fix doc example typo
[boost.git] / boost / graph / transitive_closure.hpp
bloba4742ab155e1d8f803c3bb6e89eb650d4bd83011
1 // Copyright (C) 2001 Vladimir Prus <ghost@cs.msu.su>
2 // Copyright (C) 2001 Jeremy Siek <jsiek@cs.indiana.edu>
3 // Distributed under the Boost Software License, Version 1.0. (See
4 // accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
7 // NOTE: this final is generated by libs/graph/doc/transitive_closure.w
9 #ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
10 #define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
12 #include <vector>
13 #include <algorithm> // for std::min and std::max
14 #include <functional>
15 #include <boost/config.hpp>
16 #include <boost/bind.hpp>
17 #include <boost/graph/vector_as_graph.hpp>
18 #include <boost/graph/strong_components.hpp>
19 #include <boost/graph/topological_sort.hpp>
20 #include <boost/graph/graph_concepts.hpp>
21 #include <boost/graph/named_function_params.hpp>
23 namespace boost
26 namespace detail
28 inline void
29 union_successor_sets(const std::vector < std::size_t > &s1,
30 const std::vector < std::size_t > &s2,
31 std::vector < std::size_t > &s3)
33 BOOST_USING_STD_MIN();
34 for (std::size_t k = 0; k < s1.size(); ++k)
35 s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]);
37 } // namespace detail
39 namespace detail
41 template < typename Container, typename ST = std::size_t,
42 typename VT = typename Container::value_type >
43 struct subscript_t:public std::unary_function < ST, VT >
45 typedef VT& result_type;
47 subscript_t(Container & c):container(&c)
50 VT & operator() (const ST & i) const
52 return (*container)[i];
54 protected:
55 Container * container;
57 template < typename Container >
58 subscript_t < Container > subscript(Container & c) {
59 return subscript_t < Container > (c);
61 } // namespace detail
63 template < typename Graph, typename GraphTC,
64 typename G_to_TC_VertexMap,
65 typename VertexIndexMap >
66 void transitive_closure(const Graph & g, GraphTC & tc,
67 G_to_TC_VertexMap g_to_tc_map,
68 VertexIndexMap index_map)
70 if (num_vertices(g) == 0)
71 return;
72 typedef typename graph_traits < Graph >::vertex_descriptor vertex;
73 typedef typename graph_traits < Graph >::edge_descriptor edge;
74 typedef typename graph_traits < Graph >::vertex_iterator vertex_iterator;
75 typedef typename property_traits < VertexIndexMap >::value_type size_type;
76 typedef typename graph_traits <
77 Graph >::adjacency_iterator adjacency_iterator;
79 function_requires < VertexListGraphConcept < Graph > >();
80 function_requires < AdjacencyGraphConcept < Graph > >();
81 function_requires < VertexMutableGraphConcept < GraphTC > >();
82 function_requires < EdgeMutableGraphConcept < GraphTC > >();
83 function_requires < ReadablePropertyMapConcept < VertexIndexMap,
84 vertex > >();
86 typedef size_type cg_vertex;
87 std::vector < cg_vertex > component_number_vec(num_vertices(g));
88 iterator_property_map < cg_vertex *, VertexIndexMap, cg_vertex, cg_vertex& >
89 component_number(&component_number_vec[0], index_map);
91 int num_scc = strong_components(g, component_number,
92 vertex_index_map(index_map));
94 std::vector < std::vector < vertex > >components;
95 build_component_lists(g, num_scc, component_number, components);
97 typedef std::vector<std::vector<cg_vertex> > CG_t;
98 CG_t CG(num_scc);
99 for (cg_vertex s = 0; s < components.size(); ++s) {
100 std::vector < cg_vertex > adj;
101 for (size_type i = 0; i < components[s].size(); ++i) {
102 vertex u = components[s][i];
103 adjacency_iterator v, v_end;
104 for (tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) {
105 cg_vertex t = component_number[*v];
106 if (s != t) // Avoid loops in the condensation graph
107 adj.push_back(t);
110 std::sort(adj.begin(), adj.end());
111 typename std::vector<cg_vertex>::iterator di =
112 std::unique(adj.begin(), adj.end());
113 if (di != adj.end())
114 adj.erase(di, adj.end());
115 CG[s] = adj;
118 std::vector<cg_vertex> topo_order;
119 std::vector<cg_vertex> topo_number(num_vertices(CG));
