[ASan] Update sanitizer_common and asan test_util headers to support building on...
[blocksruntime.git] / lib / sanitizer_common / sanitizer_deadlock_detector.h
blob90e1cc4eb5974c4ed96c6db48e188caaa7b4bebb
1 //===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of Sanitizer runtime.
11 // The deadlock detector maintains a directed graph of lock acquisitions.
12 // When a lock event happens, the detector checks if the locks already held by
13 // the current thread are reachable from the newly acquired lock.
15 // The detector can handle only a fixed amount of simultaneously live locks
16 // (a lock is alive if it has been locked at least once and has not been
17 // destroyed). When the maximal number of locks is reached the entire graph
18 // is flushed and the new lock epoch is started. The node ids from the old
19 // epochs can not be used with any of the detector methods except for
20 // nodeBelongsToCurrentEpoch().
22 // FIXME: this is work in progress, nothing really works yet.
24 //===----------------------------------------------------------------------===//
26 #ifndef SANITIZER_DEADLOCK_DETECTOR_H
27 #define SANITIZER_DEADLOCK_DETECTOR_H
29 #include "sanitizer_common.h"
30 #include "sanitizer_bvgraph.h"
32 namespace __sanitizer {
34 // Thread-local state for DeadlockDetector.
35 // It contains the locks currently held by the owning thread.
36 template <class BV>
37 class DeadlockDetectorTLS {
38 public:
39 // No CTOR.
40 void clear() {
41 bv_.clear();
42 epoch_ = 0;
43 n_recursive_locks = 0;
44 n_all_locks_ = 0;
47 bool empty() const { return bv_.empty(); }
49 void ensureCurrentEpoch(uptr current_epoch) {
50 if (epoch_ == current_epoch) return;
51 bv_.clear();
52 epoch_ = current_epoch;
55 uptr getEpoch() const { return epoch_; }
57 // Returns true if this is the first (non-recursive) acquisition of this lock.
58 bool addLock(uptr lock_id, uptr current_epoch, u32 stk) {
59 // Printf("addLock: %zx %zx stk %u\n", lock_id, current_epoch, stk);
60 CHECK_EQ(epoch_, current_epoch);
61 if (!bv_.setBit(lock_id)) {
62 // The lock is already held by this thread, it must be recursive.
63 CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks));
64 recursive_locks[n_recursive_locks++] = lock_id;
65 return false;
67 CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_));
68 // lock_id < BV::kSize, can cast to a smaller int.
69 u32 lock_id_short = static_cast<u32>(lock_id);
70 LockWithContext l = {lock_id_short, stk};
71 all_locks_with_contexts_[n_all_locks_++] = l;
72 return true;
75 void removeLock(uptr lock_id) {
76 if (n_recursive_locks) {
77 for (sptr i = n_recursive_locks - 1; i >= 0; i--) {
78 if (recursive_locks[i] == lock_id) {
79 n_recursive_locks--;
80 Swap(recursive_locks[i], recursive_locks[n_recursive_locks]);
81 return;
85 // Printf("remLock: %zx %zx\n", lock_id, epoch_);
86 CHECK(bv_.clearBit(lock_id));
87 if (n_all_locks_) {
88 for (sptr i = n_all_locks_ - 1; i >= 0; i--) {
89 if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) {
90 Swap(all_locks_with_contexts_[i],
91 all_locks_with_contexts_[n_all_locks_ - 1]);
92 n_all_locks_--;
93 break;
99 u32 findLockContext(uptr lock_id) {
100 for (uptr i = 0; i < n_all_locks_; i++)
101 if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id))
102 return all_locks_with_contexts_[i].stk;
103 return 0;
106 const BV &getLocks(uptr current_epoch) const {
107 CHECK_EQ(epoch_, current_epoch);
108 return bv_;
111 uptr getNumLocks() const { return n_all_locks_; }
112 uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; }
114 private:
115 BV bv_;
116 uptr epoch_;
117 uptr recursive_locks[64];
118 uptr n_recursive_locks;
119 struct LockWithContext {
120 u32 lock;
121 u32 stk;
123 LockWithContext all_locks_with_contexts_[64];
124 uptr n_all_locks_;
127 // DeadlockDetector.
128 // For deadlock detection to work we need one global DeadlockDetector object
129 // and one DeadlockDetectorTLS object per evey thread.
130 // This class is not thread safe, all concurrent accesses should be guarded
131 // by an external lock.
