Fixup last found extent caching
[btrfs-progs-unstable.git] / ctree.c
blob729d4ddb3746dcd3949769b05ac9a598172f5ac5
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
9 static int split_node(struct ctree_root *root, struct ctree_path *path,
10 int level);
11 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
12 int data_size);
13 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
14 struct tree_buffer *src);
15 static int balance_node_right(struct ctree_root *root,
16 struct tree_buffer *dst_buf,
17 struct tree_buffer *src_buf);
18 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
19 int slot);
21 inline void init_path(struct ctree_path *p)
23 memset(p, 0, sizeof(*p));
26 void release_path(struct ctree_root *root, struct ctree_path *p)
28 int i;
29 for (i = 0; i < MAX_LEVEL; i++) {
30 if (!p->nodes[i])
31 break;
32 tree_block_release(root, p->nodes[i]);
34 memset(p, 0, sizeof(*p));
37 int btrfs_cow_block(struct ctree_root *root,
38 struct tree_buffer *buf,
39 struct tree_buffer *parent,
40 int parent_slot,
41 struct tree_buffer **cow_ret)
43 struct tree_buffer *cow;
45 if (!list_empty(&buf->dirty)) {
46 *cow_ret = buf;
47 return 0;
49 cow = alloc_free_block(root);
50 memcpy(&cow->node, &buf->node, sizeof(buf->node));
51 cow->node.header.blocknr = cow->blocknr;
52 *cow_ret = cow;
53 btrfs_inc_ref(root, buf);
54 if (buf == root->node) {
55 root->node = cow;
56 cow->count++;
57 if (buf != root->commit_root)
58 free_extent(root, buf->blocknr, 1);
59 tree_block_release(root, buf);
60 } else {
61 parent->node.blockptrs[parent_slot] = cow->blocknr;
62 BUG_ON(list_empty(&parent->dirty));
63 free_extent(root, buf->blocknr, 1);
65 tree_block_release(root, buf);
66 return 0;
70 * The leaf data grows from end-to-front in the node.
71 * this returns the address of the start of the last item,
72 * which is the stop of the leaf data stack
74 static inline unsigned int leaf_data_end(struct leaf *leaf)
76 unsigned int nr = leaf->header.nritems;
77 if (nr == 0)
78 return sizeof(leaf->data);
79 return leaf->items[nr-1].offset;
83 * The space between the end of the leaf items and
84 * the start of the leaf data. IOW, how much room
85 * the leaf has left for both items and data
87 int leaf_free_space(struct leaf *leaf)
89 int data_end = leaf_data_end(leaf);
90 int nritems = leaf->header.nritems;
91 char *items_end = (char *)(leaf->items + nritems + 1);
92 return (char *)(leaf->data + data_end) - (char *)items_end;
96 * compare two keys in a memcmp fashion
98 int comp_keys(struct key *k1, struct key *k2)
100 if (k1->objectid > k2->objectid)
101 return 1;
102 if (k1->objectid < k2->objectid)
103 return -1;
104 if (k1->flags > k2->flags)
105 return 1;
106 if (k1->flags < k2->flags)
107 return -1;
108 if (k1->offset > k2->offset)
109 return 1;
110 if (k1->offset < k2->offset)
111 return -1;
112 return 0;
115 int check_node(struct ctree_path *path, int level)
117 int i;
118 struct node *parent = NULL;
119 struct node *node = &path->nodes[level]->node;
120 int parent_slot;
122 if (path->nodes[level + 1])
123 parent = &path->nodes[level + 1]->node;
124 parent_slot = path->slots[level + 1];
125 if (parent && node->header.nritems > 0) {
126 struct key *parent_key;
127 parent_key = &parent->keys[parent_slot];
128 BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
129 BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr);
131 BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK);
132 for (i = 0; i < node->header.nritems - 2; i++) {
133 BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
135 return 0;
138 int check_leaf(struct ctree_path *path, int level)
140 int i;
141 struct leaf *leaf = &path->nodes[level]->leaf;
142 struct node *parent = NULL;
143 int parent_slot;
145 if (path->nodes[level + 1])
146 parent = &path->nodes[level + 1]->node;
147 parent_slot = path->slots[level + 1];
148 if (parent && leaf->header.nritems > 0) {
149 struct key *parent_key;
150 parent_key = &parent->keys[parent_slot];
151 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
152 sizeof(struct key)));
153 BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr);
155 for (i = 0; i < leaf->header.nritems - 2; i++) {
156 BUG_ON(comp_keys(&leaf->items[i].key,
157 &leaf->items[i+1].key) >= 0);
158 BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
159 leaf->items[i + 1].size);
160 if (i == 0) {
161 BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
162 LEAF_DATA_SIZE);
165 BUG_ON(leaf_free_space(leaf) < 0);
166 return 0;
169 int check_block(struct ctree_path *path, int level)
171 if (level == 0)
172 return check_leaf(path, level);
173 return check_node(path, level);
177 * search for key in the array p. items p are item_size apart
178 * and there are 'max' items in p
179 * the slot in the array is returned via slot, and it points to
180 * the place where you would insert key if it is not found in
181 * the array.
