Release 1.39.0
[boost.git] / Boost_1_39_0 / libs / utility / in_place_factories.html
blobd3791f88bc7383d6520d33704bce3e599bc85000
1 <!DOCTYPE HTML PUBLIC "-//SoftQuad Software//DTD HoTMetaL PRO 5.0::19981217::extensions to HTML 4.0//EN" "hmpro5.dtd">
3 <HTML>
5 <HEAD>
6 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-1252">
7 <TITLE>In_place_factory Documentation</TITLE>
8 </HEAD>
10 <BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#800080">
11 <H2 align="left"><IMG SRC="../../boost.png" WIDTH="276" HEIGHT="86"></H2>
13 <blockquote>
14 <blockquote>
15 <blockquote>
16 <blockquote>
17 <blockquote>
18 <blockquote>
19 <H2 align="left">Header &lt;<A
20 HREF="../../boost/utility/in_place_factory.hpp">boost/utility/in_place_factory.hpp</A>&gt; </H2>
22 <H2 align="left">Header &lt;<A
23 HREF="../../boost/utility/typed_in_place_factory.hpp">boost/utility/typed_in_place_factory.hpp</A>&gt; </H2>
25 </blockquote>
26 </blockquote>
27 </blockquote>
28 </blockquote>
29 </blockquote>
30 </blockquote>
31 <p>&nbsp;</p>
33 <H2>Contents</H2>
34 <DL CLASS="page-index">
35 <DT><A HREF="#mot">Motivation</A></DT>
36 <DT><A HREF="#framework">Framework</A></DT>
37 <DT><A HREF="#specification">Specification</A></DT>
38 <DT><A HREF="#container-usage">Container-side Usage</A></DT>
39 <DT><A HREF="#user-usage">User-side Usage</A></DT>
40 </DL>
42 <HR>
44 <H2><A NAME="mot"></A>Motivation</H2>
46 <p>Suppose we have a class</p>
47 <pre>struct X
49 X ( int, std:::string ) ;
50 } ;</pre>
51 <p>And a container for it which supports an empty state (that is, which can contain zero objects):</p>
52 <pre>struct C
54 C() : contained_(0) {}
55 ~C() { delete contained_ ; }
56 X* contained_ ;
57 } ;</pre>
58 <p>A container designed to support an empty state typically doesn't require the contained type to be DefaultConstructible,
59 but it typically requires it to be CopyConstructible as a mechanism to
60 initialize the object to store:</p>
61 <pre>struct C
63 C() : contained_(0) {}
64 C ( X const& v ) : contained_ ( new X(v) ) {}
65 ~C() { delete contained_ ; }
66 X* contained_ ;
67 } ;</pre>
68 <p>There is a subtle problem with this: since the mechanism used to initialize the stored object is copy construction,
69 there must exist a previously constructed source object to copy from. This
70 object is likely to be temporary and serve no purpose besides being the source</p>
71 <pre>void foo()
73 // Temporary object created.
74 C c( X(123,"hello") ) ;
76 </pre>
77 <p>A solution to this problem is to support direct construction of the contained
78 object right in the container's storage.<br>
79 In this scheme, the user supplies the arguments for the X constructor
80 directly to the container:</p>
81 <pre>struct C
83 C() : contained_(0) {}
84 C ( X const& v ) : contained_ ( new X(v) ) {}
85 C ( int a0, std::string a1 ) : contained_ ( new X(a0,a1) ) {}
86 ~C() { delete contained_ ; }
87 X* contained_ ;
88 } ;</pre>
89 <pre>void foo()
91 // Wrapped object constructed in-place
92 // No temporary created.
93 C c(123,"hello") ;
95 </pre>
96 <p>Clearly, this solution doesn't scale well since the container must duplicate all the constructor overloads from the contained type
97 (at least all those which are to be supported directly in the container).</p>
99 <H2><A NAME="framework"></A>Framework</H2>
101 This library proposes a framework to allow some containers to directly contruct contained objects in-place without requiring
102 the entire set of constructor overloads from the contained type. It also allows the container to remove the CopyConstuctible
103 requirement from the contained type since objects can be directly constructed in-place without need of a copy.<br>
104 The only requirement on the container is that it must provide proper storage (that is, correctly aligned and sized).
105 Naturally, the container will typically support uninitialized storage to avoid the in-place construction to override
106 a fully-constructed object (as this would defeat the purpose of in-place construction)
107 </p>
108 <p>For this purpose, the framework provides two families of classes collectively called: InPlaceFactories and TypedInPlaceFactories.<br>
109 Essentially, these classes hold a sequence of actual parameters and a method to contruct an object in place using these parameters.
110 Each member of the family differs only in the number (and type) of the parameter list. The first family
111 takes the type of the object to construct directly in method provided for that
112 purpose, whereas the second family incorporates that type in the factory class
113 itself..</p>
114 <p>From the container POV, using the framework amounts to calling the factory's method to contruct the object in place.
115 From the user POV, it amounts to creating the right factory object to hold the parameters and pass it to the container.<br>
116 The following simplified example shows the basic idea. A complete example follows the formal specification of the framework:</p>
117 <pre>struct C
119 template&lt;class InPlaceFactory&gt;
120 C ( InPlaceFactory const& aFactoty )
122 contained_ ( uninitialized_storage() )
124 aFactory.template apply&lt;X&gt;(contained_);
127 ~C()
129 contained_ -> X::~X();
130 delete[] contained_ ;
133 char* uninitialized_storage() { return new char[sizeof(X)] ; }
135 char* contained_ ;
138 void foo()
140 C c( in_place(123,"hello") ) ;
142 </pre>
144 <HR>
146 <H2><A NAME="specification">Specification</A></H2>
148 <p>The following is the first member of the family of 'in_place_factory' classes, along with its corresponding helper template function.