132 // Most of the methods of this class are not thread-safe (i.e. should
133 // be protected by an external lock) unless explicitly told otherwise.
134 template <class BV>
135 class DeadlockDetector {
136 public:
137 typedef BV BitVector;
139 uptr size() const { return g_.size(); }
141 // No CTOR.
142 void clear() {
143 current_epoch_ = 0;
144 available_nodes_.clear();
145 recycled_nodes_.clear();
146 g_.clear();
147 n_edges_ = 0;
150 // Allocate new deadlock detector node.
151 // If we are out of available nodes first try to recycle some.
152 // If there is nothing to recycle, flush the graph and increment the epoch.
153 // Associate 'data' (opaque user's object) with the new node.
154 uptr newNode(uptr data) {
155 if (!available_nodes_.empty())
156 return getAvailableNode(data);
157 if (!recycled_nodes_.empty()) {
158 // Printf("recycling: n_edges_ %zd\n", n_edges_);
159 for (sptr i = n_edges_ - 1; i >= 0; i--) {
160 if (recycled_nodes_.getBit(edges_[i].from) ||
161 recycled_nodes_.getBit(edges_[i].to)) {
162 Swap(edges_[i], edges_[n_edges_ - 1]);
163 n_edges_--;
166 CHECK(available_nodes_.empty());
167 // removeEdgesFrom was called in removeNode.
168 g_.removeEdgesTo(recycled_nodes_);
169 available_nodes_.setUnion(recycled_nodes_);
170 recycled_nodes_.clear();
171 return getAvailableNode(data);
173 // We are out of vacant nodes. Flush and increment the current_epoch_.
174 current_epoch_ += size();
175 recycled_nodes_.clear();
176 available_nodes_.setAll();
177 g_.clear();
178 return getAvailableNode(data);
181 // Get data associated with the node created by newNode().
182 uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }
184 bool nodeBelongsToCurrentEpoch(uptr node) {
185 return node && (node / size() * size()) == current_epoch_;
188 void removeNode(uptr node) {
189 uptr idx = nodeToIndex(node);
190 CHECK(!available_nodes_.getBit(idx));
191 CHECK(recycled_nodes_.setBit(idx));
192 g_.removeEdgesFrom(idx);
195 void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
196 dtls->ensureCurrentEpoch(current_epoch_);
199 // Returns true if there is a cycle in the graph after this lock event.
200 // Ideally should be called before the lock is acquired so that we can
201 // report a deadlock before a real deadlock happens.
202 bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
203 ensureCurrentEpoch(dtls);
204 uptr cur_idx = nodeToIndex(cur_node);
205 return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
208 u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) {
209 return dtls->findLockContext(nodeToIndex(node));
212 // Add cur_node to the set of locks held currently by dtls.
213 void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
214 ensureCurrentEpoch(dtls);
215 uptr cur_idx = nodeToIndex(cur_node);
216 dtls->addLock(cur_idx, current_epoch_, stk);
219 // Experimental *racy* fast path function.
220 // Returns true if all edges from the currently held locks to cur_node exist.
221 bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
222 uptr local_epoch = dtls->getEpoch();
223 // Read from current_epoch_ is racy.
224 if (cur_node && local_epoch == current_epoch_ &&
225 local_epoch == nodeToEpoch(cur_node)) {
226 uptr cur_idx = nodeToIndexUnchecked(cur_node);
227 for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) {
228 if (!g_.hasEdge(dtls->getLock(i), cur_idx))
229 return false;
231 return true;
233 return false;
236 // Adds edges from currently held locks to cur_node,
237 // returns the number of added edges, and puts the sources of added edges
238 // into added_edges[].
239 // Should be called before onLockAfter.
240 uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk,
241 int unique_tid) {
242 ensureCurrentEpoch(dtls);
243 uptr cur_idx = nodeToIndex(cur_node);
244 uptr added_edges[40];
245 uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx,
246 added_edges, ARRAY_SIZE(added_edges));
247 for (uptr i = 0; i < n_added_edges; i++) {
248 if (n_edges_ < ARRAY_SIZE(edges_)) {
249 Edge e = {(u16)added_edges[i], (u16)cur_idx,
250 dtls->findLockContext(added_edges[i]), stk,
251 unique_tid};
252 edges_[n_edges_++] = e;
254 // Printf("Edge%zd: %u %zd=>%zd in T%d\n",
255 // n_edges_, stk, added_edges[i], cur_idx, unique_tid);
257 return n_added_edges;
260 bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to,
261 int *unique_tid) {
262 uptr from_idx = nodeToIndex(from_node);
263 uptr to_idx = nodeToIndex(to_node);
264 for (uptr i = 0; i < n_edges_; i++) {
265 if (edges_[i].from == from_idx && edges_[i].to == to_idx) {
266 *stk_from = edges_[i].stk_from;
267 *stk_to = edges_[i].stk_to;
268 *unique_tid = edges_[i].unique_tid;
269 return true;
272 return false;
275 // Test-only function. Handles the before/after lock events,
276 // returns true if there is a cycle.