183 * slot may point to max if the key is bigger than all of the keys
185 int generic_bin_search(char *p, int item_size, struct key *key,
186 int max, int *slot)
188 int low = 0;
189 int high = max;
190 int mid;
191 int ret;
192 struct key *tmp;
194 while(low < high) {
195 mid = (low + high) / 2;
196 tmp = (struct key *)(p + mid * item_size);
197 ret = comp_keys(tmp, key);
199 if (ret < 0)
200 low = mid + 1;
201 else if (ret > 0)
202 high = mid;
203 else {
204 *slot = mid;
205 return 0;
208 *slot = low;
209 return 1;
213 * simple bin_search frontend that does the right thing for
214 * leaves vs nodes
216 int bin_search(struct node *c, struct key *key, int *slot)
218 if (is_leaf(c->header.flags)) {
219 struct leaf *l = (struct leaf *)c;
220 return generic_bin_search((void *)l->items, sizeof(struct item),
221 key, c->header.nritems, slot);
222 } else {
223 return generic_bin_search((void *)c->keys, sizeof(struct key),
224 key, c->header.nritems, slot);
226 return -1;
229 struct tree_buffer *read_node_slot(struct ctree_root *root,
230 struct tree_buffer *parent_buf,
231 int slot)
233 struct node *node = &parent_buf->node;
234 if (slot < 0)
235 return NULL;
236 if (slot >= node->header.nritems)
237 return NULL;
238 return read_tree_block(root, node->blockptrs[slot]);
241 static int balance_level(struct ctree_root *root, struct ctree_path *path,
242 int level)
244 struct tree_buffer *right_buf;
245 struct tree_buffer *mid_buf;
246 struct tree_buffer *left_buf;
247 struct tree_buffer *parent_buf = NULL;
248 struct node *right = NULL;
249 struct node *mid;
250 struct node *left = NULL;
251 struct node *parent = NULL;
252 int ret = 0;
253 int wret;
254 int pslot;
255 int orig_slot = path->slots[level];
256 u64 orig_ptr;
258 if (level == 0)
259 return 0;
261 mid_buf = path->nodes[level];
262 mid = &mid_buf->node;
263 orig_ptr = mid->blockptrs[orig_slot];
265 if (level < MAX_LEVEL - 1)
266 parent_buf = path->nodes[level + 1];
267 pslot = path->slots[level + 1];
269 if (!parent_buf) {
270 struct tree_buffer *child;
271 u64 blocknr = mid_buf->blocknr;
273 if (mid->header.nritems != 1)
274 return 0;
276 /* promote the child to a root */
277 child = read_node_slot(root, mid_buf, 0);
278 BUG_ON(!child);
279 root->node = child;
280 path->nodes[level] = NULL;
281 /* once for the path */
282 tree_block_release(root, mid_buf);
283 /* once for the root ptr */
284 tree_block_release(root, mid_buf);
285 clean_tree_block(root, mid_buf);
286 return free_extent(root, blocknr, 1);
288 parent = &parent_buf->node;
290 if (mid->header.nritems > NODEPTRS_PER_BLOCK / 4)
291 return 0;
293 left_buf = read_node_slot(root, parent_buf, pslot - 1);
294 right_buf = read_node_slot(root, parent_buf, pslot + 1);
296 /* first, try to make some room in the middle buffer */
297 if (left_buf) {
298 btrfs_cow_block(root, left_buf, parent_buf,
299 pslot - 1, &left_buf);
300 left = &left_buf->node;
301 orig_slot += left->header.nritems;
302 wret = push_node_left(root, left_buf, mid_buf);
303 if (wret < 0)
304 ret = wret;
308 * then try to empty the right most buffer into the middle
310 if (right_buf) {
311 btrfs_cow_block(root, right_buf, parent_buf,
312 pslot + 1, &right_buf);
313 right = &right_buf->node;
314 wret = push_node_left(root, mid_buf, right_buf);
315 if (wret < 0)
316 ret = wret;
317 if (right->header.nritems == 0) {
318 u64 blocknr = right_buf->blocknr;
319 tree_block_release(root, right_buf);
320 clean_tree_block(root, right_buf);
321 right_buf = NULL;
322 right = NULL;
323 wret = del_ptr(root, path, level + 1, pslot + 1);
324 if (wret)
325 ret = wret;
326 wret = free_extent(root, blocknr, 1);
327 if (wret)
328 ret = wret;
329 } else {
330 memcpy(parent->keys + pslot + 1, right->keys,
331 sizeof(struct key));
332 BUG_ON(list_empty(&parent_buf->dirty));
335 if (mid->header.nritems == 1) {
337 * we're not allowed to leave a node with one item in the
338 * tree during a delete. A deletion from lower in the tree
339 * could try to delete the only pointer in this node.
340 * So, pull some keys from the left.