149 The rest of the family varies only in the number and type of template (and constructor) parameters.</p>
150 <PRE>namespace boost {
152 struct in_place_factory_base {} ;
154 template&lt;class A0&gt;
155 class in_place_factory : public in_place_factory_base
157 public:</PRE>
159 <PRE> in_place_factory ( A0 const& a0 ) : m_a0(a0) {}
161 template&lt; class T &gt;
162 void apply ( void* address ) const
164 new (address) T(m_a0);
167 private:</PRE>
169 <PRE> A0 const& m_a0 ;
172 template&lt;class A0&gt;
173 in_place_factory&lt;A0&gt; in_place ( A0 const& a0 )
175 return in_place_factory&lt;A0&gt;(a0);
177 </PRE>
179 <p>Similarly, the following is the first member of the family of 'typed_in_place_factory' classes, along with its corresponding
180 helper template function. The rest of the family varies only in the number and type of template (and constructor) parameters.</p>
181 <PRE>namespace boost {
183 struct typed_in_place_factory_base {} ;
185 template&lt;class T, class A0&gt;
186 class typed_in_place_factory : public typed_in_place_factory_base
188 public:</PRE>
190 <PRE> typed_in_place_factory ( A0 const& a0 ) : m_a0(a0) {}
192 void apply ( void* address ) const
194 new (address) T(m_a0);
197 private:</PRE>
199 <PRE> A0 const& m_a0 ;
202 template&lt;class T, class A0&gt;
203 typed_in_place_factory&lt;A0&gt; in_place ( A0 const& a0 )
205 return typed_in_place_factory&lt;T,A0&gt;(a0);
206 }</PRE>
208 <PRE>}
209 </PRE>
211 <p>As you can see, the 'in_place_factory' and 'typed_in_place_factory' template classes varies only in the way they specify
212 the target type: in the first family, the type is given as a template argument to the apply member function while in the
213 second it is given directly as part of the factory class.<br>
214 When the container holds a unique non-polymorphic type (such as the case of Boost.Optional), it knows the exact dynamic-type
215 of the contained object and can pass it to the apply() method of a (non-typed) factory.
216 In this case, end users can use an 'in_place_factory' instance which can be constructed without the type of the object to construct.<br>
217 However, if the container holds heterogeneous or polymorphic objects (such as the case of Boost.Variant), the dynamic-type
218 of the object to be constructed must be known by the factory itslef. In this case, end users must use a 'typed_in_place_factory'
219 instead.</p>
221 <HR>
223 <h2><A NAME="container-usage">Container-side Usage</a></h2>
225 <p>As shown in the introductory simplified example, the container class must
226 contain methods that accept an instance of
227 these factories and pass the object's storage to the factory's apply method.<br>
228 However, the type of the factory class cannot be completly specified in the container class because that would
229 defeat the whole purpose of the factories which is to allow the container to accept a variadic argument list
230 for the constructor of its contained object.<br>
231 The correct function overload must be based on the only distinctive and common
232 characteristic of all the classes in each family, the base class.<br>
233 Depending on the container class, you can use 'enable_if' to generate the right overload, or use the following
234 dispatch technique (used in the Boost.Optional class):
235 </p>
236 <pre>struct C
238 C() : contained_(0) {}
239 C ( X const& v ) : contained_ ( new X(v) ) {}
241 template&lt;class Expr&gt
242 C ( Expr const& expr )
244 contained_ ( uninitialized_storage() )
246 construct(expr,&expr)
249 ~C() { delete contained_ ; }
251 template&lt;class InPlaceFactory&gt;
252 void construct ( InPlaceFactory const& aFactory, boost::in_place_factory_base* )
254 aFactory.template apply&lt;X&gt;(contained_);
257 template&lt;class TypedInPlaceFactory&gt;
258 void construct ( TypedInPlaceFactory const& aFactory, boost::typed_in_place_factory_base* )
260 aFactory.apply(contained_);
263 X* uninitialized_storage() { return static_cast&lt;X*&gt;(new char[sizeof(X)]) ; }
265 X* contained_ ;
267 </pre>
269 <hr>
271 <h2><A NAME="user-usage">User-side Usage</a></h2>
273 <p>End users pass to the container an instance of a factory object holding the actual parameters needed to construct the
274 contained object directly within the container. For this, the helper template function 'in_place' is used.<br>
275 The call 'in_place(a0,a1,a2,...,an)' constructs a (non-typed) 'in_place_factory' instance with the given argument list.<br>
276 The call 'in_place&lt;T&gt;(a0,a1,a2,...,an)' constructs a 'typed_in_place_factory' instance with the given argument list for the
277 type 'T'.</p>
278 <pre>void foo()
280 C a( in_place(123,"hello") ) ; // in_place_factory passed
281 C b( in_place&lt;X&gt;(456,"world") ) ; // typed_in_place_factory passed
283 </pre>
285 <P>Revised September 17, 2004</P>
286 <p>© Copyright Fernando Luis Cacciola Carballal, 2004</p>
287 <p> Use, modification, and distribution are subject to the Boost Software
288 License, Version 1.0. (See accompanying file <a href="../../LICENSE_1_0.txt">
289 LICENSE_1_0.txt</a> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt">
290 www.boost.org/LICENSE_1_0.txt</a>)</p>
291 <P>Developed by <A HREF="mailto:fernando_cacciola@hotmail.com">Fernando Cacciola</A>,
292 the latest version of this file can be found at <A
293 HREF="http://www.boost.org">www.boost.org</A>, and the boost
294 <A HREF="http://www.boost.org/more/mailing_lists.htm#main">discussion lists</A></P>
295 </BODY>
296 </HTML>