277 bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
278 ensureCurrentEpoch(dtls);
279 bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node);
280 addEdges(dtls, cur_node, stk, 0);
281 onLockAfter(dtls, cur_node, stk);
282 return is_reachable;
285 // Handles the try_lock event, returns false.
286 // When a try_lock event happens (i.e. a try_lock call succeeds) we need
287 // to add this lock to the currently held locks, but we should not try to
288 // change the lock graph or to detect a cycle. We may want to investigate
289 // whether a more aggressive strategy is possible for try_lock.
290 bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
291 ensureCurrentEpoch(dtls);
292 uptr cur_idx = nodeToIndex(cur_node);
293 dtls->addLock(cur_idx, current_epoch_, stk);
294 return false;
297 // Returns true iff dtls is empty (no locks are currently held) and we can
298 // add the node to the currently held locks w/o chanding the global state.
299 // This operation is thread-safe as it only touches the dtls.
300 bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
301 if (!dtls->empty()) return false;
302 if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
303 dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
304 return true;
306 return false;
309 // Finds a path between the lock 'cur_node' (currently not held in dtls)
310 // and some currently held lock, returns the length of the path
311 // or 0 on failure.
312 uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path,
313 uptr path_size) {
314 tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
315 uptr idx = nodeToIndex(cur_node);
316 CHECK(!tmp_bv_.getBit(idx));
317 uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
318 for (uptr i = 0; i < res; i++)
319 path[i] = indexToNode(path[i]);
320 if (res)
321 CHECK_EQ(path[0], cur_node);
322 return res;
325 // Handle the unlock event.
326 // This operation is thread-safe as it only touches the dtls.
327 void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
328 if (dtls->getEpoch() == nodeToEpoch(node))
329 dtls->removeLock(nodeToIndexUnchecked(node));
332 // Tries to handle the lock event w/o writing to global state.
333 // Returns true on success.
334 // This operation is thread-safe as it only touches the dtls
335 // (modulo racy nature of hasAllEdges).
336 bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
337 if (hasAllEdges(dtls, node)) {
338 dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
339 return true;
341 return false;
344 bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
345 return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
348 uptr testOnlyGetEpoch() const { return current_epoch_; }
349 bool testOnlyHasEdge(uptr l1, uptr l2) {
350 return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
352 // idx1 and idx2 are raw indices to g_, not lock IDs.
353 bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
354 return g_.hasEdge(idx1, idx2);
357 void Print() {
358 for (uptr from = 0; from < size(); from++)
359 for (uptr to = 0; to < size(); to++)
360 if (g_.hasEdge(from, to))
361 Printf(" %zx => %zx\n", from, to);
364 private:
365 void check_idx(uptr idx) const { CHECK_LT(idx, size()); }
367 void check_node(uptr node) const {
368 CHECK_GE(node, size());
369 CHECK_EQ(current_epoch_, nodeToEpoch(node));
372 uptr indexToNode(uptr idx) const {
373 check_idx(idx);
374 return idx + current_epoch_;
377 uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }
379 uptr nodeToIndex(uptr node) const {
380 check_node(node);
381 return nodeToIndexUnchecked(node);
384 uptr nodeToEpoch(uptr node) const { return node / size() * size(); }
386 uptr getAvailableNode(uptr data) {
387 uptr idx = available_nodes_.getAndClearFirstOne();
388 data_[idx] = data;
389 return indexToNode(idx);
392 struct Edge {
393 u16 from;
394 u16 to;
395 u32 stk_from;
396 u32 stk_to;
397 int unique_tid;
400 uptr current_epoch_;
401 BV available_nodes_;
402 BV recycled_nodes_;
403 BV tmp_bv_;
404 BVGraph<BV> g_;
405 uptr data_[BV::kSize];
406 Edge edges_[BV::kSize * 32];
407 uptr n_edges_;
410 } // namespace __sanitizer
412 #endif // SANITIZER_DEADLOCK_DETECTOR_H