341 * There has to be a left pointer at this point because
342 * otherwise we would have pulled some pointers from the
343 * right
345 BUG_ON(!left_buf);
346 wret = balance_node_right(root, mid_buf, left_buf);
347 if (wret < 0)
348 ret = wret;
349 BUG_ON(wret == 1);
351 if (mid->header.nritems == 0) {
352 /* we've managed to empty the middle node, drop it */
353 u64 blocknr = mid_buf->blocknr;
354 tree_block_release(root, mid_buf);
355 clean_tree_block(root, mid_buf);
356 mid_buf = NULL;
357 mid = NULL;
358 wret = del_ptr(root, path, level + 1, pslot);
359 if (wret)
360 ret = wret;
361 wret = free_extent(root, blocknr, 1);
362 if (wret)
363 ret = wret;
364 } else {
365 /* update the parent key to reflect our changes */
366 memcpy(parent->keys + pslot, mid->keys, sizeof(struct key));
367 BUG_ON(list_empty(&parent_buf->dirty));
370 /* update the path */
371 if (left_buf) {
372 if (left->header.nritems > orig_slot) {
373 left_buf->count++; // released below
374 path->nodes[level] = left_buf;
375 path->slots[level + 1] -= 1;
376 path->slots[level] = orig_slot;
377 if (mid_buf)
378 tree_block_release(root, mid_buf);
379 } else {
380 orig_slot -= left->header.nritems;
381 path->slots[level] = orig_slot;
384 /* double check we haven't messed things up */
385 check_block(path, level);
386 if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
387 BUG();
389 if (right_buf)
390 tree_block_release(root, right_buf);
391 if (left_buf)
392 tree_block_release(root, left_buf);
393 return ret;
397 * look for key in the tree. path is filled in with nodes along the way
398 * if key is found, we return zero and you can find the item in the leaf
399 * level of the path (level 0)
401 * If the key isn't found, the path points to the slot where it should
402 * be inserted, and 1 is returned. If there are other errors during the
403 * search a negative error number is returned.
405 * if ins_len > 0, nodes and leaves will be split as we walk down the
406 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
407 * possible)
409 int search_slot(struct ctree_root *root, struct key *key,
410 struct ctree_path *p, int ins_len, int cow)
412 struct tree_buffer *b;
413 struct tree_buffer *cow_buf;
414 struct node *c;
415 int slot;
416 int ret;
417 int level;
419 again:
420 b = root->node;
421 b->count++;
422 while (b) {
423 level = node_level(b->node.header.flags);
424 if (cow) {
425 int wret;
426 wret = btrfs_cow_block(root, b, p->nodes[level + 1],
427 p->slots[level + 1], &cow_buf);
428 b = cow_buf;
430 BUG_ON(!cow && ins_len);
431 c = &b->node;
432 p->nodes[level] = b;
433 ret = check_block(p, level);
434 if (ret)
435 return -1;
436 ret = bin_search(c, key, &slot);
437 if (!is_leaf(c->header.flags)) {
438 if (ret && slot > 0)
439 slot -= 1;
440 p->slots[level] = slot;
441 if (ins_len > 0 &&
442 c->header.nritems == NODEPTRS_PER_BLOCK) {
443 int sret = split_node(root, p, level);
444 BUG_ON(sret > 0);
445 if (sret)
446 return sret;
447 b = p->nodes[level];
448 c = &b->node;
449 slot = p->slots[level];
450 } else if (ins_len < 0) {
451 int sret = balance_level(root, p, level);
452 if (sret)
453 return sret;
454 b = p->nodes[level];
455 if (!b)
456 goto again;
457 c = &b->node;
458 slot = p->slots[level];
459 BUG_ON(c->header.nritems == 1);
461 b = read_tree_block(root, c->blockptrs[slot]);
462 } else {
463 struct leaf *l = (struct leaf *)c;
464 p->slots[level] = slot;
465 if (ins_len > 0 && leaf_free_space(l) <
466 sizeof(struct item) + ins_len) {
467 int sret = split_leaf(root, p, ins_len);
468 BUG_ON(sret > 0);
469 if (sret)
470 return sret;
472 BUG_ON(root->node->count == 1);
473 return ret;
476 BUG_ON(root->node->count == 1);
477 return 1;
481 * adjust the pointers going up the tree, starting at level
482 * making sure the right key of each node is points to 'key'.
483 * This is used after shifting pointers to the left, so it stops
484 * fixing up pointers when a given leaf/node is not in slot 0 of the
485 * higher levels
487 * If this fails to write a tree block, it returns -1, but continues
488 * fixing up the blocks in ram so the tree is consistent.
490 static int fixup_low_keys(struct ctree_root *root,
491 struct ctree_path *path, struct key *key,
492 int level)
494 int i;
495 int ret = 0;
496 for (i = level; i < MAX_LEVEL; i++) {
497 struct node *t;
498 int tslot = path->slots[i];
499 if (!path->nodes[i])
500 break;
501 t = &path->nodes[i]->node;
502 memcpy(t->keys + tslot, key, sizeof(*key));
503 BUG_ON(list_empty(&path->nodes[i]->dirty));
504 if (tslot != 0)
505 break;
507 return ret;
511 * try to push data from one node into the next node left in the
512 * tree.
514 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
515 * error, and > 0 if there was no room in the left hand block.