120 topological_sort(CG, std::back_inserter(topo_order),
121 vertex_index_map(identity_property_map()));
122 std::reverse(topo_order.begin(), topo_order.end());
123 size_type n = 0;
124 for (typename std::vector<cg_vertex>::iterator iter = topo_order.begin();
125 iter != topo_order.end(); ++iter)
126 topo_number[*iter] = n++;
128 for (size_type i = 0; i < num_vertices(CG); ++i)
129 std::sort(CG[i].begin(), CG[i].end(),
130 boost::bind(std::less<cg_vertex>(),
131 boost::bind(detail::subscript(topo_number), _1),
132 boost::bind(detail::subscript(topo_number), _2)));
134 std::vector<std::vector<cg_vertex> > chains;
136 std::vector<cg_vertex> in_a_chain(num_vertices(CG));
137 for (typename std::vector<cg_vertex>::iterator i = topo_order.begin();
138 i != topo_order.end(); ++i) {
139 cg_vertex v = *i;
140 if (!in_a_chain[v]) {
141 chains.resize(chains.size() + 1);
142 std::vector<cg_vertex>& chain = chains.back();
143 for (;;) {
144 chain.push_back(v);
145 in_a_chain[v] = true;
146 typename graph_traits<CG_t>::adjacency_iterator adj_first, adj_last;
147 tie(adj_first, adj_last) = adjacent_vertices(v, CG);
148 typename graph_traits<CG_t>::adjacency_iterator next
149 = std::find_if(adj_first, adj_last,
150 std::not1(detail::subscript(in_a_chain)));
151 if (next != adj_last)
152 v = *next;
153 else
154 break; // end of chain, dead-end
160 std::vector<size_type> chain_number(num_vertices(CG));
161 std::vector<size_type> pos_in_chain(num_vertices(CG));
162 for (size_type i = 0; i < chains.size(); ++i)
163 for (size_type j = 0; j < chains[i].size(); ++j) {
164 cg_vertex v = chains[i][j];
165 chain_number[v] = i;
166 pos_in_chain[v] = j;
169 cg_vertex inf = (std::numeric_limits< cg_vertex >::max)();
170 std::vector<std::vector<cg_vertex> > successors(num_vertices(CG),
171 std::vector<cg_vertex>
172 (chains.size(), inf));
173 for (typename std::vector<cg_vertex>::reverse_iterator
174 i = topo_order.rbegin(); i != topo_order.rend(); ++i) {
175 cg_vertex u = *i;
176 typename graph_traits<CG_t>::adjacency_iterator adj, adj_last;
177 for (tie(adj, adj_last) = adjacent_vertices(u, CG);
178 adj != adj_last; ++adj) {
179 cg_vertex v = *adj;
180 if (topo_number[v] < successors[u][chain_number[v]]) {
181 // Succ(u) = Succ(u) U Succ(v)
182 detail::union_successor_sets(successors[u], successors[v],
183 successors[u]);
184 // Succ(u) = Succ(u) U {v}
185 successors[u][chain_number[v]] = topo_number[v];
190 for (size_type i = 0; i < CG.size(); ++i)
191 CG[i].clear();
192 for (size_type i = 0; i < CG.size(); ++i)
193 for (size_type j = 0; j < chains.size(); ++j) {
194 size_type topo_num = successors[i][j];
195 if (topo_num < inf) {
196 cg_vertex v = topo_order[topo_num];
197 for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k)
198 CG[i].push_back(chains[j][k]);
203 // Add vertices to the transitive closure graph
204 typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
206 vertex_iterator i, i_end;
207 for (tie(i, i_end) = vertices(g); i != i_end; ++i)
208 g_to_tc_map[*i] = add_vertex(tc);
210 // Add edges between all the vertices in two adjacent SCCs
211 typename graph_traits<CG_t>::vertex_iterator si, si_end;
212 for (tie(si, si_end) = vertices(CG); si != si_end; ++si) {
213 cg_vertex s = *si;
214 typename graph_traits<CG_t>::adjacency_iterator i, i_end;
215 for (tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) {
216 cg_vertex t = *i;
217 for (size_type k = 0; k < components[s].size(); ++k)
218 for (size_type l = 0; l < components[t].size(); ++l)
219 add_edge(g_to_tc_map[components[s][k]],
220 g_to_tc_map[components[t][l]], tc);
223 // Add edges connecting all vertices in a SCC
224 for (size_type i = 0; i < components.size(); ++i)
225 if (components[i].size() > 1)
226 for (size_type k = 0; k < components[i].size(); ++k)
227 for (size_type l = 0; l < components[i].size(); ++l) {
228 vertex u = components[i][k], v = components[i][l];
229 add_edge(g_to_tc_map[u], g_to_tc_map[v], tc);
232 // Find loopbacks in the original graph.
