leaf->data + data_end,
1194 doff - data_end);
1195 for (i = slot + 1; i < leaf->header.nritems; i++)
1196 leaf->items[i].offset += dsize;
1197 memmove(leaf->items + slot, leaf->items + slot + 1,
1198 sizeof(struct item) *
1199 (leaf->header.nritems - slot - 1));
1201 leaf->header.nritems -= 1;
1202 /* delete the leaf if we've emptied it */
1203 if (leaf->header.nritems == 0) {
1204 if (leaf_buf == root->node) {
1205 leaf->header.flags = node_level(0);
1206 write_tree_block(root, leaf_buf);
1207 } else {
1208 wret = del_ptr(root, path, 1, path->slots[1]);
1209 if (wret)
1210 ret = wret;
1211 wret = free_extent(root, leaf_buf->blocknr, 1);
1212 if (wret)
1213 ret = wret;
1215 } else {
1216 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
1217 if (slot == 0) {
1218 wret = fixup_low_keys(root, path,
1219 &leaf->items[0].key, 1);
1220 if (wret)
1221 ret = wret;
1223 wret = write_tree_block(root, leaf_buf);
1224 if (wret)
1225 ret = wret;
1227 /* delete the leaf if it is mostly empty */
1228 if (used < LEAF_DATA_SIZE / 3) {
1229 /* push_leaf_left fixes the path.
1230 * make sure the path still points to our leaf
1231 * for possible call to del_ptr below
1233 slot = path->slots[1];
1234 leaf_buf->count++;
1235 wret = push_leaf_left(root, path, 1);
1236 if (wret < 0)
1237 ret = wret;
1238 if (leaf->header.nritems) {
1239 wret = push_leaf_right(root, path, 1);
1240 if (wret < 0)
1241 ret = wret;
1243 if (leaf->header.nritems == 0) {
1244 u64 blocknr = leaf_buf->blocknr;
1245 wret = del_ptr(root, path, 1, slot);
1246 if (wret)
1247 ret = wret;
1248 tree_block_release(root, leaf_buf);
1249 wret = free_extent(root, blocknr, 1);
1250 if (wret)
1251 ret = wret;
1252 } else {
1253 tree_block_release(root, leaf_buf);
1257 return ret;
1261 * walk up the tree as far as required to find the next leaf.
1262 * returns 0 if it found something or 1 if there are no greater leaves.
1263 * returns < 0 on io errors.
1265 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1267 int slot;
1268 int level = 1;
1269 u64 blocknr;
1270 struct tree_buffer *c;
1271 struct tree_buffer *next = NULL;
1273 while(level < MAX_LEVEL) {
1274 if (!path->nodes[level])
1275 return 1;
1276 slot = path->slots[level] + 1;
1277 c = path->nodes[level];
1278 if (slot >= c->node.header.nritems) {
1279 level++;
1280 continue;
1282 blocknr = c->node.blockptrs[slot];
1283 if (next)
1284 tree_block_release(root, next);
1285 next = read_tree_block(root, blocknr);
1286 break;
1288 path->slots[level] = slot;
1289 while(1) {
1290 level--;
1291 c = path->nodes[level];
1292 tree_block_release(root, c);
1293 path->nodes[level] = next;
1294 path->slots[level] = 0;
1295 if (!level)
1296 break;
1297 next = read_tree_block(root, next->node.blockptrs[0]);
1299 return 0;