517 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
518 struct tree_buffer *src_buf)
520 struct node *src = &src_buf->node;
521 struct node *dst = &dst_buf->node;
522 int push_items = 0;
523 int src_nritems;
524 int dst_nritems;
525 int ret = 0;
527 src_nritems = src->header.nritems;
528 dst_nritems = dst->header.nritems;
529 push_items = NODEPTRS_PER_BLOCK - dst_nritems;
530 if (push_items <= 0) {
531 return 1;
534 if (src_nritems < push_items)
535 push_items = src_nritems;
537 memcpy(dst->keys + dst_nritems, src->keys,
538 push_items * sizeof(struct key));
539 memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
540 push_items * sizeof(u64));
541 if (push_items < src_nritems) {
542 memmove(src->keys, src->keys + push_items,
543 (src_nritems - push_items) * sizeof(struct key));
544 memmove(src->blockptrs, src->blockptrs + push_items,
545 (src_nritems - push_items) * sizeof(u64));
547 src->header.nritems -= push_items;
548 dst->header.nritems += push_items;
550 BUG_ON(list_empty(&src_buf->dirty));
551 BUG_ON(list_empty(&dst_buf->dirty));
552 return ret;
556 * try to push data from one node into the next node right in the
557 * tree.
559 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
560 * error, and > 0 if there was no room in the right hand block.
562 * this will only push up to 1/2 the contents of the left node over
564 static int balance_node_right(struct ctree_root *root,
565 struct tree_buffer *dst_buf,
566 struct tree_buffer *src_buf)
568 struct node *src = &src_buf->node;
569 struct node *dst = &dst_buf->node;
570 int push_items = 0;
571 int max_push;
572 int src_nritems;
573 int dst_nritems;
574 int ret = 0;
576 src_nritems = src->header.nritems;
577 dst_nritems = dst->header.nritems;
578 push_items = NODEPTRS_PER_BLOCK - dst_nritems;
579 if (push_items <= 0) {
580 return 1;
583 max_push = src_nritems / 2 + 1;
584 /* don't try to empty the node */
585 if (max_push > src_nritems)
586 return 1;
587 if (max_push < push_items)
588 push_items = max_push;
590 memmove(dst->keys + push_items, dst->keys,
591 dst_nritems * sizeof(struct key));
592 memmove(dst->blockptrs + push_items, dst->blockptrs,
593 dst_nritems * sizeof(u64));
594 memcpy(dst->keys, src->keys + src_nritems - push_items,
595 push_items * sizeof(struct key));
596 memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
597 push_items * sizeof(u64));
599 src->header.nritems -= push_items;
600 dst->header.nritems += push_items;
602 BUG_ON(list_empty(&src_buf->dirty));
603 BUG_ON(list_empty(&dst_buf->dirty));
604 return ret;
608 * helper function to insert a new root level in the tree.
609 * A new node is allocated, and a single item is inserted to
610 * point to the existing root
612 * returns zero on success or < 0 on failure.
614 static int insert_new_root(struct ctree_root *root,
615 struct ctree_path *path, int level)
617 struct tree_buffer *t;
618 struct node *lower;
619 struct node *c;
620 struct key *lower_key;
622 BUG_ON(path->nodes[level]);
623 BUG_ON(path->nodes[level-1] != root->node);
625 t = alloc_free_block(root);
626 c = &t->node;
627 memset(c, 0, sizeof(c));
628 c->header.nritems = 1;
629 c->header.flags = node_level(level);
630 c->header.blocknr = t->blocknr;
631 c->header.parentid = root->node->node.header.parentid;
632 lower = &path->nodes[level-1]->node;
633 if (is_leaf(lower->header.flags))
634 lower_key = &((struct leaf *)lower)->items[0].key;
635 else
636 lower_key = lower->keys;
637 memcpy(c->keys, lower_key, sizeof(struct key));
638 c->blockptrs[0] = path->nodes[level-1]->blocknr;
639 /* the super has an extra ref to root->node */
640 tree_block_release(root, root->node);
641 root->node = t;
642 t->count++;
643 path->nodes[level] = t;
644 path->slots[level] = 0;
645 return 0;
649 * worker function to insert a single pointer in a node.
650 * the node should have enough room for the pointer already
652 * slot and level indicate where you want the key to go, and
653 * blocknr is the block the key points to.
655 * returns zero on success and < 0 on any error
657 static int insert_ptr(struct ctree_root *root,
658 struct ctree_path *path, struct key *key,
659 u64 blocknr, int slot, int level)
661 struct node *lower;
662 int nritems;
664 BUG_ON(!path->nodes[level]);
665 lower = &path->nodes[level]->node;
666 nritems = lower->header.nritems;
667 if (slot > nritems)
668 BUG();
669 if (nritems == NODEPTRS_PER_BLOCK)
670 BUG();
671 if (slot != nritems) {
672 memmove(lower->keys + slot + 1, lower->keys + slot,
673 (nritems - slot) * sizeof(struct key));
674 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
675 (nritems - slot) * sizeof(u64));
677 memcpy(lower->keys + slot, key, sizeof(struct key));
678 lower->blockptrs[slot] = blocknr;
679 lower->header.nritems++;
680 if (lower->keys[1].objectid == 0)
681 BUG();
682 BUG_ON(list_empty(&path->nodes[level]->dirty));
683 return 0;
687 * split the node at the specified level in path in two.
