1 //===-- lib/muldf3.c - Double-precision multiplication ------------*- C -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements double-precision soft-float multiplication
11 // with the IEEE-754 default rounding (to nearest, ties to even).
13 //===----------------------------------------------------------------------===//
15 #define DOUBLE_PRECISION
18 ARM_EABI_FNALIAS(dmul
, muldf3
)
21 __muldf3(fp_t a
, fp_t b
) {
23 const unsigned int aExponent
= toRep(a
) >> significandBits
& maxExponent
;
24 const unsigned int bExponent
= toRep(b
) >> significandBits
& maxExponent
;
25 const rep_t productSign
= (toRep(a
) ^ toRep(b
)) & signBit
;
27 rep_t aSignificand
= toRep(a
) & significandMask
;
28 rep_t bSignificand
= toRep(b
) & significandMask
;
31 // Detect if a or b is zero, denormal, infinity, or NaN.
32 if (aExponent
-1U >= maxExponent
-1U || bExponent
-1U >= maxExponent
-1U) {
34 const rep_t aAbs
= toRep(a
) & absMask
;
35 const rep_t bAbs
= toRep(b
) & absMask
;
37 // NaN * anything = qNaN
38 if (aAbs
> infRep
) return fromRep(toRep(a
) | quietBit
);
39 // anything * NaN = qNaN
40 if (bAbs
> infRep
) return fromRep(toRep(b
) | quietBit
);
43 // infinity * non-zero = +/- infinity
44 if (bAbs
) return fromRep(aAbs
| productSign
);
45 // infinity * zero = NaN
46 else return fromRep(qnanRep
);
50 // non-zero * infinity = +/- infinity
51 if (aAbs
) return fromRep(bAbs
| productSign
);
52 // zero * infinity = NaN
53 else return fromRep(qnanRep
);
56 // zero * anything = +/- zero
57 if (!aAbs
) return fromRep(productSign
);
58 // anything * zero = +/- zero
59 if (!bAbs
) return fromRep(productSign
);
61 // one or both of a or b is denormal, the other (if applicable) is a
62 // normal number. Renormalize one or both of a and b, and set scale to
63 // include the necessary exponent adjustment.
64 if (aAbs
< implicitBit
) scale
+= normalize(&aSignificand
);
65 if (bAbs
< implicitBit
) scale
+= normalize(&bSignificand
);
68 // Or in the implicit significand bit. (If we fell through from the
69 // denormal path it was already set by normalize( ), but setting it twice
70 // won't hurt anything.)
71 aSignificand
|= implicitBit
;
72 bSignificand
|= implicitBit
;
74 // Get the significand of a*b. Before multiplying the significands, shift
75 // one of them left to left-align it in the field. Thus, the product will
76 // have (exponentBits + 2) integral digits, all but two of which must be
77 // zero. Normalizing this result is just a conditional left-shift by one
78 // and bumping the exponent accordingly.
79 rep_t productHi
, productLo
;
80 wideMultiply(aSignificand
, bSignificand
<< exponentBits
,
81 &productHi
, &productLo
);
83 int productExponent
= aExponent
+ bExponent
- exponentBias
+ scale
;
85 // Normalize the significand, adjust exponent if needed.
86 if (productHi
& implicitBit
) productExponent
++;
87 else wideLeftShift(&productHi
, &productLo
, 1);
89 // If we have overflowed the type, return +/- infinity.
90 if (productExponent
>= maxExponent
) return fromRep(infRep
| productSign
);
92 if (productExponent
<= 0) {
93 // Result is denormal before rounding
95 // If the result is so small that it just underflows to zero, return
96 // a zero of the appropriate sign. Mathematically there is no need to
97 // handle this case separately, but we make it a special case to
98 // simplify the shift logic.
99 const unsigned int shift
= 1U - (unsigned int)productExponent
;
100 if (shift
>= typeWidth
) return fromRep(productSign
);
102 // Otherwise, shift the significand of the result so that the round
103 // bit is the high bit of productLo.
104 wideRightShiftWithSticky(&productHi
, &productLo
, shift
);
108 // Result is normal before rounding; insert the exponent.
109 productHi
&= significandMask
;
110 productHi
|= (rep_t
)productExponent
<< significandBits
;
113 // Insert the sign of the result:
114 productHi
|= productSign
;
116 // Final rounding. The final result may overflow to infinity, or underflow
117 // to zero, but those are the correct results in those cases. We use the
118 // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
119 if (productLo
> signBit
) productHi
++;
120 if (productLo
== signBit
) productHi
+= productHi
& 1;
121 return fromRep(productHi
);