233 // Need to add it to transitive closure.
235 vertex_iterator i, i_end;
236 for (tie(i, i_end) = vertices(g); i != i_end; ++i)
238 adjacency_iterator ab, ae;
239 for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab)
241 if (*ab == *i)
242 if (components[component_number[*i]].size() == 1)
243 add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc);
249 template <typename Graph, typename GraphTC>
250 void transitive_closure(const Graph & g, GraphTC & tc)
252 if (num_vertices(g) == 0)
253 return;
254 typedef typename property_map<Graph, vertex_index_t>::const_type
255 VertexIndexMap;
256 VertexIndexMap index_map = get(vertex_index, g);
258 typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
259 std::vector<tc_vertex> to_tc_vec(num_vertices(g));
260 iterator_property_map < tc_vertex *, VertexIndexMap, tc_vertex, tc_vertex&>
261 g_to_tc_map(&to_tc_vec[0], index_map);
263 transitive_closure(g, tc, g_to_tc_map, index_map);
266 namespace detail
268 template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap,
269 typename VertexIndexMap>
270 void transitive_closure_dispatch
271 (const Graph & g, GraphTC & tc,
272 G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map)
274 typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
275 typename std::vector < tc_vertex >::size_type
276 n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1;
277 std::vector < tc_vertex > to_tc_vec(n);
279 transitive_closure
280 (g, tc,
281 choose_param(g_to_tc_map, make_iterator_property_map
282 (to_tc_vec.begin(), index_map, to_tc_vec[0])),
283 index_map);
285 } // namespace detail
287 template < typename Graph, typename GraphTC,
288 typename P, typename T, typename R >
289 void transitive_closure(const Graph & g, GraphTC & tc,
290 const bgl_named_params < P, T, R > &params)
292 if (num_vertices(g) == 0)
293 return;
294 detail::transitive_closure_dispatch
295 (g, tc, get_param(params, orig_to_copy_t()),
296 choose_const_pmap(get_param(params, vertex_index), g, vertex_index) );
300 template < typename G > void warshall_transitive_closure(G & g)
302 typedef typename graph_traits < G >::vertex_descriptor vertex;
303 typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
305 function_requires < AdjacencyMatrixConcept < G > >();
306 function_requires < EdgeMutableGraphConcept < G > >();
308 // Matrix form:
309 // for k
310 // for i
311 // if A[i,k]
312 // for j
313 // A[i,j] = A[i,j] | A[k,j]
314 vertex_iterator ki, ke, ii, ie, ji, je;
315 for (tie(ki, ke) = vertices(g); ki != ke; ++ki)
316 for (tie(ii, ie) = vertices(g); ii != ie; ++ii)
317 if (edge(*ii, *ki, g).second)
318 for (tie(ji, je) = vertices(g); ji != je; ++ji)
319 if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) {
320 add_edge(*ii, *ji, g);
325 template < typename G > void warren_transitive_closure(G & g)
327 using namespace boost;
328 typedef typename graph_traits < G >::vertex_descriptor vertex;
329 typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
331 function_requires < AdjacencyMatrixConcept < G > >();
332 function_requires < EdgeMutableGraphConcept < G > >();
334 // Make sure second loop will work
335 if (num_vertices(g) == 0)
336 return;
338 // for i = 2 to n
339 // for k = 1 to i - 1
340 // if A[i,k]
341 // for j = 1 to n
342 // A[i,j] = A[i,j] | A[k,j]
344 vertex_iterator ic, ie, jc, je, kc, ke;
345 for (tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic)
346 for (tie(kc, ke) = vertices(g); *kc != *ic; ++kc)
347 if (edge(*ic, *kc, g).second)
348 for (tie(jc, je) = vertices(g); jc != je; ++jc)
349 if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
350 add_edge(*ic, *jc, g);
352 // for i = 1 to n - 1
353 // for k = i + 1 to n
354 // if A[i,k]
355 // for j = 1 to n
356 // A[i,j] = A[i,j] | A[k,j]
358 for (tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic)
359 for (kc = ic, ke = ie, ++kc; kc != ke; ++kc)
360 if (edge(*ic, *kc, g).second)
361 for (tie(jc, je) = vertices(g); jc != je; ++jc)
362 if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
363 add_edge(*ic, *jc, g);
368 } // namespace boost
370 #endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP