[ASan/Win tests] Bring back -GS- as SEH tests fail otherwise
[blocksruntime.git] / lib / builtins / floatdidf.c
blobe53fa2580f6eac14463563c3b02783acaf611bd8
1 /*===-- floatdidf.c - Implement __floatdidf -------------------------------===
3 * The LLVM Compiler Infrastructure
5 * This file is dual licensed under the MIT and the University of Illinois Open
6 * Source Licenses. See LICENSE.TXT for details.
8 *===----------------------------------------------------------------------===
10 * This file implements __floatdidf for the compiler_rt library.
12 *===----------------------------------------------------------------------===
15 #include "int_lib.h"
17 /* Returns: convert a to a double, rounding toward even. */
19 /* Assumption: double is a IEEE 64 bit floating point type
20 * di_int is a 64 bit integral type
23 /* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
25 ARM_EABI_FNALIAS(l2d, floatdidf)
27 #ifndef __SOFT_FP__
28 /* Support for systems that have hardware floating-point; we'll set the inexact flag
29 * as a side-effect of this computation.
32 COMPILER_RT_ABI double
33 __floatdidf(di_int a)
35 static const double twop52 = 0x1.0p52;
36 static const double twop32 = 0x1.0p32;
38 union { int64_t x; double d; } low = { .d = twop52 };
40 const double high = (int32_t)(a >> 32) * twop32;
41 low.x |= a & INT64_C(0x00000000ffffffff);
43 const double result = (high - twop52) + low.d;
44 return result;
47 #else
48 /* Support for systems that don't have hardware floating-point; there are no flags to
49 * set, and we don't want to code-gen to an unknown soft-float implementation.
52 COMPILER_RT_ABI double
53 __floatdidf(di_int a)
55 if (a == 0)
56 return 0.0;
57 const unsigned N = sizeof(di_int) * CHAR_BIT;
58 const di_int s = a >> (N-1);
59 a = (a ^ s) - s;
60 int sd = N - __builtin_clzll(a); /* number of significant digits */
61 int e = sd - 1; /* exponent */
62 if (sd > DBL_MANT_DIG)
64 /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
65 * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
66 * 12345678901234567890123456
67 * 1 = msb 1 bit
68 * P = bit DBL_MANT_DIG-1 bits to the right of 1
69 * Q = bit DBL_MANT_DIG bits to the right of 1
70 * R = "or" of all bits to the right of Q
72 switch (sd)
74 case DBL_MANT_DIG + 1:
75 a <<= 1;
76 break;
77 case DBL_MANT_DIG + 2:
78 break;
79 default:
80 a = ((du_int)a >> (sd - (DBL_MANT_DIG+2))) |
81 ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
83 /* finish: */
84 a |= (a & 4) != 0; /* Or P into R */
85 ++a; /* round - this step may add a significant bit */
86 a >>= 2; /* dump Q and R */
87 /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
88 if (a & ((du_int)1 << DBL_MANT_DIG))
90 a >>= 1;
91 ++e;
93 /* a is now rounded to DBL_MANT_DIG bits */
95 else
97 a <<= (DBL_MANT_DIG - sd);
98 /* a is now rounded to DBL_MANT_DIG bits */
100 double_bits fb;
101 fb.u.high = ((su_int)s & 0x80000000) | /* sign */
102 ((e + 1023) << 20) | /* exponent */
103 ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
104 fb.u.low = (su_int)a; /* mantissa-low */
105 return fb.f;
107 #endif