688 * The path is corrected to point to the appropriate node after the split
690 * Before splitting this tries to make some room in the node by pushing
691 * left and right, if either one works, it returns right away.
693 * returns 0 on success and < 0 on failure
695 static int split_node(struct ctree_root *root, struct ctree_path *path,
696 int level)
698 struct tree_buffer *t;
699 struct node *c;
700 struct tree_buffer *split_buffer;
701 struct node *split;
702 int mid;
703 int ret;
704 int wret;
706 t = path->nodes[level];
707 c = &t->node;
708 if (t == root->node) {
709 /* trying to split the root, lets make a new one */
710 ret = insert_new_root(root, path, level + 1);
711 if (ret)
712 return ret;
714 split_buffer = alloc_free_block(root);
715 split = &split_buffer->node;
716 split->header.flags = c->header.flags;
717 split->header.blocknr = split_buffer->blocknr;
718 split->header.parentid = root->node->node.header.parentid;
719 mid = (c->header.nritems + 1) / 2;
720 memcpy(split->keys, c->keys + mid,
721 (c->header.nritems - mid) * sizeof(struct key));
722 memcpy(split->blockptrs, c->blockptrs + mid,
723 (c->header.nritems - mid) * sizeof(u64));
724 split->header.nritems = c->header.nritems - mid;
725 c->header.nritems = mid;
726 ret = 0;
728 BUG_ON(list_empty(&t->dirty));
729 wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
730 path->slots[level + 1] + 1, level + 1);
731 if (wret)
732 ret = wret;
734 if (path->slots[level] >= mid) {
735 path->slots[level] -= mid;
736 tree_block_release(root, t);
737 path->nodes[level] = split_buffer;
738 path->slots[level + 1] += 1;
739 } else {
740 tree_block_release(root, split_buffer);
742 return ret;
746 * how many bytes are required to store the items in a leaf. start
747 * and nr indicate which items in the leaf to check. This totals up the
748 * space used both by the item structs and the item data
750 static int leaf_space_used(struct leaf *l, int start, int nr)
752 int data_len;
753 int end = start + nr - 1;
755 if (!nr)
756 return 0;
757 data_len = l->items[start].offset + l->items[start].size;
758 data_len = data_len - l->items[end].offset;
759 data_len += sizeof(struct item) * nr;
760 return data_len;
764 * push some data in the path leaf to the right, trying to free up at
765 * least data_size bytes. returns zero if the push worked, nonzero otherwise
767 * returns 1 if the push failed because the other node didn't have enough
768 * room, 0 if everything worked out and < 0 if there were major errors.
770 static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
771 int data_size)
773 struct tree_buffer *left_buf = path->nodes[0];
774 struct leaf *left = &left_buf->leaf;
775 struct leaf *right;
776 struct tree_buffer *right_buf;
777 struct tree_buffer *upper;
778 int slot;
779 int i;
780 int free_space;
781 int push_space = 0;
782 int push_items = 0;
783 struct item *item;
785 slot = path->slots[1];
786 if (!path->nodes[1]) {
787 return 1;
789 upper = path->nodes[1];
790 if (slot >= upper->node.header.nritems - 1) {
791 return 1;
793 right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
794 right = &right_buf->leaf;
795 free_space = leaf_free_space(right);
796 if (free_space < data_size + sizeof(struct item)) {
797 tree_block_release(root, right_buf);
798 return 1;
800 /* cow and double check */
801 btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
802 right = &right_buf->leaf;
803 free_space = leaf_free_space(right);
804 if (free_space < data_size + sizeof(struct item)) {
805 tree_block_release(root, right_buf);
806 return 1;
809 for (i = left->header.nritems - 1; i >= 0; i--) {
810 item = left->items + i;
811 if (path->slots[0] == i)
812 push_space += data_size + sizeof(*item);
813 if (item->size + sizeof(*item) + push_space > free_space)
814 break;
815 push_items++;
816 push_space += item->size + sizeof(*item);
818 if (push_items == 0) {
819 tree_block_release(root, right_buf);
820 return 1;
822 /* push left to right */
823 push_space = left->items[left->header.nritems - push_items].offset +
824 left->items[left->header.nritems - push_items].size;
825 push_space -= leaf_data_end(left);
826 /* make room in the right data area */
827 memmove(right->data + leaf_data_end(right) - push_space,
828 right->data + leaf_data_end(right),
829 LEAF_DATA_SIZE - leaf_data_end(right));
830 /* copy from the left data area */
831 memcpy(right->data + LEAF_DATA_SIZE - push_space,
832 left->data + leaf_data_end(left),
833 push_space);
834 memmove(right->items + push_items, right->items,
835 right->header.nritems * sizeof(struct item));
836 /* copy the items from left to right */
837 memcpy(right->items, left->items + left->header.nritems - push_items,
838 push_items * sizeof(struct item));
840 /* update the item pointers */
841 right->header.nritems += push_items;
842 push_space = LEAF_DATA_SIZE;
843 for (i = 0; i < right->header.nritems; i++) {
844 right->items[i].offset = push_space - right->items[i].size;
845 push_space = right->items[i].offset;
847 left->header.nritems -= push_items;
849 BUG_ON(list_empty(&left_buf->dirty));
850 BUG_ON(list_empty(&right_buf->dirty));
851 memcpy(upper->node.keys + slot + 1,
852 &right->items[0].key, sizeof(struct key));
853 BUG_ON(list_empty(&upper->dirty));
855 /* then fixup the leaf pointer in the path */
856 if (path->slots[0] >= left->header.nritems) {
857 path->slots[0] -= left->header.nritems;
858 tree_block_release(root, path->nodes[0]);
859 path->nodes[0] = right_buf;
860 path->slots[1] += 1;
861 } else {
862 tree_block_release(root, right_buf);
864 return 0;
867 * push some data in the path leaf to the left, trying to free up at
868 * least data_size bytes. returns zero if the push worked, nonzero otherwise
870 static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
871 int data_size)
873 struct tree_buffer *right_buf = path->nodes[0];
874 struct leaf *right = &right_buf->leaf;
875 struct tree_buffer *t;
876 struct leaf *left;
877 int slot;
878 int i;
879 int free_space;
880 int push_space = 0;
881 int push_items = 0;
882 struct item *item;
883 int old_left_nritems;
884 int ret = 0;
885 int wret;
887 slot = path->slots[1];
888 if (slot == 0) {
889 return 1;
891 if (!path->nodes[1]) {
892 return 1;
894 t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
895 left = &t->leaf;
896 free_space = leaf_free_space(left);
897 if (free_space < data_size + sizeof(struct item)) {
898 tree_block_release(root, t);
899 return 1;
902 /* cow and double check */
903 btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
904 left = &t->leaf;
905 free_space = leaf_free_space(left);
906 if (free_space < data_size + sizeof(struct item)) {
907 tree_block_release(root, t);
908 return 1;
911 for (i = 0; i < right->header.nritems; i++) {
912 item = right->items + i;
913 if (path->slots[0] == i)
914 push_space += data_size + sizeof(*item);
915 if (item->size + sizeof(*item) + push_space > free_space)
916 break;
917 push_items++;
918 push_space += item->size + sizeof(*item);
920 if (push_items == 0) {
921 tree_block_release(root, t);
922 return 1;
924 /* push data from right to left */
925 memcpy(left->items + left->header.nritems,
926 right->items, push_items * sizeof(struct item));
927 push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
928 memcpy(left->data + leaf_data_end(left) - push_space,
929 right->data + right->items[push_items - 1].offset,
930 push_space);
931 old_left_nritems = left->header.nritems;
932 BUG_ON(old_left_nritems < 0);
934 for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
935 left->items[i].offset -= LEAF_DATA_SIZE -
936 left->items[old_left_nritems -1].offset;
938 left->header.nritems += push_items;
940 /* fixup right node */
941 push_space = right->items[push_items-1].offset - leaf_data_end(right);
942 memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
943 leaf_data_end(right), push_space);
944 memmove(right->items, right->items + push_items,
945 (right->header.nritems - push_items) * sizeof(struct item));
946 right->header.nritems -= push_items;
947 push_space = LEAF_DATA_SIZE;
949 for (i = 0; i < right->header.nritems; i++) {
950 right->items[i].offset = push_space - right->items[i].size;
951 push_space = right->items[i].offset;
954 BUG_ON(list_empty(&t->dirty));
955 BUG_ON(list_empty(&right_buf->dirty));
957 wret = fixup_low_keys(root, path, &right->items[0].key, 1);
958 if (wret)
959 ret = wret;
961 /* then fixup the leaf pointer in the path */
962 if (path->slots[0] < push_items) {
963 path->slots[0] += old_left_nritems;
964 tree_block_release(root, path->nodes[0]);
965 path->nodes[0] = t;
966 path->slots[1] -= 1;
967 } else {
968 tree_block_release(root, t);
969 path->slots[0] -= push_items;
971 BUG_ON(path->slots[0] < 0);
972 return ret;
976 * split the path's leaf in two, making sure there is at least data_size
977 * available for the resulting leaf level of the path.
979 * returns 0 if all went well and < 0 on failure.
981 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
982 int data_size)
984 struct tree_buffer *l_buf;
985 struct leaf *l;
986 int nritems;
987 int mid;
988 int slot;
989 struct leaf *right;
990 struct tree_buffer *right_buffer;
991 int space_needed = data_size + sizeof(struct item);
992 int data_copy_size;
993 int rt_data_off;
994 int i;
995 int ret;
996 int wret;
998 l_buf = path->nodes[0];
999 l = &l_buf->leaf;
1001 /* did the pushes work? */
1002 if (leaf_free_space(l) >= sizeof(struct item) + data_size)
1003 return 0;
1005 if (!path->nodes[1]) {
1006 ret = insert_new_root(root, path, 1);
1007 if (ret)
1008 return ret;
1010 slot = path->slots[0];
1011 nritems = l->header.nritems;
1012 mid = (nritems + 1)/ 2;
1013 right_buffer = alloc_free_block(root);
1014 BUG_ON(!right_buffer);
1015 BUG_ON(mid == nritems);
1016 right = &right_buffer->leaf;
1017 memset(right, 0, sizeof(*right));
1018 if (mid <= slot) {
1019 /* FIXME, just alloc a new leaf here */
1020 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1021 LEAF_DATA_SIZE)
1022 BUG();
1023 } else {
1024 /* FIXME, just alloc a new leaf here */
1025 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1026 LEAF_DATA_SIZE)
1027 BUG();
1029 right->header.nritems = nritems - mid;
1030 right->header.blocknr = right_buffer->blocknr;
1031 right->header.flags = node_level(0);
1032 right->header.parentid = root->node->node.header.parentid;
1033 data_copy_size = l->items[mid].offset + l->items[mid].size -
1034 leaf_data_end(l);
1035 memcpy(right->items, l->items + mid,
1036 (nritems - mid) * sizeof(struct item));
1037 memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
1038 l->data + leaf_data_end(l), data_copy_size);
1039 rt_data_off = LEAF_DATA_SIZE -
1040 (l->items[mid].offset + l->items[mid].size);
1042 for (i = 0; i < right->header.nritems; i++)
1043 right->items[i].offset += rt_data_off;
1045 l->header.nritems = mid;
1046 ret = 0;
1047 wret = insert_ptr(root, path, &right->items[0].key,
1048 right_buffer->blocknr, path->slots[1] + 1, 1);
1049 if (wret)
1050 ret = wret;
1051 BUG_ON(list_empty(&right_buffer->dirty));
1052 BUG_ON(list_empty(&l_buf->dirty));
1053 BUG_ON(path->slots[0] != slot);
1054 if (mid <= slot) {
1055 tree_block_release(root, path->nodes[0]);
1056 path->nodes[0] = right_buffer;
1057 path->slots[0] -= mid;
1058 path->slots[1] += 1;
1059 } else
1060 tree_block_release(root, right_buffer);
1061 BUG_ON(path->slots[0] < 0);
1062 return ret;
1066 * Given a key and some data, insert an item into the tree.
1067 * This does all the path init required, making room in the tree if needed.
1069 int insert_item(struct ctree_root *root, struct key *key,
1070 void *data, int data_size)
1072 int ret = 0;
1073 int slot;
1074 int slot_orig;
1075 struct leaf *leaf;
1076 struct tree_buffer *leaf_buf;
1077 unsigned int nritems;
1078 unsigned int data_end;
1079 struct ctree_path path;
1081 /* create a root if there isn't one */
1082 if (!root->node)
1083 BUG();
1084 init_path(&path);
1085 ret = search_slot(root, key, &path, data_size, 1);
1086 if (ret == 0) {
1087 release_path(root, &path);
1088 return -EEXIST;
1090 if (ret < 0)
1091 goto out;
1093 slot_orig = path.slots[0];
1094 leaf_buf = path.nodes[0];
1095 leaf = &leaf_buf->leaf;
1097 nritems = leaf->header.nritems;
1098 data_end = leaf_data_end(leaf);
1100 if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
1101 BUG();
1103 slot = path.slots[0];
1104 BUG_ON(slot < 0);
1105 if (slot != nritems) {
1106 int i;
1107 unsigned int old_data = leaf->items[slot].offset +
1108 leaf->items[slot].size;
1111 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1113 /* first correct the data pointers */
1114 for (i = slot; i < nritems; i++)
1115 leaf->items[i].offset -= data_size;
1117 /* shift the items */
1118 memmove(leaf->items + slot + 1, leaf->items + slot,
1119 (nritems - slot) * sizeof(struct item));
1121 /* shift the data */
1122 memmove(leaf->data + data_end - data_size, leaf->data +
1123 data_end, old_data - data_end);
1124 data_end = old_data;
1126 /* copy the new data in */
1127 memcpy(&leaf->items[slot].key, key, sizeof(struct key));
1128 leaf->items[slot].offset = data_end - data_size;
1129 leaf->items[slot].size = data_size;
1130 memcpy(leaf->data + data_end - data_size, data, data_size);
1131 leaf->header.nritems += 1;
1133 ret = 0;
1134 if (slot == 0)
1135 ret = fixup_low_keys(root, &path, key, 1);
1137 BUG_ON(list_empty(&leaf_buf->dirty));
1138 if (leaf_free_space(leaf) < 0)
1139 BUG();
1140 check_leaf(&path, 0);
1141 out:
1142 release_path(root, &path);
1143 return ret;
1147 * delete the pointer from a given node.
1149 * If the delete empties a node, the node is removed from the tree,
1150 * continuing all the way the root if required. The root is converted into
1151 * a leaf if all the nodes are emptied.
1153 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
1154 int slot)
1156 struct node *node;
1157 struct tree_buffer *parent = path->nodes[level];
1158 int nritems;
1159 int ret = 0;
1160 int wret;
1162 node = &parent->node;
1163 nritems = node->header.nritems;
1164 if (slot != nritems -1) {
1165 memmove(node->keys + slot, node->keys + slot + 1,
1166 sizeof(struct key) * (nritems - slot - 1));
1167 memmove(node->blockptrs + slot,
1168 node->blockptrs + slot + 1,
1169 sizeof(u64) * (nritems - slot - 1));
1171 node->header.nritems--;
1172 if (node->header.nritems == 0 && parent == root->node) {
1173 BUG_ON(node_level(root->node->node.header.flags) != 1);
1174 /* just turn the root into a leaf and break */
1175 root->node->node.header.flags = node_level(0);
1176 } else if (slot == 0) {
1177 wret = fixup_low_keys(root, path, node->keys, level + 1);
1178 if (wret)
1179 ret = wret;
1181 BUG_ON(list_empty(&parent->dirty));
1182 return ret;
1186 * delete the item at the leaf level in path. If that empties
1187 * the leaf, remove it from the tree
1189 int del_item(struct ctree_root *root, struct ctree_path *path)
1191 int slot;
1192 struct leaf *leaf;
1193 struct tree_buffer *leaf_buf;
1194 int doff;
1195 int dsize;
1196 int ret = 0;
1197 int wret;
1199 leaf_buf = path->nodes[0];
1200 leaf = &leaf_buf->leaf;
1201 slot = path->slots[0];
1202 doff = leaf->items[slot].offset;
1203 dsize = leaf->items[slot].size;
1205 if (slot != leaf->header.nritems - 1) {
1206 int i;
1207 int data_end = leaf_data_end(leaf);
1208 memmove(leaf->data + data_end + dsize,
1209 leaf->data + data_end,
1210 doff - data_end);
1211 for (i = slot + 1; i < leaf->header.nritems; i++)
1212 leaf->items[i].offset += dsize;
1213 memmove(leaf->items + slot, leaf->items + slot + 1,
1214 sizeof(struct item) *
1215 (leaf->header.nritems - slot - 1));
1217 leaf->header.nritems -= 1;
1218 /* delete the leaf if we've emptied it */
1219 if (leaf->header.nritems == 0) {
1220 if (leaf_buf == root->node) {
1221 leaf->header.flags = node_level(0);
1222 BUG_ON(list_empty(&leaf_buf->dirty));
1223 } else {
1224 clean_tree_block(root, leaf_buf);
1225 wret = del_ptr(root, path, 1, path->slots[1]);
1226 if (wret)
1227 ret = wret;
1228 wret = free_extent(root, leaf_buf->blocknr, 1);
1229 if (wret)
1230 ret = wret;
1232 } else {
1233 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
1234 if (slot == 0) {
1235 wret = fixup_low_keys(root, path,
1236 &leaf->items[0].key, 1);
1237 if (wret)
1238 ret = wret;
1240 BUG_ON(list_empty(&leaf_buf->dirty));
1242 /* delete the leaf if it is mostly empty */
1243 if (used < LEAF_DATA_SIZE / 3) {
1244 /* push_leaf_left fixes the path.
1245 * make sure the path still points to our leaf
1246 * for possible call to del_ptr below
1248 slot = path->slots[1];
1249 leaf_buf->count++;
1250 wret = push_leaf_left(root, path, 1);
1251 if (wret < 0)
1252 ret = wret;
1253 if (path->nodes[0] == leaf_buf &&
1254 leaf->header.nritems) {
1255 wret = push_leaf_right(root, path, 1);
1256 if (wret < 0)
1257 ret = wret;
1259 if (leaf->header.nritems == 0) {
1260 u64 blocknr = leaf_buf->blocknr;
1261 clean_tree_block(root, leaf_buf);
1262 wret = del_ptr(root, path, 1, slot);
1263 if (wret)
1264 ret = wret;
1265 tree_block_release(root, leaf_buf);
1266 wret = free_extent(root, blocknr, 1);
1267 if (wret)
1268 ret = wret;
1269 } else {
1270 tree_block_release(root, leaf_buf);
1274 return ret;
1278 * walk up the tree as far as required to find the next leaf.
1279 * returns 0 if it found something or 1 if there are no greater leaves.
1280 * returns < 0 on io errors.
1282 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1284 int slot;
1285 int level = 1;
1286 u64 blocknr;
1287 struct tree_buffer *c;
1288 struct tree_buffer *next = NULL;
1290 while(level < MAX_LEVEL) {
1291 if (!path->nodes[level])
1292 return 1;
1293 slot = path->slots[level] + 1;
1294 c = path->nodes[level];
1295 if (slot >= c->node.header.nritems) {
1296 level++;
1297 continue;
1299 blocknr = c->node.blockptrs[slot];
1300 if (next)
1301 tree_block_release(root, next);
1302 next = read_tree_block(root, blocknr);
1303 break;
1305 path->slots[level] = slot;
1306 while(1) {
1307 level--;
1308 c = path->nodes[level];
1309 tree_block_release(root, c);
1310 path->nodes[level] = next;
1311 path->slots[level] = 0;
1312 if (!level)
1313 break;
1314 next = read_tree_block(root, next->node.blockptrs[0]);
1316 return 0;